
Combining self-healing and proofreading in self-
assembly

David Soloveichik Æ Matthew Cook Æ Erik Winfree

Received: 1 September 2006 / Accepted: 19 February 2007 / Published online: 6 April 2007
� Springer Science+Business Media B.V. 2007

Abstract Molecular self-assembly is a promising approach to bottom-up fabrication of

complex structures. A major impediment to the practical use of self-assembly to create

complex structures is the high rate of error under existing experimental conditions. Recent

theoretical work on algorithmic self-assembly has shown that under a realistic model of tile

addition and detachment, error correcting tile sets are possible that can recover from the

attachment of incorrect tiles during the assembly process. An orthogonal type of error

correction was recently considered as well: whether damage to a completed structure can

be repaired. It was shown that such self-healing tile sets are possible. However, these tile

sets are not robust to the incorporation of incorrect tiles. It remained an open question

whether it is possible to create tile sets that can simultaneously resist wholesale removal of

tiles and the incorporation of incorrect ones. Here we present a method for converting a tile

set producing a pattern on the quarter plane into a tile set that makes the same pattern (at a

larger scale) but is able to withstand both of these types of errors.

Keywords DNA nanotechnology � Error-correction � Proofreading � Self-assembly �
Self-healing � Tile Assembly Model

D. Soloveichik (&)
Department of CNS, California Institute of Technology, Caltech MC 136-93, 1200 E. California
Blvd, Pasadena, CA 91126, USA
e-mail: dsolov@caltech.edu

M. Cook
Institute of Neuroinformatics, Zurich, Switzerland
e-mail: cook@ini.phys.ethz.ch

E. Winfree
Department of CNS and CS, California Institute of Technology, Pasadena, CA, USA
e-mail: winfree@caltech.edu

123

Nat Comput (2008) 7:203–218
DOI 10.1007/s11047-007-9036-x

1 Introduction

The Tile Assembly Model (Winfree 1998a, b) formalizes a generalized crystal growth

process by which an organized structure can spontaneously form from simple parts. It

provides the foundation for theoretically examining how to use self-assembly for massively

parallel DNA computation (Winfree 1996; Winfree et al. 1998; Reif 1999; Lagoudakis and

LaBean 2000), for creating objects with programmable morphogenesis (Rothemund and

Winfree 2000; Adleman et al. 2001; Aggarwal et al. 2005; Soloveichik and Winfree 2007),

for patterning of components during nanofabrication of molecular electronic circuits (Cook

et al. 2004), and for studying self-replication and Darwinian evolution of information-

bearing crystals (Schulman and Winfree 2005a, b). In addition to this theoretical work,

several self-assembling systems have been implemented experimentally using DNA

molecules as tiles, including both periodic (Winfree et al. 1998; Mao et al. 1999; LaBean

et al. 2000) and algorithmic patterns (Mao et al. 2000; Rothemund et al. 2004; Barish et al.

2005).

The Tile Assembly Model considers the growth of two dimensional ‘‘crystals’’ made

out of square units called tiles. Typically, there are many types of tiles that must compete

to bind to the crystal. A new tile can be added to a growing complex if it binds strongly

enough. Each of the four sides of a tile has an associated bond type that interacts with

abutting sides of other tiles that have already been incorporated. If the two abutting sides

have different bond types then their interaction strength is 0. Otherwise, the bond type

determines the interaction strength. For tile systems shown in this paper, at least a single

strong bond (strength 2) or two weak bonds (strength 1 each) need to be formed for a tile to

attach. This is called error-free tile addition. The assembly process starts from a specified

seed assembly and proceeds by sequential addition of tiles. An assembly is an arrangement

of tiles that can result by this process. Tiles do not get used up since it is assumed there is

an unbounded supply of tiles of each type. If every tile type is ‘‘colored’’ a certain way,

then the self-assembly process can produce a pattern. Figure 1 illustrates two different

patterns and the corresponding tile systems that self-assemble into them. Tile systems, like

these, that grow from an L-shaped boundary using only weak bonds are called quarter-
plane tile systems. Quarter-plane tile systems are a rich class capable of universal

computation, and they are the most widely studied type of tile systems in the context of

error correction (Winfree 1998b; Winfree and Bekbolatov 2004; Chen and Goel 2005; Reif

et al. 2005; Soloveichik and Winfree 2005).

A major stumbling block to making algorithmic self-assembly practical is the error rate

inherent in current implementations. While the abstract model supposes that tile additions

are error-free and permanent, in reality tile additions are error prone and tiles can dissociate

from a growing complex. Further, huge chunks of the structure may be physically ripped

off by external mechanical forces, such as shear due to fluid flow during sample handling.

Erroneous addition of tiles and wholesale removal of tiles have been examined separately

in the literature, so let us review them in turn.

Recent experimental demonstrations of algorithmic self-assembly exhibit error rates of

1–15%: on average every 8th–100th tile that is incorporated does not correctly bond with

its neighbors (Rothemund et al. 2004; Barish et al. 2005). Once such a mistake occurs, the

erroneous information can be propagated to tiles that are subsequently attached. Thus, a

single mistake can result in a drastically different pattern being produced. With this error

rate, structures of size larger than roughly 100 tiles cannot be assembled reliably.

204 D. Soloveichik et al.

123

The initial work on the relationship between the per tile error rate e and the rate of

assembly r (layers per second) showed that under the best physical conditions r � e2 for

quarter-plane tile systems directly simulating cellular automata (Winfree 1998b). This

suggested that the time to produce the N · N initial portion of the pattern correctly with

high probability is X(N4) (Soloveichik and Winfree 2005). While the physics of the self-

assembly process could possibly be modified to achieve a lower probability of the

incorporation of incorrect tiles into the growing complex, it is also possible to use some

logical properties of the tiles to perform error correction (Winfree and Bekbolatov 2004).

0
0

0
0

1
0

1
0

0
1

1
1

1
0

0
1

0 0 0

1

1

1

. .

. .
 .

0
0

0
0

1
1

1
0

0
0

1
1

1
1

0
1

0 0 0

1

0

0

. .

. .
 .

. . .

. .
 .

a) b)

c) d)

(0,0)

. . .

. .
 .

(0,0)

Fig. 1 (a) A binary counter pattern and (b) a tile system constructing it. (c) A Sierpinski pattern and (d) a
tile system constructing it. The L-shaped boundary (represented in (a) and (b) as the x and y axes) is the
seed. We assume it is exactly as large as the portion of the pattern we are trying to build. In this formalism,
identically-labeled sides match and tiles cannot be rotated. All bond types are weak (strength 1); thus, tiles
may attach to the growing assembly only if at least two sides match. Note that the tile choice at each site is
deterministic for these two tile sets if the assembly is growing north–east. Growth in the south–west and
north–west directions is not deterministic for the counter, and south–west growth is not deterministic for the
Sierpinski

Combining self-healing and proofreading in self-assembly 205

123

In this vein, Chen and Goel 2005 developed snaked proofreading tile sets that make use of

redundant encoding of information to achieve robustness to error (see Fig. 2a). Each tile

type of the original quarter-plane tile system is replaced by k2 tile types that form a block

corresponding to the original tile and is colored the same. (The new tile system is no longer

quarter-plane since strong (strength 2) and null (strength 0) bonds are used.) If growth

occurs without error, the same pattern is produced, albeit at a k times larger scale. How-

ever, the pattern of null and strong bonds in a block controls the order of assembly in such

a way that an error leads to an assembly whose growth cannot be continued without further

errors. Since further errors are unlikely to happen in just the right time and place, growth

around erroneous tiles stalls and the erroneous tiles are able to subsequently dissociate,

allowing another chance for correct growth. Chen and Goel were able to prove, with

respect to a reversible model of algorithmic self-assembly, that error rates decrease

exponentially with k, and thus making an N · N initial portion of the pattern can be done in

time O(N poly(log (N))) using only k = X(log N). Thus theory predicts that using logical

error correction we can assemble structures that are correct with high probability signifi-

cantly faster than the direct implementation of cellular automata.

Extensive damage to the completed parts of the structure was considered in (Winfree

2006). Damage caused by external destructive physical processes is modeled by simply

removing some number of tiles from the growing (or completed) structure. Because the

assembly model allows crystals to grow in any direction, tiles may begin to fill in holes in

the structure from a different direction than the direction of their original growth. While

forward growth was deterministic, most of the time backward and sideways growth is not

(unless the computation being performed is reversible in some sense). For example, both

the binary counter and the Sierpinski pattern do not have deterministic backward growth.1

Self-healing tile sets were developed that perfectly heal such damage to the self-assembled

object, assuming that only error-free tile additions occur (see Fig. 2b). Each tile in the

original tile set is replaced with 9 tiles as shown in the figure, and thus the pattern is

n
e

s
w e2w2

s2
e1s1

w1

b)a)

n
e

s
w

n1
w4

n2 n3 n4
e4

e3

e2

w3

w2

s2 s3
e1

s4s1
w1

n1 n2

Precursor tile Precursor tile

output

in
pu

t output

input

output

in
pu

t output

input

Fig. 2 (a) Chen and Goel’s snaked proofreading transformations using 4 · 4 blocks (i.e. k = 4), and (b)
Winfree’s self-healing transformations for quarter plane tile systems. Each tile type is replaced with the tile
types that fit together to form the block as shown. Strong bonds (strength 2) are indicated with 2 dots. Null
bonds (strength 0) bonds are indicated with a cross. All unlabeled (internal) bond types are unique (within
the block and between blocks.) The placement of weak and strong bonds is dependent upon the orientation
of growth, which is to the north–east for quarter plane tile systems

1 Some backward growth can occur as a result of insufficient attachments in a growing complex that has not
been subjected to wholesale tile removal. Chen and Goel’s construction handles this type of backward
growth but not the more extensive incorrect backward growth possible after tile removal.

206 D. Soloveichik et al.

123

produced at a fixed scaleup factor of 3.2 The construction guarantees that regrowth occurs

from the same direction as the original growth by the placement of null bonds that prevent

backward growth and strong bonds that allow the assembly process to proceed correctly in

the forward direction.

In summary we have two types of errors: (1) tile additions that violate the rule that a tile

may only be added if it binds strongly enough, and (2) the removal of tiles despite them

being strongly bonded. With existing techniques, each of these types of errors can be

controlled separately, but not when they can occur in the same assembly process. Further,

simply applying the snaked proofreading transformation followed by the self-healing

transformation, or vice versa, does not provide a solution (see the beginning of Sect. 3). In

this paper we describe a new construction that has the analogous provable properties as

snaked proofreading for the first type of error, but is also able to heal damaged areas where

tiles have been removed from the assembly, even when errors in tile addition are allowed.

We assume the reader is familiar with the formal details of the Tile Assembly Model

(see (Soloveichik and Winfree 2007) for a long version, and (Soloveichik and Winfree

2005) for a short summary). In the next section we review the model of the dynamics of

self-assembly that allows us to speak more precisely about the rate of incorrect tile

additions and to show that our construction is robust to such errors. Further, we’ll specify

more precisely the kind of damage we allow to our assemblies in studying the self-healing

property. In the final section, we introduce our construction and prove that it is robust to

both types of error. Our proof technique provides an alternative way to Chen and Goel’s

work of analyzing the error correction process, in that all analysis pertains to individual

blocks.

2 Modeling errors

2.1 Erroneous tile additions during growth

To be able to discuss whether or not a tile set is robust to erroneous tile additions, we need

a model of the process of incorporation of erroneous tiles into the growing structure. In

physical realizations of self-assembly, the growth process involves tiles dynamically

attaching and detaching from the assembly. An error occurs if a tile that is held on with

total strength less than 2 does not fall off quickly enough and becomes effectively locked in

place when another tile attaches such that both tiles are now held on to the rest of the

structure with strength at least 2. This event is called an insufficient attachment. Thus to

determine the effective rate of insufficient attachments we need to study the dynamics of

tile attachments and detachments.

Following (Winfree 1998b; Winfree and Bekbolatov 2004; Soloveichik and Winfree

2005) let us define the kinetic Tile Assembly Model (kTAM) as follows. The concentration

of each tile type in solution is held constant throughout the self-assembly process, and the

concentrations of all tile types are equal. We assume that for every tile association reaction

there is a corresponding dissociation reaction. We further assume that the rate of addition

(forward rate f) of any tile type at any position of the perimeter of the growing assembly is

the same. Specifically, f ¼ kf e
�Gmc where kf is a constant that sets the time scale, and Gmc

2 Allowing self-assembly to start from a preexisting seed boundary as in this paper, rather than from a single
seed tile as in (Winfree 2006), actually permits the use of a simpler transformation that produces a scale-up
factor of just 2.

Combining self-healing and proofreading in self-assembly 207

123

is the logarithm of the concentration of each tile type in solution. The rate that a tile falls

off the growing assembly (reverse rate rb) depends exponentially on the number of bonds

that must be broken. Specifically, rb ¼ kf e
�bGse where b is the total interaction strength

with which the tile is attached to the assembly, and Gse is the unit bond free energy, which

may depend, for example, on temperature.3

We assume the following concerning f and rb. As in (Chen and Goel 2005), we let f =

r2; then the tile addition requirement imposed by the abstract Tile Assembly Model is

satisfied with high probability,4 forward growth occurs sufficiently quickly5 and incorrect

parts of the assembly can quickly dissociate. In Sect. 4.1 we discuss how close f and r2

have to be for our proof to work out, but for the purposes of the rest of the paper we assume

equality. We assume f (and therefore r2) can be arbitrarily chosen in our model by

changing Gmc and Gse, for example by changing tile concentrations and temperature. (In

practice, there are limits to how much these parameters can be changed.) However, kf is

assumed to be a physical constant not under our control.

Following (Chen and Goel 2005; Soloveichik and Winfree 2005) we make use of a

simplification of the kTAM that captures the essential behavior while being more tractable

for rigorous proofs. Under the conditions where f = r2, the self-assembly process is

dominated by tiles being added with exactly 2 bonds and tiles falling off via exactly 2

bonds. The locking kTAM model assumes that these are the only possible single-tile

events. That is, rb = 0 for b � 3 (tiles attached with total interaction strength � 3 never

detach), and tiles never attach via a single weak (strength-1) bond. Additionally, insuffi-

cient attachments are modeled in the locking kTAM as atomic events, in which two tiles

are added simultaneously at any position in which an insufficient attachment can occur.

Specifically, any particular pair of tile types that can create an insufficient attachment in

the kTAM is added at a rate ferr ¼ Oðe�3GseÞ , which approximates the occurrences of

insufficient attachments in the kTAM (Chen and Goel 2005). Thus the total rate of

insufficient attachments at a particular location is Q ferr, where Q is the number of different

ways (with different tile types) that an insufficient attachment can occur there. These

insufficient attachments are the sole cause of errors during growth.

2.2 Wholesale removal of tiles

Let us now consider how to model the event when (potentially large) portions of the

completed pattern are physically ripped off the assembly despite being strongly bonded to

it. We simply suppose that any number of tiles can be spontaneously removed from the

3 This formulation ignores the initiation free energy of hybridization, which is non-negligible. See (Winfree
1998b) for details of how this free energy can be treated, yielding a model that is formally identical, but with
slightly altered physical meanings for Gmc and kf.
4 Assuming f = r2, since r1� f, if a tile is added that bonds only with strength 1, it falls off very quickly as
it should to obey the aTAM. Tiles attached with strength 2 stick much longer, allowing an opportunity for
other tiles to attach to them. Once a tile is bonded with total strength 3, it is very unlikely to dissociate
(unless surrounding tiles fall off first).
5 The approach here and in (Chen and Goel 2005) should be contrasted with the approach in (Winfree
1998b) where the effort is to maximize the ‘‘rate of growth’’ f � r2 while maintaining a low error rate per
tile. While for the tile systems considered there, the rate of growth is indeed proportional to f � r2, the tile
systems considered here and in (Chen and Goel 2005) can grow quickly even assuming f = r2. This is
possible because of strong bonds that bias the assembly forward even if f = r2.

208 D. Soloveichik et al.

123

assembly in a distinct event. However, we assume the L-shaped boundary tiles cannot get

removed. If the assembled structure becomes disconnected after the event, we assume that

the part of the assembly containing the L-shaped boundary remains.

The reason we suppose that the L-shaped boundary cannot get detached is that to make

the boundary self-healing requires a different self-healing transformation than the one

shown in Fig. 2 (see Winfree 2006), and we wish to keep our argument as simple as

possible. It remains an open question whether the self-healing/proofreading construction

presented in this paper can be extended to recover the boundary after damage, and whether

the techniques used here can be extended to a wider class of tile sets that perform complex

growth to create shapes and patterns (Soloveichik and Winfree 2007). (We expect an

affirmative answer.)

3 Self-healing proofreading construction

First, let us return to the following issue raised in the Introduction: Why can’t we simply

apply the snaked proofreading transformation followed by the self-healing transformation,

or vice versa, to produce a tile set robust to both insufficient attachments and wholesale

removal of tiles? There are two difficulties. The first is of a technical nature: both trans-

formations shown in Fig. 2 only are defined if precursor tiles have weak bonds on all four

sides, yet they result in tile sets that also involve both strong and null bonds. Thus the two

transformations can’t be composed. Sufficiently general (though more complicated) self-

healing transformations do exist (Winfree 2006), but although more generally applicable

proofreading transformations have been proposed (Winfree and Bekbolatov 2004), there

are as yet none with provably good performance. Even supposing this technicality can be

overcome, there is no guarantee that the tile set resulting from composing both transfor-

mations will retain both robustness properties. One problem is that no matter in which

order the transformations are applied, the blocks produced by the last transformation are

sensitive to even one insufficient attachment after wholesale removal of tiles. Figure 3

illustrates two incorrect structures that can form and become locked in (according to the

locking kTAM). Therefore, we choose to combine the ideas from the snaked proofreading

and self-healing constructions, and do not simply compose the transformations directly.

w2

s2s1
w1 e1

n1

s3
e1

s4

e3

s1
w1

s2

e2w2

w3

n1
w4

n2

e2

n2 n3 n4
e4

b)a)

Fig. 3 (a) The self-healing and (b) the snaked proofreading blocks are sensitive to a few insufficient
attachments in the backward growth direction. Consider the case where in the original tile set, backward
growth is not deterministic. The structures shown can form after a single insufficient attachment and may be
incorrect since they involve backward growth. Every one of the tiles is attached with strength at least 3 and
thus cannot dissociate in the locking kTAM. The striped areas show a part of the remaining (correct)
assembly after wholesale removal of tiles. The grayed out tiles, which need not be present, show the entire
block for reference. There are other structures that can form that cause similar problems

Combining self-healing and proofreading in self-assembly 209

123

Our self-healing proofreading construction is illustrated in Fig. 4. Intuitively, the con-

struction ensures that erroneous growth (in the correct as well as backward direction)

cannot extend far without many insufficient attachments occurring. Specifically, erroneous

growths within the S and W rectangles (see Fig. 4b) increase by at most 2 rows or columns

after an insufficient attachment. Likewise, the erroneous backward growths bounded by N
and E rectangles similarly increase by at most 2 rows or columns after an insufficient

attachment. The null bonds (strength 0) on the north–east edges of the block prevent these

incorrect growths from meeting up and locking in (i.e. forming a structure where each tile

is attached by strength 3 or more). Correct growth, however, can proceed without any

insufficient attachments to fill in the south–west quarter of the block, followed by the

‘‘spine’’ and the remaining north and east portion of the block. The strong bonds in the

spine are required for it to grow. To ensure that both growth of correct tiles and the dis-

sociation of erroneous tiles occurs quickly we rely on series of 1D random walks (see Sect.

4.1). This necessitates the pattern of strong bonds in the rest of the block (outside of the

‘‘spine’’).

Suppose we are trying to assemble an N · N initial portion of the given pattern such that

it assembles quickly and correctly with some fixed high probability (like 99%) from the

starting L-shaped boundary or from any subassembly that may be formed by removing tiles

from the target assembly. We have the following result:6

Theorem 1 Fix any constant e > 0, and consider any N. There is a k = H(log N) such that

using the self-healing proofreading construction with block size k and an L-shaped

boundary N blocks long, with an appropriate choice of Gmc and Gse, the following holds in

the locking kTAM model. Starting with any subassembly of AN containing the L-shaped

boundary, with probability at least 1�e, the initial N · N block portion of the pattern AN

completes correctly in time O(N poly (log N)).

As a special case, the subassembly we start out with may just be the L-shaped boundary.

Then the assembly process we are talking about is the regular case considered by Chen and

Goel which starts out from this boundary. However, we also consider the case where the

assembly AN was damaged by the removal of some tiles. Note that the assumption is that

this damage is an isolated event rather than occurring continuously at some rate. If

wholesale damage events occur less frequently than the time required to complete the N ·
N square, then a reasonable probability of success can be inferred. However, if damage

occurs at an intermediate time during assembly—when many incorrect tiles are still present

before being replaced by correct growth—then we need a stronger theorem that states that

such initial conditions are also allowed. As this requires technical language defining just

how much incorrect growth is allowable, we defer this discussion until the end of the proof

of the stated theorem.

Proof First we need to make some terms precise. Then we will prove a number of

lemmas about the assembly process, and finally with their help we will prove the theorem.

In the following, when we say block we will mean the square k · k region which should

become filled by a block in the ideal error free assembly. We say a tile in an assembly is

incorrect if it is not the same tile type as in the ideal error free assembly we are trying to

6 We use the standard asymptotic notation defined as follows: f(x) = O(g(x)) means that that there is c > 0
such that f(x) � c�g(x) for large enough x. Similarly, f(x) = X(g(x)) means that there is c > 0 such that f(x) �
c�g(x) for large enough x. We write f(x) = H(g(x)) if f(x) = O(g(x)) and f(x) = X(g(x)).

210 D. Soloveichik et al.

123

produce. Of the directions {north, east, south, west}, we will call the directions west and

south the input directions, and east and north the output directions (because the growth

direction is north–east and thus information must pass from the west and south toward

a)

n
e

s
w

w4

w3

w2

s2 s4s1
w1 s3

e4

e3

e2

e1

n1 n2 n4n3

Precursor tile

output
tupni tu

pt
u o

input

b)

k/2

k/2

S

E
W

N

E1

N2

S2

E2

S1

W2

N1

W1

Fig. 4 (a) The self-healing proofreading transformations for block size k = 8. (b) Schematic of the self-
healing proofreading block for k divisible by 4. Tiles in the k · k block are not explicitly drawn; just the
pattern of null bonds (X’s) and strong bonds (double-dots) are indicated, and all other bonds are weak. For
discussing the growth process in the presence of errors, the state of the assembly is characterized by Ni, Ei,
Si, and Wi, which are the smallest non-negative integers such that the following statements hold: Rectangle
N (E) contains all incorrect tiles connected to the north (east) side of the block. (We say that a tile is
connected to a side of a block if there is a path of connected tiles (abutting with matching bond types) within
the block from the given tile to the given side.) Rectangle S (W) contains all incorrect tiles connected to an
input side of the block that are incorrect with respect to the west (south) side of the precursor tile. (An
incorrect tile must be incorrect with respect to at least one of the input sides of the precursor tile.) The block
‘‘spine’’ consists of tiles shown as striped

Combining self-healing and proofreading in self-assembly 211

123

north and east). We say that a block or a region becomes clean if all incorrect tiles detach

(correct tiles may remain.)

Now refer to Fig. 4b where rectangles N, E, S, W are defined. We define the following in

relation to a particular block in a growing assembly:

• State DOOM: The block enters this state when an input rectangle W or S touches an

output rectangle N or E or if any of the rectangles touches the ‘‘spine’’ of the block

(marked with striped patterns in the figure). We will see that unless DOOM occurs, all

of the rectangles are easy to clean. If DOOM occurs, this can no longer be guaranteed

and indeed the block can lock in with incorrect tiles.

• Event IA: This event occurs whenever an insufficient attachment happens in the block

or its input blocks.

• State CLEAN: This state occurs when the block becomes clean, together with the

abutting output rectangles of its input blocks. We will demonstrate that after a CLEAN,

many IA events are required to enter the DOOM state.

• State COMPLETE: The block enters this state when it and its input blocks complete

correctly. We will see that once a block enters this state the correct structure is locked

in and we can move on to other blocks in our argument.

Lemma 3.2 If a block is COMPLETE then no tile from the block can detach.

Proof By inspection: except for the most south–west tile, every tile in a completed block

is attached by strength at least 3. Assuming both input blocks are completed, the most

south–west tile is also attached by strength at least 3. �

Lemma 3.3 If a block is CLEAN then (a) at least one IA is needed to get an incorrect tile

in the block, (b) at least k/4 IA events are needed to enter DOOM, assuming no DOOM

occurs in its input blocks first.

Proof Part (a) follows immediately. Unless a DOOM occurs in our block or its input

blocks, each insufficient attachment inside our block increases one of N2, E2, S1, S2, W1, W2

by at most 2 or one of N1, E1 by at most 1. An insufficient attachment in the west or south

input block can increase S2 or W2 respectively by 2 (if the incorrect tiles extend into the

input blocks).

Thus, the number of IAs must be at least N1 + E1 + (N2 + E2 + S1 + S2 + W1 + W2)/2.

At least one of the following inequalities must hold for DOOM to occur: N1 + N2 � k/2 �
1, E1 + E2 � k/2 � 1, W2 � k/2 �1, S2 � k/2 �1, W1 + N2 � k/2, or S1 + E2 � k/2. Part

(b) easily follows. �

Lemma 3.4 The expected time for a block to enter CLEAN is Oðk3=f Þ , assuming (1) no

IA occurs, and (2) no DOOM occurs in this block or its input blocks.

Proof Let us first show that the output rectangles of the input blocks become clean in

expected time Oðk3=f Þ . Let’s consider rectangle E since N can be treated identically. Since

no DOOM occurs in this block, we can safely assume that these incorrect tiles are sur-

rounded by either correct tiles or empty space on the north and west, and thus cannot bind

to them. Then the largest incorrect structure is illustrated in Fig. 5a. Recall that we are

assuming that the forward rate f is equal to the reverse rate r2 (see Sect. 2.1). Thus the

leftmost two rows can fall off via a 1D random walk with expected time Oðk2=f Þ (see Sect.

212 D. Soloveichik et al.

123

4.1). Once the two rows fall off, they cannot attach again except via another insufficient

attachment. Since there are O(k) pairs of rows, the total expected time for rectangle N to

fall off is Oðk3=f Þ .

Once the output rectangles of the input blocks become clean, only correct (or empty)

tiles abut our block on the west and south sides. Let’s consider the tiles defining rectangle

W (rectangle S can be treated similarly). Since these tiles are incorrect with respect to the

south side of the block, they cannot be attached to anything on the south side of the

rectangle. Further they cannot be attached to anything inside the block along the east or

north sides of the rectangle since then those tiles would be part of the rectangle. Since we

are assuming that no DOOM occurs, the rectangle cannot extend to and bind the north

output border of the block either. Further, the rectangle cannot reach the column of

strength-2 bonds on its right because otherwise DOOM would occur (a spine tile would be

covered by the rectangle). Thus the rectangle W is as illustrated in Fig. 5b. The W2 · W1

top rectangle can falloff via 1D random walks as before. After that, again by the same

argument, the rest of rectangle W can fall of in time Oðk3=f Þ . �

Lemma 3.5 The expected time for a block whose input blocks are COMPLETE to enter

COMPLETE itself is Oðk3=f Þ , assuming (1) no IA occurs, and (2) no DOOM occurs.

Proof First the block enters CLEAN in expected time Oðk3=f Þ using Lemma 3.4 (note

that no DOOM can occur in the input blocks because they are completed). By Lemma

3.3(a) the block remains free of incorrect tiles. Then let us consider how long it takes to

complete the cleaned block whose input blocks are complete, assuming no insufficient

attachments occur. Consider the south–west quarter of the block shown in Fig. 5c. Once

each row or column completes it is held by strength at least 3 and thus cannot dissociate.

Each row or column completes via a 1D random walk with expected time Oðk2=f Þ . Since

there are O(k) row/columns, the total expected time to complete the square shown is

Oðk3=f Þ . The remaining areas of the block can be completed using a similar argument in

time Oðk3=f Þ as well, after the spine of the block (shown striped in Fig. 4.) completes in

time O(k/f). �

E

E1

E2

W

W2

W1

a)

k/2

k/2c)

b)

Fig. 5 (a, b) Illustration for the proof of lemma 3.4. (c) Illustration for the proof of lemma 3.5. In (a–b) the
thick black lines indicate where the incorrect tiles defining the rectangles shown may be bonded to the rest of
the assembly (and conversely the dashed lines indicate where they may not be bonded to the rest of the
assembly). In (c) the thick black lines indicate where the correct tiles are bonded to the rest of the assembly

Combining self-healing and proofreading in self-assembly 213

123

Now using these lemmas we can finish the proof of Theorem 3.1. The argument will

proceed as follows. First, we set e�Gse low enough as a function of the block size k so that

insufficient attachments are sufficiently rare that a block has a high probability of entering

CLEAN or COMPLETE before an IA occurs. This will ensure that, assuming no DOOM

occurs anywhere, the assembly completes in time O(poly(k) N/e). Then we will set k large

enough as a function of N and e to ensure that no block enters the DOOM state during the

entire assembly process. We will see that k need not be more than logarithmic in N/e.

Recall that as long as a particular location remains susceptible, we model insufficient

attachments at that location as a Poisson process with rate OðQe�3GseÞ where Q is the

number of different tile types that can be added via an insufficient attachment there. Q can

be bounded by the total number of different (made up of different tiles) blocks, and since

this is the number of tile types in the original tile system, it does not change with k and can

be absorbed into the constant. Thus for any block, the distribution of the time until an IA

occurs can be upper bounded by an exponential random variable with expected time

tia ¼ Xð1=ðk2e�3GseÞÞ since there are no more than 3 k2 locations where an insufficient

attachment can occur (in the block and its input blocks). Let tc ¼ Oðk3=f Þ be the worst case

expected time for Lemmas 3.4 and 3.5 (over all possible assemblies, blocks and config-

urations of tiles in blocks). We will want that tc � (1/2) tia. Recalling that

f ¼ r2 ¼ Oðe�2GseÞ (Sect. 2.1), we can guarantee that this inequality is satisfied if we set

e�Gse low enough: e�Gse ¼ Oð1=k5Þ . However, setting e�Gse too low slows down the rate of

assembly more than necessary, and thus for the following we assume that e�Gse ¼ Hð1=k5Þ.
Then, tc ¼ Oðk13Þ .

We wanted to have tc � (1/2) tia in order to show that the N · N blocks are likely, with

probability at least 1�e/2, to assemble correctly in time O(poly(k) N/e) assuming no

DOOM occurs anywhere. This can be argued as follows. Consider any block whose input

blocks are COMPLETE. Lemma 3.5 lets us bound the time until the block itself COM-

PLETES assuming no IAs or DOOM occur. But what if IAs can occur? The probability

that COMPLETE occurs within time 2tc given that an IA doesn’t happen in this time is at

least 1/2 by Lemma 3.5 and the Markov inequality.7 The probability that an IA doesn’t

happen in this time is at least 1/e since 2tc � tia. Thus the probability that COMPLETE

occurs within time 2tc is at least (1/2)(1/e) = 1/(2e). If it doesn’t (i.e. an IA occurs or it

simply doesn’t finish), the probability that a COMPLETE will occur in the next 2tc interval

is again at least 1/(2e). Thus the expected time until COMPLETE occurs is at most

2e2tc = 4 e tc. Recall that once a block completes, it can’t fall apart (Lemma 3.2). Thus, the

current situation is equivalent to irreversible, error-free self-assembly of tiles, where each

tile represents a block in our system. In irreversible assembly, the time to assemble an N ·
N tile square from an L boundary is on the order of N times the expected time for a single

tile to attach (Adleman et al. 2001). Thus, the expected total time to complete the N · N
block assembly is ttot = O(N�4 e tc) = O(N tc) assuming no DOOM occurs anywhere.

Therefore, the probability that it takes longer than tmax = ttot (2/e) = O(N k13/e) to complete

the assembly or to get a DOOM somewhere is at most e/2, again by the Markov inequality.

Next we bound the probability that DOOM occurred anywhere in the assembly in time

tmax. We’ll show that by an appropriate choice of k = H(log (N/e)), the probability of this

happening is no more than e/2. Again focus on a particular block; but this time the two

input blocks may not be completed. Let us make the worst case assumption that the block

remains uncompleted for the duration of assembly tmax and thus susceptible to DOOM. We

7 The Markov inequality states that for any non-negative random variable X, Pr[X � a] � E[X]/a where
E[X] is the expected value of X.

214 D. Soloveichik et al.

123

want such a block to be without DOOM for the entire time. Recall that the expected time

until an IA is bounded by tia ¼ Xð1=ðk2e�3GseÞÞ . Thus even with the worst case assumption

that the block is never completed, the expected number of IA’s for this block in time tmax is

at most q ¼ Oðtmaxk2e�3GseÞ . Recalling that e�Gse ¼ Oð1=k5Þ , we have q = O(N/e). The

probability that there will be more than q N2 (4/e) is at most e/(4N2) by the Markov

inequality. After each IA occurs, with probability at least 1/(2 e) there will be a CLEAN

but no IA within time 2 tc (using the same argument as we followed in the previous

paragraph for COMPLETE). Thus with probability at least 1/(2 e), a CLEAN will occur

between two IA’s. So the probability that among no more than q N2 (4/e) IA’s, a run of k/4

occur in a row without intervening CLEANs can be upper-bounded by

prun ¼ qN2ð4=eÞð1� 1=ð2eÞÞk=4
. Since for DOOM to occur, k/4 IA’s must occur without

intervening CLEANs (Lemma 3.3(b)), the probability of DOOM in this block during the

entire assembly time is upper bounded by prun if no more than q N2 (4/e) IA’s occur. If we

can somehow guarantee that prun � e/(4 N2), then the probability that DOOM occurs in

this block during the entire assembly time tmax is at most e/(4 N2) + e/(4 N2) = e/(2 N2).

Since there are N2 blocks, the probability that DOOM will occur even in one of them

during the entire assembly time tmax is at most e/2.

Now all that is left is to guarantee that prun = q N2 (4/e) (1�1/(2e))k/4 � e/(4 N2).

Solving for k, we get: k � O(1) log (16 N4 q/e2) = O(log (N/e)).

Recall that the total assembly time tmax = O((N/e) k13). Using k = O(log (N/e)), we get

that tmax = O(N�poly(log N)), for any fixed e. �

Note that Theorem 3.1 can be strengthened to allow incorrect tiles in the starting

subassembly, as long as there is no DOOM in any of the blocks. Thus we can cover the

case in which the assembly process does not entirely complete before the wholesale

removal of tiles occurs. However, if this removal occurs periodically and large enough

portions of the assembly are taken out each time, it may be that the assembly is never given

a chance to complete.

Note also that the dissociation of tiles attached by total strength � 3 is a special case of

wholesale tile removal. Thus the proof of the above theorem guarantees that even if the

locking assumption is violated, the probability of DOOM in the assembly in time tmax is no

more than e. However, we cannot guarantee completion in the sense of Theorem 3.1 since

with high likelihood there will be a missing tile somewhere in the assembly even after time

tmax.

Finally note that DOOM will eventually prevail if we wait long enough.

4 Extensions

4.1 Random walks in the r2 = f regime

Our proofs require that f = r2 exactly. This can’t be achieved exactly in practice, which

begs the question, is it a necessary requirement for our construction and proof, or can it be

relaxed somewhat? We believe it can be only slightly relaxed, due to the competing

pressures of needing large patches of incorrect growth to be quickly removed, and at the

same time needing correct growth to proceed quickly.

In the proofs of Lemmas 3.4 and 3.5, we model the completion and dissociation of a

chain of sequentially added/removed tiles as a continuous time 1D random walk, where the

rate with which a tile is added at the end is f and the rate as which the last tile is removed is

Combining self-healing and proofreading in self-assembly 215

123

r2. Specifically, we rely on the fact that the expected time for the entire chain to complete

(allowing fast forward growth) and the expected time for the chain to fall off (allowing

errors to be quickly undone), are both fast (polynomial in the block size k and therefore

logarithmic in the size of the target assembly N).

In order to compute the expected time until the entire chain is completed (or equiva-

lently falls off) we can use the following argument. In the discrete time 1D random walk of

length a = O(k), the expected number of steps to reach a predetermined end (with the other

end being a reflective barrier) is O(a2) if the forward and backward transition probabilities

are equal (Feller 1968). In our case, if r2 = f, the two transition probabilities are indeed

equal. Further, since the expected time to take one step is 1/(r2 + f) = 1/(2f), the expected

time to reach the predetermined end is Oða2=f Þ ¼ Oðk2=f Þ.8
However, what happens if the forward rate f does not equal the reverse rate r2? In the

discrete time biased 1D random walk of length a (with a reflecting barrier on the favored

end), the expected number of steps to complete in the unfavored direction is

Sðc; aÞ ¼ 1
2c2 ð1þ cÞ 1þc

1�c

� �a

�1
h i

� a=c where c is the difference between the transition

probability in the favored and the unfavored directions.9 This expected time is monotonic

increasing in c and exponentially increasing in a. So if c is not decreased as we attempt to

build larger and larger portions of patterns requiring larger block sizes, then the average

number of steps in this random walk grows exponentially with a = O(k), which would not

allow us to obtain Theorem 3.1.

Thus, as the block size increases, we need r2 and f to be closer to each other. As a

function of k (and thus ultimately of N) how fast does the difference need to decrease in

order for Theorem 3.1 to still hold? Let us assume that Gse and thus r2 is set as required by

our proof, but we didn’t get Gmc quite right such that the actual forward rate f is slightly

smaller than r2. This would normally mean that crystals would be thermodynamically

driven to shrink, but since some tile additions form multiple bonds, locking the tile in,

assembly is still ratcheted forward. The rate of insufficient attachments can only be smaller

and thus still ferr ¼ Oðe�3GseÞ. Thus as long as we can still prove Lemmas 3.4 and 3.5 we

would be done. Observe that c ¼ r2�f
r2þf is the difference between the transition probabilities

in the favored and unfavored directions in the corresponding discrete time 1D random

walk. Assuming that c decreases at least as fast as 1/a, the expected number of steps of the

discrete time Markov process to complete in the unfavored direction is no more than

Sð1a ; aÞ ¼ 1
2
ða2 þ aÞ aþ1

a�1

� �a�1
� �

� a2 ¼ Oða2Þ since lima!1
aþ1
a�1

� �a¼ e2: This implies that

the expected time for the continuous time Markov process to complete in the unfavored

direction is still Oðk2=f Þ as required for Lemmas 3.4 and 3.5, as long as c decreases at least

as fast as a function in O(1/k).

A thermodynamic argument based on a more realistic kTAM model may require c to

decrease slightly faster, however. In the full kTAM (Winfree 1998b), in which every

reaction has a reverse reaction and an equilibrium satisfying detailed balance can be

defined, growth of blocks is biased forward if the free energy of adding an entire k · k
block is favorable. This free energy may be calculated as Dn Gmc � Db Gse, where Dn is

the number of tiles added, and Db is the total strength of all new bonds. In our construction,

adding a block entails Dn = k2 and Db = 2k2 + 2. Thus, favorable growth requires that
Gmc

Gse
<2þ 2

k2 . Now, since neatly c ¼ r2�f
r2þf ¼ tanh Gmc�2Gse

2

� �
, the favorable growth condition

8 At the reflecting barrier the expected time to take a step is twice as large since only the forward direction
is possible. However, this does not affect the asymptotic results.
9 See (Feller 1968) for the general form of the expected duration of 1D discrete time random walks, from
which the above expression is derived.

216 D. Soloveichik et al.

123

requires that c< tanhðGse=k2Þ . Since the proof of Theorem 3.1 required that

e�Gse ¼ Hð1=k5Þ; Gse = H(log k) and thus the favorable growth condition reduces to

c ¼ Oðtanhðlog k=k2ÞÞ: This is slightly more strict than c = O(1/k) derived in the locking

kTAM above.

4.2 Preventing Spurious Nucleation

The blocks produced by our construction have large regions in which tiles are connected to

each other via strong (strength 2) bonds (i.e. the ‘‘spine’’ of the block, striped pattern in

Fig. 4). When the constituent tiles are placed in solution, there is a danger that they will

spontaneously nucleate and growth will proceed disconnected from the seed L-shaped

boundary. Further, growth may proceed by the aggregation of the separately-nucleated

fragments. In other words, our model assumptions that only the assembly containing the

L-shaped boundary will grow, and that it will grow by single tile additions, may be violated

in practice for such tile sets. Can we avoid large regions of strongly bonded tiles in our

construction? We believe ‘‘zig-zag’’ boundaries (Schulman and Winfree 2005a) can be

adopted to replace the spine, although details remain to be worked out. Rather than a fixed-

width spine, this spine would need to be thicker to be more and more robust to spurious

nucleation.

4.3 Open problems

Of concern is that an assembly produced by our self-healing proofreading construction has

large runs of null bonds along the edges between blocks. In a physical implementation this

may result in structural instability and tearing. It is an open question whether self-healing

proofreading can be obtained without long runs of null bonds, for example with null bonds

more equally spread out throughout the block.

Of further concern is that while Theorem 3.1 shows that asymptotically the block size k
scales only logarithmically with the size of the desired pattern, the constants involved may

be too large for a physical implementation with current technology. The main obstacle may

be the number of tiles types required. For example, the smallest level of protection against

insufficient attachments is obtained with k = 8 (as in Fig. 4a which requires the intro-

duction of 64 new tile types per tile type of the original non-proofreading system. This may

already exceed present capability. However, the constructions presented in this paper are a

proof of principle that logical properties of tiles can be used to dramatically reduce the

probability of error by simultaneously performing proofreading and self-healing, and it is

our hope that future work will discover smaller, more efficient constructions. In fact, while

developing the construction presented here, we explored a variety of different approaches

that could have yielded quite different constructions. Our choice was guided primarily by

the desire for a simple proof, but we believe that there exist a family of constructions that

exhibit different trade-offs between effectiveness at proofreading, self-healing, and other

characteristics. Further it may be possible to extend these ideas to make tile systems other

than quarter plane patterns robust to error.

Acknowledgments We thank Ho-Lin Chen and Ashish Goel for insightful conversations and suggestions.
This work was supported by NSF Grant No. 0523761.

Combining self-healing and proofreading in self-assembly 217

123

References

Adleman LM, Cheng Q, Goel A, Huang M-DA (2001) Running time and program size for self-assembled
squares. In ACM Symposium on theory of computing (STOC), 740–748

Aggarwal G, Cheng Q, Goldwasser MH, Kao M-Y, de Espanés PM, Schweller RT (2005) Complexities for
generalized models of self-assembly. SIAM J Comput 34:1493–1515

Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-
assembly: Copying and counting. Nano Lett 5:2586–2592

Chen HL, Goel A (2005) Error free self-assembly using error prone tiles. In: Ferretti C, Mauri G, Zandron C
(eds) DNA Computing 10, LNCS vol 3384. Berlin, Springer-Verlag, pp 62–75

Cook M, Rothemund PWK, Winfree E (2004) Self-assembled circuit patterns. In: Chen J, Reif J (eds) DNA
Computing 9, LNCS vol 2943. Berlin, Springer-Verlag, pp 91–107

Feller W (1968) An introduction to probability theory and its applications, vol 1. New York, Wiley
Rothemund PWK, Papakakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles.

PLoS Biol 2:e424
Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares. In: ACM

symposium on theory of computing (STOC), pp 459–468
LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis,

ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122:1848–1860
Lagoudakis MG, LaBean TH (2000) 2-D DNA self-assembly for satisfiability. In: Winfree E, Gifford DK

(eds) DNA Based Computers V, DIMACS vol 54. Providence, RI, American Mathematical Society,
pp 141–154

Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of
DNA triple-crossover molecules. Nature 407:493–496

Mao C, Sun W, Seeman NC (1999) Designed two-dimensional DNA holliday junction arrays visualized by
atomic force microscopy. J Am Chem Soc 121:5437–5443

Reif J (1999) Local parallel biomolecular computing. In: Rubin H, Wood DH (eds) DNA Based Computers
III, DIMACS vol 48. Providence, RI, American Mathematical Society, pp 217–254

Reif JH, Sahu S, Yin P (2005) Compact error-resilient computational DNA tiling assemblies. In: Ferretti C,
Mauri G, Zandron C (eds) DNA Computing 10, LNCS vol 3384. Berlin, Springer-Verlag, pp 293–307

Schulman R, Winfree E (2005a) Programmable control of nucleation for algorithmic self-assembly. In:
Ferretti C, Mauri G, Zandron C (eds) DNA Computing 10, LNCS vol 3384. Berlin, Springer-Verlag,
pp 319–328. Extended abstract in DNA Computing 10; preprint of the full paper is cond-mat/0607317
on arXiv.org

Schulman R, Winfree E (2005b) Self-replication and evolution of DNA crystals. In: Capcarrere MS, Freitas
AA, Bentley PJ, Johnson CG, Timmis J (eds) Advances in Artificial Life: 8th European Conference
(ECAL), LNCS vol 3630. Berlin, Springer-Verlag, pp 734–743

Soloveichik D, Winfree E (2005) Complexity of compact proofreading for self-assembled patterns. In: DNA
Computing 11. Berlin, Springer-Verlag

Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM J Comput 36:1544–1569
Winfree E (1996) On the computational power of DNA annealing and ligation. In: Lipton RJ, Baum E B

(eds) DNA Based Computers, DIMACS vol 27. Providence, RI, American Mathematical Society, pp
199–221

Winfree E (1998a) Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
Pasadena

Winfree E (1998b) Simulations of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech
Winfree E (2006) Self-healing tile sets. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science

and computation. Springer-Verlag, Berlin, pp 55–78
Winfree E, Bekbolatov R (2004) Proofreading tile sets: error-correction for algorithmic self-assembly. In:

Chen J, Reif J (eds) DNA Computing 9, LNCS vol 2943. Berlin, Springer-Verlag, pp 126–144
Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two dimensional DNA

crystals. Nature 394:539–544
Winfree E, Yang X, Seeman NC (1998) Universal computation via self-assembly of DNA: some theory and

experiments. In: Landweber LF, Baum EB (eds) DNA Based Computers II, DIMACS vol 44. Prov-
idence, RI, American Mathematical Society, pp 191–213

218 D. Soloveichik et al.

123

	Combining self-healing and proofreading in self-assembly
	Abstract
	Introduction
	Modeling errors
	Erroneous tile additions during growth
	Wholesale removal of tiles

	Self-healing proofreading construction
	Extensions
	Random walks in the r2 ≠ f regime
	Preventing Spurious Nucleation
	Open problems

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

