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Abstract

A non–linear dynamic system is called contracting if initial conditions are for-
gotten exponentially fast, so that all trajectories converge to a single trajectory.
We use contraction theory to derive an upper bound for the strength of recurrent
connections that guarantees contraction for complex neural networks. Specifi-
cally, we apply this theory to a special class of recurrent networks, often called
Cooperative Competitive Networks (CCNs), which are an abstract representation
of the cooperative-competitive connectivity observed in cortex. This specific type
of network is believed to play a major role in shaping cortical responses and se-
lecting the relevant signal among distractors and noise. In this paper, we analyze
contraction of combined CCNs of linear threshold units and verify the results of
our analysis in a hybrid analog/digital VLSI CCN comprising spiking neurons and
dynamic synapses.

1 Introduction

Cortical neural networks are characterized by a large degree of recurrent excitatory connectivity,
and local inhibitory connections. This type of connectivity among neurons is remarkably similar,
across all areas in the cortex [1]. It has been argued that a good candidate model for a canonical
micro-circuit, potentially used as a general purpose cortical computational unit in the cortices, is
the soft Winner-Take-All (WTA) circuit [1], or the more general class of Cooperative Competitive
Networks [2] (CCN). A CCN is a set of interacting neurons, in which cooperation is achieved by lo-
cal recurrent excitatory connections and competition is achieved via a group of inhibitory neurons,
driven by the excitatory neurons and inhibiting them (see Figure 1). As a result, CCNs perform
both common linear operations as well as complex non–linear operations. The linear operations
include analog gain (linear amplification of the feed–forward input, mediated by the recurrent ex-
citation and/or common mode input), and locus invariance [3]. The non–linear operations include
non–linear selection or soft winner–take–all (WTA) behavior [2, 4, 5], signal restoration [4, 6], and
multi–stability [2, 5]. CCN networks can be modeled using linear threshold units, as well as re-
current networks of spiking neurons. The latter can be efficiently implemented in silicon using
Integrate–and–Fire (I&F) neurons and dynamic synapses [7]. In this work we use a prototype VLSI
CCN device, comprising 128 low power I&F neurons [8] and 4096 dynamic synapses [9] that op-
erate in real-time, in a massively parallel fashion. The main goal of this paper is to address the
open question of how to determine network parameters, such as the strength of recurrent excitatory
couplings or global inhibitory couplings, to create well–behaving complex networks composed of
combinations of neural computational modules (such as CCNs) as depicted in Figure 1. The theoret-
ical foundations used to address these problems are based on contraction theory [10]. By applying
this theory to CCN models of linear threshold units and to combinations of them we find upper
bounds to contraction conditions. We then test the theoretical results on the VLSI CCN of spiking
neurons, and on a combination of two mutually coupled CCNs. We show how the experimental data
presented are consistent with the theoretical predictions.
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Figure 1: CCNs and combinations of CCNs. (a) A CCN consisting of a population of nearest neigh-
bor connected excitatory neurons (blue) receiving external input and an inhibitory neuron which
receives input from all the excitatory neurons and inhibits them back (red). (b) Photo of the VLSI
CCN Chip comprising I&F neurons. (c) Three coupled CCNs, showing examples of connectivity
patterns between them.

2 CCN of linear threshold units

Neural network models of linear threshold units (LTUs) ignore many of the non–linear processes
that occur at the synaptic level and contain, by definition, no information about spike timing. How-
ever networks of LTUs can functionally behave as networks of I&F neurons in a wide variety of
cases [11]. Similarly boundary conditions found for LTU networks can be often applied also to their
I&F neuron network counterparts. For this reason, we start by analyzing a network of LTUs whose
structure is analogous to the one of the VLSI CCN of I&F neurons, and derive sufficient boundary
conditions for contraction.

If we consider a CCN of recurrently connected LTUs according to a weight matrix W, as shown on
Figure 1, we can express the network dynamics as:

τi
d
dt

xi =−xi +g((Wx)i +bi) ∀i = 1, ...,N (1)

Where N is the total number of neurons in the system, the function g(x) = max(x,0) is a half–wave
rectification non–linearity to ensure that x≡ (x1, ...,xN)> remains positive, bi are the external inputs
applied to the neurons and τi are the time constants of the neurons. We assume that neurons of each
type (i.e. excitatory or inhibitory) have identical dynamics: we denote the time constant of excitatory
neurons with τex and the one of inhibitory neurons with τih. Throughout the paper, we will use the
following notation for the weights: ws for self excitation, we1, we2 for 1st and 2nd nearest neighbor
excitation respectively, and wie,wei for inhibitory to excitatory neuron and vice versa. The W matrix
has the following shape:

W =


wsel f w1 w2 0 w2 w1 −wei

. . .
...

w1 w2 0 w2 w1 wsel f −wei
wie wie wie wie wie wie 0

 (2)

A CCN can be used to implement a WTA computation. Depending on the strength of the connec-
tions, a CCN can implement a Hard (HWTA) or Soft (SWTA) WTA. A HWTA implements a max
operation or selection mechanism: only the neuron receiving the strongest input can be active and
all other neurons are suppressed by global inhibition. A SWTA implements more complex operation
such as non–linear selection, signal restoration, and multi–stability: one or several groups of neu-
rons can be active at the same time, neurons belonging to the same group cooperate through local
excitation, different groups compete through global inhibition. The activity of the ‘winning’ group
of neurons can be amplified while other groups are suppressed. Depending on the strength of in-
hibitory and excitatory couplings different regimes are observed. Specifically, in Sec. 4 we compare
a weakly coupled configuration, which guarantees contraction, with a strongly coupled configura-
tion in which the output of the network depends on the input and the history, showing hysteretic
(non–contracting) behaviors in which the selected ‘winning’ group has advantages over other group
of neurons because of the recurrent excitation.
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3 Contraction theory applied to CCNs of linear threshold units

3.1 Contraction of a single network

A formal analysis of contraction theory applied to non–linear systems has been described in [10,12].
Here we present an overview of the theory applied to the system of Eq. (1).
In a contracting system, all the trajectories converge to a single trajectory exponentially fast inde-
pendent of the initial conditions. In particular, if the system has a steady state solution then, by
definition, the state will contract and converge to that solution exponentially fast. Formally, the sys-
tem is contracting if d

dt ‖ δx ‖ is uniformally negative (i.e. negative in the entire state space) where
δx corresponds to the distance between two neighboring trajectories at a given time. In fact, by path
integration, we have d

dt
∫ P1

P2
‖ δx ‖< 0 where P1 and P2 are two points of state space (non-necessarily

neighboring). This leads to the following theorem:

Consider a system whose dynamics is given by the differential equations d
dt x = f(x, t). The system is

said to be contracting if all its trajectories converge exponentially to a single trajectory. A sufficient
condition is that the symmetric part of the Jacobian J = ∂

∂x f is uniformly negative definite. This
condition can be written more explicitly as

∃β > 0 , ∀x, ∀t ≥ 0 Js ≡
1
2
(J+J>)≤−β I

where I is the identity matrix and Js is the symmetric part of J It is equivalent to Js having all its
eigenvalues uniformly negative [13].

We can define more generally a local coordinate transformation δz=Θδx, where Θ(x, t) is a square
matrix, such that M(x, t) = ΘT Θ is a uniformly positive definite, symmetric and continuously dif-
ferentiable metric. Note that the coordinate system z(x, t) does not need to exist, and will not in the
general case, but δz and δz>δz can always be defined [14]. Then, in this metric one can compute
the generalized Jacobian F = ( d

dt Θ + ΘJ)Θ−1. If the symmetric part of the generalized Jacobian,
Fs, is negative definite then the system is contracting. In a suitable metric it has been shown that
this condition becomes sufficient and necessary [10]. In particular, if Θ is constant, Fs is negative
definite if and only if (MF)s is negative definite. In fact, as Fs = (Θ−1)T (MJ)sΘ

−1, then the con-
dition vT Fsv < 0 ∀v ∈ RN (negative definite matrix) is equivalent to (vT (Θ−1)T )(MJ)s(Θ−1v) <
0 ∀Θ−1v ∈ RN . Consequently, we can always choose a constant M to simplify our equations.

Let us now see under which conditions the system defined by Eq. (1) is contracting. Except for the
rectification non–linearity, the full system is a linear time–invariant (LTI) system, and it has a fixed
point [15]. A common alternative to the half-wave rectification function is the sigmoid, in which
case the Jacobian becomes differentiable. If we define fi(x, t) as

fi(x, t)≡ d
dt

xi =− 1
τi

xi +
1
τi

g((Wx)i +bi) (3)

then the Jacobian matrix is given by Ji j = ∂

∂x j
fi(x, t) =− 1

τi
δi j + 1

τi
g′(yi)wi j, where yi = (Wx)i +b

and τi is the time constant of neuron i, with τi = τex for the excitatory neurons and τi = τih for the
inhibitory ones. We assume that the wei and wie weights are not zero so we can use the constant
metric:

M =

 τex 0 0
...

. . .
...

0 . . . wei
wie

τih

 (4)

which is positive definite. With this metric, MJ can be written MJ = −I + DK, where Di j =
g′(yi)δi j , and K is similar to W but with wei in place of wie. Since g is sigmoidal (and thus it and its
derivative are both bounded), we can then use the method proposed in [16] to determine a sufficient
condition for contraction. This leads to a condition of the form λmax < 0, where

λmax = 2we1 +2we2 +ws−1 (5)

A graphical representation of the boundaries defined by this contraction condition is provided in
Figure 2. The term |λmax| is called the contraction rate with respect to metric M. It is of particular
interest because it is a lower bound for the rate at which the system converges to its solution in that
metric.
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Figure 2: Qualitative phase diagram for a single CCN of LTUs. We show here the possible regimes
of the given in Eq. (1) as a function of excitation and inhibition. In the region D the rates would
grow without bounds if there were no refractory period for the neurons. We see that a system which
is unstable without inhibition cannot be in region A (i.e. within the boundaries of Eq. (5)). Note,
however, that we do not quantitatively know the boundaries between B and C and between C and D

3.2 Contraction of feed–back combined CCNs

One of the powerful features of contraction theory is the following: if a complex system is composed
of coupled (feed–forward and feed–back) subsystems that are individually contracting, then it is
possible to find a sufficient condition for contraction without computing the system’s full Jacobian.
In addition it is possible to compute a lower bound for the full system’s contraction rate. Let Fs
be the symmetric part of the Jacobian of two bi–directionally coupled subsystems, with symmetric
feed–back couplings. Then Fs can be written with four blocks of matrices:

Fs =
[

F1s G
G> F2s

]
(6)

where F1s and F2s refer to the Jacobian of the individual, decoupled subsystems, while G and G> are
the feed–back coupling components. If we assume both subsystems are contracting, then a sufficient
condition for contraction of the overall system is given by [17]:

|λmax(F1s)| |λmax(F2s)|> σ
2(G) ∀t > 0, uni f ormly (7)

where |λmax(·)| is the contraction rate with respect to the used metric and σ(G) is the largest eigen-
value of G>G. By the eigenvalue interlacing theorem [13] we have that the contraction rate of the
combined system is given by λmax(Fs)≤ mini λ (Fis) i = 1,2.

For the specific example of a combined system comprising two identical subsystems coupled by a
uniform coupling matrix G =w f b · I we have σ2(G) = w2

f b. The combined system is contracting if:

|w f b|< λmax (8)

The results obtained with this analysis can be generalized to more than two combined subsystems,
and with different types of coupling matrices [17]. Note that in a feed–forward or a negative–
feedback case (i.e. at least one of the ‘G–blocks’ in the non–symmetric form is negative semidefi-
nite), the system is automatically contracting provided that both subsystems are contracting. Given
this, the condition for contraction of the combined system described by Eq. (8) becomes: w f b < λmax.
Note that the contraction rate is an observable quantity, therefore one can build a contracting system
consisting of an arbitrary number of CCNs as follows: 1. Determine the contraction rate of two
CCNs by using Eq. (5) or by measuring it. 2. Use Eq. (7) to set the weight of the relation. Compute
the upper bound to the contraction rate of the combined system as explained above. 3. Repeat the
procedure for a new CCN and the combined one.

4 Contraction in a VLSI CCN of spiking neurons

The VLSI device used in this work implements a CCN of spiking neurons using an array of low–
power I&F neurons with dynamic synapses [8, 18]. The chip has been fabricated using a standard
AMS 0.35µm CMOS process, and covers an area of about 10mm2. It contains 124 excitatory
neurons with self, 1st , 2nd , 3rd nearest–neighbor recurrent excitatory connections and 4 inhibitory
neurons (all–to–all bi–directionally connected to the excitatory neurons). Each neuron receives
input currents from a row of 32 afferent plastic synapses that use the Address Event Representation
(AER) to receive spikes. The spiking activity of the neurons is also encoded using the AER. In this
representation input and output spikes are real–time asynchronous digital events that carry analog
information in their temporal structure. We can interface the chip to a workstation, for prototyping
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(a) Single trial input stimulus
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(b) Single trial CCN response
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Figure 3: Contraction of a single VLSI CCN. (a) A raster plot of the input stimulus(left) and the
mean firing rates(right): the membrane potential of the I&F neurons are set to a random initial
state by stimulating them with uncorrelated Poisson spike trains of constant mean frequency (up
to the dashed line). Then the network is stimulated with 2 Gaussian bumps of different amplitude
centered at Neuron 30 and Neuron 80, while, all the neurons received a constant level of uncorrelated
input during the whole trial. (b) The response of the CCN to the stimulus presented in (a). (c)
Mean responses of 100 trials, calculated after the red dashed line with error bars. The shaded area
represents the mean input stimulus presented throughout the experiment. The system selects the
largest input and suppresses the noise and the smaller bump, irrespective of initial conditions and
noise. Neurons 124 to 128 are inhibitory neurons and do not receive external input.

experiments using a dedicated PCI–AER board [19]. This board allows us to stimulate the synapses
on the chip (e.g. with synthetic trains of spikes), monitor the activity of the I&F neurons, and map
events from one neuron to a synapse belonging to a neuron on the same chip and/or on a different
chip. An analysis of the dynamics of our VLSI I&F neurons can be found in [20] and although the
leakage term in our implemented neurons is constant, it has been shown that such neurons exhibit
responses qualitatively similar to standard linear I&F neurons [20].

A steady state solution is easily computable for a network of linear threshold units [5, 21]: it is
a fixed point in state space, i.e. a set of activities for the neurons. In a VLSI network of I&F
neurons the steady state will be modified by mismatch and the activities will fluctuate due to external
and microscopic perturbations (but remain in its vicinity if the system is contracting). To prove
contraction experimentally in these types of networks, one would have to apply an input and test with
all possible initial conditions. This is clearly not possible, but we can verify under which conditions
the system is compatible with contraction by repeating the same experiment with different initial
conditions (see Sec. 4.1) and under which conditions the system is not compatible with contraction
by observing if system settles to different solutions when stimulated with different initial conditions
(see Sec. 4.3).

4.1 Convergence to a steady state with a static stimulus

The VLSI CCN is stimulated by uncorrelated Poisson spike trains whose mean rates form two
Gaussian–shaped bumps along the array of neurons, one with a smaller amplitude than the other
superimposed to background noise (see Figure 3a). In a SWTA configuration, our CCNs should
select and amplify the largest bump while suppressing the smaller one and the noise. We set the
neurons into random initial conditions by stimulating them with uncorrelated Poisson spike trains
with a spatially uniform and constant mean rate, before applying the real input stimulus (before
the dashed line in Figure 3a ). Figure 3b shows the response of the CCN to this spike train, and
Figure 3c is the response averaged over 100 trials. This experiment shows that regardless of the
initial conditions, the final response of the CCN in an SWTA configuration is always the same (see
the small error bars on Figure 3c), as we would expect from a contracting system.

4.2 Convergence with non–static stimulus and contraction rate

As the condition for contraction does not depend on the external input, it will also hold for time–
varying inputs. For example an interesting input stimulus is a bump of activity moving along the
array of neurons at a constant speed. In this case, the firing rates produced by the chip carry informa-
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(c) Activity of neuron #25

Figure 4: Contraction rate in VLSI CCNs using non–static stimulation. The input changed from an
initial stage, where all the neurons were randomly stimulated with constant mean frequencies (up to
3 s), to a second stage in which the moving stimulus (freshly generated from trial to trial) is applied.
This stimulus consists of a bump of activity that is shifted from one neuron to the next. Panels (a)
and (b) show trials for two different configurations (weak and strong) and the colors indicate the
firing rates calculated with a 300 ms sliding time window. The panel (c) compares the mean rates
of neuron #25 in the weakly coupled CCN (green), the strong CCN (blue) and the input (red), all
normalized to their peak of activity and calculated over 50 trials. We see how the blue line is delayed
compared to the red and green line: the stronger recurrent couplings reduces the contraction rate.

tion about the system’s contraction rate. We measured the response of the chip to such a stimulus,
for both strong and weak recurrent couplings (see Figure 4). The strong coupling case produces
slower responses to the input than the weak coupling case, as expected from a system having a
lower contraction rate (see Figure 4c). The system’s condition for contraction does not depend on
the individual neuron’s time constants, although the contraction rate in the original metric does.
This also applies to the non–static input case, where the system will converge to the expected solu-
tion, independently of the neurons time constants. Local mismatch effects in the VLSI chip lead to
an effective weight matrix whose elements wsel f ,w1,w2,wie are not identical throughout the array.
This combined with the high gain of the strong coupling, and the variance produced by the input
Poisson spike trains during the initial phase, explains the emergence of “pseudo-random” winners
around neuron 30,60 and 80 in Figure 4b.

4.3 A non–contracting example

We expect a CCN to be non–contracting when the coupling is strong: in this condition the CCN
exhibits a hysteretic behavior [22], so the position of the winner strongly depends on the network’s
initial conditions. Figure 5 illustrates this behavior with a CCN with very strong recurrent weights.

4.4 Contraction of combined systems

By using a multi-chip AER communication infrastructure [19] we can connect multiple chips
together with arbitrary connectivity matrices (e.g. G in Sec. 3.2), and repeat experiments analogous
to the ones of Sec. 4.1. Figure 6 shows the response of two CCNs, combined via a connectivity
matrix as shown in Figure 6b, to three input bumps of activity in a contracting configuration.

5 Conclusion

We applied contraction theory to combined Cooperative Competitive Networks (CCN) of Linear
Threshold Units (LTU) and determined sufficient conditions for contraction. We then tested the the-
oretical predictions on neuromorphic VLSI implementations of CCNs, by measuring their response
to different types of stimuli with different random initial conditions. We used these results to deter-
mine parameter settings of single and combined networks of spiking neurons which make the system
behave as a contracting one. Similarly, we verified experimentally that CCNs with strong recurrent
couplings are not contracting as predicted by the theory.

6



0 5

20

40

60

80

100

120

N
eu

ro
n

Time [s]

0

50

100

0 10 20
Frequency [Hz]

(a) Initial Cond. I

0 5 10

20

40

60

80

100

120

N
eu

ro
n

Time [s]

0

50

100

0 20 40
Frequency [Hz]

(b) Weak CCN, contracting
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(c) Strong CCN, non-contracting
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(d) Initial cond. II
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(e) Weak CCN, contracting
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(f) Strong CCN, non-contracting

Figure 5: VLSI CCN in a non-contracting configuration. We compare the CCN with very strong
lateral recurrent excitation and low inhibition to a weakly coupled CCN. The figures present the
raster plot and mean rates of the CCNs response (calculated after the dashed line) to the same stimuli
starting from two different initial conditions. Panels (b) and (e) show the response of a contracting
CCN, whereas panels (c) and (f) show that the system response depends on the initial conditions of
(a) and (d). Therefore the the "Strong CCN" is non–contracting.
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Figure 6: Contraction in combined CCNs. (a) and (d) Single trial responses of CCN1 and CCN2
to the input stimulus shown in (c); (b) Connectivity matrix that couples the two CCNs (inverted
identity matrix); (e) Mean response of CCNs, averaged over 20 trials (data points) superimposed to
average input frequencies (shaded area). The response of the coupled CCNs converged to the same
mean solution, consistent with the hypothesis that the combined system is contracting.
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