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Implementing homeostatic plasticity in VLSI networks of
spiking neurons

Abstract

Homeostatic plasticity acts to stabilize firing activity in neural systems, ensuring a homogeneous
computational substrate despite the inherent differences among neurons and their continuous change.
These types of mechanisms are extremely relevant for any physical implementation of neural systems.
They can be used in VLSI pulse-based neural networks to automatically adapt to chronic input changes,
device mismatch, as well as slow systematic changes in the circuitpsilas functionality (e.g. due to
temperature drifts). In this paper we propose analog circuits for implementing homeostatic plasticity
mechanisms in VLSI spiking neural networks, compatible with local spike-based learning mechanisms.
We show experimental results where a homeostatic control is implemented as a hybrid
SoftWare/HardWare (SW/HW) solution, and present analog circuits for a complete on-chip stand-alone
solution, validated by circuit simulations.
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Abstract— Homeostatic plasticity acts to stabilize firing activity
in neural systems, ensuring a homogeneous computational sub-
strate despite the inherent differences among neurons and their
continuous change. These types of mechanisms are extremely
relevant for any physical implementation of neural systems. They
can be used in VLSI pulse-based neural networks to automati-
cally adapt to chronic input changes, device mismatch, as well as
slow systematic changes in the circuit’s functionality (e.g. due to
temperature drifts). In this paper we propose analog circuits for
implementing homeostatic plasticity mechanisms in VLSI spiking
neural networks, compatible with local spike-based learning
mechanisms. We show experimental results where a homeo-
static control is implemented as a hybrid SoftWare/HardWare
(SW/HW) solution, and present analog circuits for a complete
on-chip stand-alone solution, validated by circuit simulations.

I. INTRODUCTION

Systems interacting with the real world in an intelligent way
need to modify themselves to learn and adapt to the statistics of
the input signals, while maintaining their activity within func-
tional ranges, to keep a stable and homogeneous computational
substrate. In biological neural systems these opposing require-
ments are driven by local learning mechanisms that induce
changes in the weights of individual synapses of the network,
acting on time scales ranging from milliseconds to minutes,
and by global stabilizing homeostatic mechanisms that operate
on longer time scales (ranging from minutes to hours) and are
not synapse-specific [1], [2]. These mechanisms act to stabilize
learning processes and ensure a homogeneous computational
substrate despite the inherent differences between neurons, the
continuous turnover of their constituents and chronic changes
of their environment [2].

Despite many implementations of Hebbian learning mech-
anisms that comprise forms of stabilization [3] and synaptic
competition [4], [5] have been proposed, very few attempts
have been made to implement explicit global homeostatic
plasticity mechanisms, in parallel with classical local learn-
ing ones [6]. However, it has been recently argued that
the interplay between local Hebbian and global homeostatic
processes can have complementary roles [5], or even important
synergistic effects [6], allowing for complex behaviors, such as
independent component analysis, which would not be possible
with either mechanisms alone.

In parallel to the theoretical studies on plasticity in neu-
ral networks, a large research effort has been recently de-
voted to the construction of biologically inspired pulse-based
neural systems, particularly via the VLSI neuromorphic ap-
proach [7]–[12]. However, the focus has been primarily on
the implementation of local short-term spike-based learning
algorithms [7], [8], [13], [14], with comparatively little work
devoted to global long-term stabilizing processes [15]. In
VLSI implementations of neural networks homeostasis could
be used to implement a form of automatic gain control to
compensate for inhomogeneities due to device mismatch, slow
changes in the physical properties of the circuits arising due
to temperature drift, or sudden changes in the overall levels of
activity in the network (e.g. due to activation or inactivation
of sub-modules).

Here we propose a set of neuromorphic circuits and methods
that implement in parallel both local spike-based plasticity
mechanisms and global stabilizing homeostatic mechanisms.
The specific form of homeostatic plasticity that we consider
in this work is denoted as “activity dependent synaptic scal-
ing” [1]. This multiplicative scaling mechanism acts globally,
on the entire population of synapses, and does not affect the
relative differences between the synaptic weights, typically
induced by local learning mechanisms.

We first demonstrate a mixed SW/HW homeostatic control
system that supports both “fast” spike-based learning rules,
and “slower” homeostatic synaptic scaling mechanisms (Sec-
tion II), and subsequently present a novel analog circuit, based
on control theory lag compensation technique, that implements
the homeostatic control algorithm developed and that can
be integrated in future neural network chips, for stand-alone
VLSI solutions (Section III). To our knowledge, this is the
first physical system capable of implementing homeostatic
plasticity in parallel with spike-timing dependent plasticity.

II. HOMEOSTATIC CONTROL IN SPIKING SILICON NEURONS

In most pulse-based neural network chips, neurons have an
architecture of the type shown in Fig.1: a series of synapses
receive separate spiking input signals and produce output
currents that are integrated by the soma circuit. The soma
is typically an integrate-and-fire (I&F) neuron that produces
an output spike train at a rate proportional to the sum of
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Fig. 1. General homeostatic control scheme for a typical VLSI integrate and
fire neuron: synaptic input spikes drive “fast” spike-based learning circuits;
post-synaptic spikes are used to modulate global synaptic scaling parameters
for stabilizing the neuron’s spiking activity. An external constant current can
be injected in the soma to modulate its baseline activity.
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Fig. 2. Diff-Pair Integrator synapse. Input spikes activate the circuit and
generate the output current Isyn that has an exponential profile over time.
The current amplitude is set by Vw and Vthr , while its time constant is set
by Vτ

all its synaptic currents. While local spike-based plasticity
circuits can be used to implement Hebbian-type learning in
each synapse block, the homeostatic control block globally
adapts the gain of all the synapses afferent to that neuron, to
keep its average firing rate close to a target frequency.

A. The Diff-Pair Integrator

A circuit that can implement both global synaptic scaling
and local spike-based learning, is the “Diff-Pair Integrator”
(DPI) synapse [16], shown in Fig.2. Input spikes activate
the Mpre transistor and allow current to flow through the
differential pair. The Mw transistor weighs the input current
depending on the magnitude of the Vw voltage. This voltage
can be modified by spike-driven synaptic plasticity circuits,
such as the ones proposed in [7], [8], [13], [14], [17], to
implement local learning rules. The voltage Vthr sets a second
independent gain parameter, used for our homeostatic control
algorithm, while the voltage Vτ determines the duration of the
Excitatory Post-Synaptic Current (EPSC) Isyn.

Assuming all transistors operate in the subthreshold regime
and are saturated, the DPI’s transfer function is [16]:

τ
d

dt
Isyn + Isyn =

Iw
Iτ

Isyn

1 + Isyn
Ig

(1)

where τ = UTCsyn/κIτ , UT is the thermal voltage, κ the
subthreshold slope factor, Vdd the power supply voltage, and
Ig is a virtual current not tied to any MOSFET in the circuit

defined as Ig = I0e
−κ(Vthr−Vdd)

UT .

Fig. 3. Mixed HW/SW system control diagram: Ft(s) is the desired target
firing rate. The current Isyn(s) is produced by the PI-control block. The
current In(s) represents the “disturbance” signal that is used to model chronic
or slow-varying changes in the neuron’s net input current. The α block
represents the I&F soma that linearly converts its input current into the firing
rate Fi(s). The feedback block integrates the neuron’s output frequency Fi(s)
over time. The resulting low-pass filtered frequency F (s) is then compared
to the target frequency Ft(s). The error signal E(s) is used to drive the
PI-control block.

For Isyn � Ig , the non-linear eq.(1) reduces to a classical
low-pass filter equation:

τ
d

dt
Isyn + Isyn =

IwIg
Iτ

(2)

Under these assumptions, when the synapse receives input
spike trains of mean frequency fin, its steady-state mean
output current can be described as:

〈Isyn〉 =
(
IgIw
Iτ

)
τfin. (3)

B. Homeostatic control in a mixed SW/HW system

In a first stage, to explore different control strategies,
we implemented homeostasis as a software algorithm on a
workstation interfaced to a VLSI chip comprising a low-
power I&F neuron [7] and a DPI synapse [16]. The chip
was fabricated using a standard 0.5µm CMOS technology via
the MOSIS consortium. The workstation was used to send
sequences of spikes to the DPI synapse, and to monitor the
output spiking activity of the I&F neuron. To modulate the
DPI’s Ig gain current we modified the Vthr bias voltage via an
external voltage source, controlled by the same workstation.
The voltage Vw is set by an external voltage reference. To
model an average input current produced by the neuron’s full
dendritic tree, and used to induce a base activity level, we
injected a current In into the neuron’s membrane capacitance.
The amplitude of the In current was also controlled by the
workstation interfaced to the chip. The sequences of spikes
sent to the DPI conversely represent the synapse’s input signal
that could drive local spike-based learning circuits.

We carried out experiments analogous to the ones performed
on real neurons,simulating the onset of chronic changes in
the system: we fixed the statistics of the input spike trains to
the DPI and varied the neuron’s input current In. The goal
of the homeostatic control mechanism is to adapt to these
chronic changes on slow time scales, keeping the neuron’s
average firing rate close to a set target, and without being
affected by fast fluctuations in the neuron’s net input current.
The control strategy adopted in our system is that of a
classic PI-controller, as shown in Fig.3: the software algorithm
continuously monitors the neuron’s firing rate, in real-time,
and determines how to scale the synaptic current by measuring
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Fig. 4. Homeostasis measurements in the mixed SW/HW system (a) I&F
neuron’s response to a step DC shift in the VLSI neuron’s input current.
The thick black line shows the output of the neuron for the case in which
homeostatic control is not enabled. The other curves show the effect of the
control algorithm as a function of the parameter τH . (b) Neuron response to
DC shifts in the input current superimposed to high frequency fluctuations: the
DC offset in the firing rate is adapted out, while the high frequency component
of the input signal passes through.

Fig. 5. Lag compensator control diagram.

the error between the neuron’s firing rate and a target firing
rate, and by computing its integral over time. The change in
synaptic scaling is then induced by modulating the Vthr bias
that acts on Ig .

In Fig.4(b) we show measurements from the HW/SW sys-
tem for the control case: we combined current injection and
synaptic stimulation such that the neuron fired at a desired rate
of approximately 98Hz and then produced chronic change in
the I&F neuron’s firing rate by applying a step increase in the
current In. As expected, the PI control algorithm adapted the
neuron’s firing rate back to its target value with different time
constants depending on the values of τH .

To show that the “slow” homeostatic mechanism does not
interfere with “fast” spike-based learning mechanisms we
superimposed high-frequency fluctuations to In and repeated
the experiment. As shown in Fig.4(b), the DC offset is
removed while the high frequency fluctuations are transmitted
by the I&F neuron. The amplification of the high-frequency
components is due to the choice of the Ki, and Kp parameters
in the control algorithm.

III. ANALOG VLSI IMPLEMENTATION OF THE
HOMEOSTATIC CONTROL ALGORITHM

We designed a set of analog circuits to implement the
software control algorithm on-chip. Due to the non-idealities
of VLSI integrator circuits, we used lag compensation control,
shown in Fig.5, instead of pure PI control scheme of Fig.3.

We implemented such scheme with a full-custom analog
design using compact low-power (subthreshold) circuits shown
in Fig.6. The relationships between the parameters of Fig.5 and
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Fig. 6. Lag compensation circuit: the FI block integrates the I&F neuron’s
spiking output, while the PROP and the INT blocks calculate the proportional
and integrated components of the control signal, respectively. The sum of the
Ithr0 , Ipe and Iie currents determines the value of the Vthr bias, which
globally affects all synapses afferent to the neuron as shown in Fig.1.

the circuit variables are defined as follows:

K1 =
Inp
Idp

K2 =
Iwκ

CsynUT
K3 =

IwsIgsκ

CsUT

a =
1
τi

+
IgiκIdp
CiUT Inp

b =
1
τi

c =
1
τ

d =
1
τs
,

where the τ variables are defined as:

τi =
UTCi
κIτi

τs =
UTCs
κIτs

τ =
UTCsyn
κIτ

The frequency integration (FI) block consists of a DPI circuit
that integrates the output spikes of the I&F neuron into the
Ihomeo current. The Ierror current is generated by comparing
the FI block output to the target current Itarget , set by the
constant external bias voltage Vtarget . The integration (INT)
block uses another instance of the DPI circuit to integrate
the error current over time, producing the Iie current. The
proportional (PROP) block uses a translinear multiplier [18]
to multiply the Ierror current by constant scaling factors set
by Vnp and Vdp , producing the Ipe current.

The control circuit acts on the Vthr bias voltage, which
can be connected globally to all DPI synapses afferent to the
neuron, to scale their outputs via the Ig current. The proper
value of Vthr is computed on the top right part of the circuit
of Fig.6, by summing the Ithr0 , Ipe and Iie currents.

A. Circuit simulation results

We used TSPICE for circuit simulations. To speed up
circuit simulation times, we did not simulate the I&F neuron:
assuming that the neuron’s firing is linearly proportional to
its input currents, we sourced the sum of Isyn and In in the
Vs node of Fig.6. As for the mixed SW/HW experiments, we
fixed Isyn and varied In to model chronic changes and trigger
the homeostatic control.

Fig.7(a) shows the transient simulation results for a step
decrease in In: to compensate for lower net input currents, the
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Fig. 7. System response to In step decrease at t=0.5s. (a) After few
oscillations, Vthr decreases in order to increase Isyn, thereby compensating
for I&F input current change. (b) After the step decrease, the total input
current to the I&F neuron is restored by the homeostatic control to a value
lying within the control mechanism’s tolerance range.

synapse increases its gain via Ig; as Ig depends exponentially
on (−Vthr), the circuit decreases its value accordingly.

Fig.7(b) shows how the neuron’s net mean input current
adapts to the chronic change: the control circuit scales Isyn to
counteract the effect of the step change in In.

IV. CONCLUSIONS

Homeostasis is one of the strategies used by biological
systems to cope with inhomogeneities and continuous changes
of their components while maintaining the capability of
learning and adapting to new stimuli. Multiplicative synaptic
scaling is a specific type of homeostatic adaptation that has
been observed in cultures of cortical, spinal and hippocampal
neurons [1], as well as in vivo [19]. In this paper we proposed
a possible circuit implementation of the homeostatic synaptic
scaling obtained by combining the HW transposition of a lag
compensated control algorithm, with a neuromorphic synaptic
circuit that supports both Hebbian type of spike-driven plas-
ticity mechanisms as well as global synaptic scaling.

The specific role of homeostatic plasticity mechanisms, with
respect to other forms of Hebbian learning is actively being
investigated. The system proposed here, and validated for a
single neuron-single synapse system, can be implemented on
chips comprising large arrays of silicon neurons and synapses
and used as a tool to test different computational theories, in
real-time, with real-world stimuli.

In such a system all of the synapses converging to a single
neuron will be globally scaled by the proposed circuitry to
implement synaptic homeostasis and maintain the activity of
each neuron within a functional range, thus counteracting
the effect of device mismatch. In addition the new analog
homeostatic control circuit designed can be used as a form of
global automatic gain control to adapt the system to chronic
changes in the input configuration as well as to counteract slow
changes in the circuit’s response properties. This mechanism
is compatible with conventional engineering solutions for min-
imizing the effects of mismatch, or compensating temperature
drifts, and can be especially useful to compensate for the
increasing number of defects expected in the future scaled
CMOS processes.
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