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The neocortex is a remarkable 
computational system. It uses 
slow computational elements 
to solve in real time a variety of 
computational problems that 
cannot be achieved by man-
made computational methods 
implemented on very much faster 
hardware. This performance is 
clearly due to the fundamentally 
different computational methods 
that biology has evolved under 
very tight constraints of energy 
consumption and necessity for 
speed. Our brain consumes 
approximately 20W whereas 
a silicon version of our brain 
built with present-day chip 
technology would consume 
10MW — it would melt. 

While understanding the 
coding in nerve impulses is 
generally regarded as the key 
to understanding the brain’s 
computations, it is clear that the 
vast majority of computations 
in the brain are done by slowly 
varying analogue potentials in 
the richly branched dendrites 
of neurons. How is it then that 
a human brain, such as that 
of Garry Kasparov, can be 
competitive with machines like 
Deep Blue, the chess- playing 
computer that evaluates 200 
million possible moves per 
second? Understanding biology’s 
methods of computation would 
open the way to explaining 
such human abilities, as well 
as allow the development of 
novel processing technologies. 
For these reasons there has 
been a sharp increase in 
research on the architecture of 
neocortical circuits, since they 
provide the physical support 
for neocortical processing. In 
this Primer, we shall describe 
one interesting property of 
neocortical circuits — recurrent 
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 connectivity — and suggest what 
its computational significance 
might be.

Most cortical connections are 
local and excitatory
Although the human cortex 
contains about 109 neurons, 
the basic architecture of the 
cortex can be understood in 
terms of the laminar distribution 
of relatively few types (say 
about 100) of excitatory and 
inhibitory neurons. The degree of 
connection between these types 
of neuron has been estimated 
for the static anatomy of cat 
visual cortex (Figure 1) and also 
for physiological connections 
between some neuronal types 
in rat somatic cortex. These and 
other quantitative anatomical 
circuit data suggest a number 
of intriguing circuit properties, 
which offer many intriguing clues 
to the fundamental properties of 
cortical processing.

One clue is the dominance 
of local cortical synapses over 
those provided by individual 
afferents of a given cortical area, 
as shown in Figure 1. Overall, 
the vast majority of cortical 
excitatory synapses and virtually 
all inhibitory synapses originate 
from neurons within cortex and 
most of these synapses originate 
from neurons within the local 
cortical area. This means that the 
afferent projections of cortex, 
from the thalamus and other 
individual cortical areas, each 
comprise a surprisingly small 
percentage of all excitatory 
synapses in the target area. 
For example, in the visual 
cortex, synapses from the 
lateral geniculate nucleus of the 
thalamus form only 5–10% of the 
excitatory synapses, even in their 
main target layer (layer 4) of area 
17 in cats and monkeys, yet 
these afferents clearly provide 
sufficient excitation to drive the 
cortex. 

Similarly, the projections 
that connect different areas of 
neocortex also form a fraction 
of a percent of the synapses 
in their target layers, yet 
both the ‘feedforward’ and 
‘feedback’ inter-areal circuits 
are functionally significant. This 
raises the critical question of 
how the local cortical circuits 
reliably process the seemingly 
small input signals that arise 
from peripheral sense organs, 
or within the cortex itself, and 
how it is that the fidelity of 
these signals is retained as they 
are transmitted through the 
hierarchy of cortical areas?

A second clue is the 
large fraction of excitatory 
connections made between 
pyramidal cells of the superficial 
cortical layers (Figure 1). 
Although excitatory neurons 
in other layers, such as the 
spiny stellate neurons of layer 
4, also receive input from 
their neighbours, it is only in 
the superficial layers that the 
Figure 1. A quantitative 
graph of the connections 
between various classes of 
excitatory neurons and their 
targets in cortex. 
Only the connections be-
tween the classes of the 
dominant excitatory cell 
types are shown in this par-
tial diagram. Each arrow is 
labeled with a number in-
dicating the proportion of 
all the excitatory synapses 
in area 17 that are formed 
between the various classes 
of excitatory neurons. Total 
number of synapses be-
tween excitatory neurons is 
13.6 × 1010. Additional maps 
of connections from excita-
tory to inhibitory neurons, 
and so on, can be found in 
Binzegger et al. (2004).
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Figure 2. Simple model of recurrently connected neurons with rate coded outputs. 

A population of N rate excitatory neurons (blue filled circles) arranged as a spatial array; each receives inhibition from a common 
inhibitory neuron (red filled circle), and each of them excites that inhibitory neuron. Each excitatory neuron receives feedforward exci-
tatory input (green arrows from green input neurons), as well as recurrent excitatory input from their close neighbours. The strength of 
the recurrent inputs made onto any target neuron is a bell shaped function of the neighbour’s displacement in the array from the target 
neuron (example shown for neuron 3). The activation function (right) of all neurons is a thresholded linear function (blue line) rather 
than a sigmoid (cyan). Unlike the sigmoid, the linear activation is unbounded above so that the stability of the network must depend 
on the integration of excitatory and inhibitory neurons rather than the sigmoidal saturation of individual neurons.
pyramidal cells make very 
extensive arborizations within 
their same layer. Indeed, nearly 
70% of a superficial pyramidal 
cell’s excitatory input is derived 
from other cells of its own 
type. Consequently, first-order 
recurrent connections between 
layer 2 and 3 pyramidal cells, in 
which a target neuron projects 
back to its source neuron in a 
tight positive feedback loop, 
are more likely than in any other 
layer. We have proposed that 
positive feedback plays a crucial 
role in cortical computation 
by providing gain for active 
selection and re-combination 
of the relatively small afferent 
signals.

Control of gain is a critical 
aspect of cortical computation
The gain of a system is the 
(dimensionless) ratio of the 
magnitudes of two causally 
related signals. In a feedback 
system, two different gains are 
usually considered. The first is 
the overall ‘system gain’. This 
is measured as a ratio of the 
output over the input of the 
system. The second is the ‘loop 
gain’. This is measured around 
the feedback loop, and can be 
expressed as the fraction of 
the output signal that is due to 
feedback. Thus, when the loop 
gain is zero, the system gain 
is entirely feedforward. As the 
loop gain approaches one, the 
system gain becomes dominated 
by its feedback. If the loop gain 
exceeds one, the system is 
unstable and its output diverges. 

The feedforward gain of 
individual neurons operating in 
rate mode is small. Typically, 
many input spike events must 
be applied to a neuron before 
it produces a single spike 
output. However, simulation 
studies and physiological 
evidence suggest that cortical 
circuits can generate significant 
system gain by the positive 
feedback excitation mediated 
by recurrent intracortical axonal 
connections (Figure 2). Positive 
feedback amplification may 
seem inherently dangerous, 
but neurons subject to positive 
feedback can be stable if the 
sum of the excitatory currents 
evoked by the afferent input and 
the positive feedback excitatory 
currents is less than the total 
negative current dissipated 
though their membrane leak 
conductances, the active 
conductances of the action 
potential, and active membrane 
and synaptic conductances. 

Such circuit-dependent 
stability must exist in cortex, 
because the steady discharge 
rate of active cortical neurons 
is usually much less than their 
maximum rate, so stability does 
not depend on the neurons being 
driven into discharge saturation. 
It is this positive feedback 
amplification that allows a small 
input signal to be ‘heard’ in 
cortex. The question, of course, 
is how is this small signal ever 
distinguished from ‘spontaneous’ 
cortical activity. Here simplified 
artificial network models have 
been invaluable in providing 
insights into the properties of 
recurrent networks. 

Recurrent circuits perform 
signal restoration (and much 
besides)
Although artificial network 
models are much simpler 
than networks of real cortical 
neurons, they have the 
advantage that their modes 
of behaviour can be clearly 
understood and then used to 
interpret the experimentally 
observed organization and 
operation of cortical networks. 
For example, Hopfield and 
others showed that recurrent 
networks of ideal neurons are 
dynamical systems whose 
stable patterns of activation (or 
attractors) can be viewed as 
memories, or as the solutions to 
constraint satisfaction problems. 
More recently, there has been 
a growth of interest in the use 
of networks of ‘linear threshold 
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Figure 3. Six interesting functional properties of the recurrent network described in Figure 2. 

In this multi-part figure, each part shows the response of the array of excitatory neurons (along the x-axis). Top left: Linear Gain. 
Above threshold, the network amplifies its hill-shaped input (stipled lines) with constant gain (output, solid lines). Top center: Locus 
Invariance. This gain is locus invariant (provided that the connections’ weights are homogenous across the array). Top right: Gain 
Modulation. The gain of the network can be modulated by an additional constant input applied to all the excitatory neurons, and su-
perimposed on the hill-shaped input. The gain is least when no constant input is applied (input, red stippled line; output, red solid line), 
and largest for a large constant input (blue lines). Bottom left: Winner-take-all. When two inputs of different amplitude are applied to 
the network, it selects the stronger one. Bottom center: Signal Restoration. The network is able to restore the hill-shaped input, even 
when that input is embedded in noise. Bottom right: Bistability. When separate inputs have the same amplitudes, the network selects 
one, according to its initial conditions at the time the input is applied.
neurons’ (LTNs) to understand 
cortical circuits. LTNs have 
continuous valued (non-spiking) 
positive outputs that are directly 
proportional to the positive 
difference between the excitation 
and inhibition that they receive. 
If this difference is zero or 
negative, they remain silent. LTN 
neurons are interesting because 
their threshold behaviour and 
linear response properties 
resemble those of cortical 
neurons.

A commonly studied LTN 
network consists of two 
populations of neurons, as 
illustrated in Figure 2. One 
population consists of excitatory 
neurons and a smaller population 
of inhibitory neurons (even 
one global inhibitory neuron 
will suffice, as in Figure 2). 
For simplicity, the patterns 
of connection within each 
population are homogenous. 
The excitatory neurons 
receive feedforward excitatory 
connections that carry the input 
signal, feedback excitatory 
connections from other members 
of their population, and feedback 
inhibitory connections from 
the inhibitory neuron(s). Often 
the populations of excitatory 
neurons are arranged as a 
one- dimensional spatial map 
and the pattern of their recurrent 
connection strengths is regular, 
which typically is expressed as a 
hill-shaped function of distance 
of a source neuron from its 
target.

Even such simple recurrent 
networks have interesting 
properties that contribute 
directly to our understanding 
of signal processing by the 
neuronal circuits of cortex. The 
properties illustrated in Figure 3  
arise out of the interaction 
between the feedback excitation, 
which amplifies the inputs to the 
network, and the non- linearity 
introduced by the inhibitory 
threshold, which itself depends 
on the overall network activity. 
The important result to note here 
is that the positive feedback 
enhances the features of the 
input that match patterns 
embedded in the weights of the 
excitatory feedback connections, 
while the overall strength of 
the excitatory response is used 
to suppress outliers via the 
dynamical inhibitory threshold 
imposed by the global inhibitory 
neurons. In this sense, the 
network can actively impose an 
interpretation on an incomplete 
or noisy input signal by restoring 
it towards some fundamental 
activity distribution embedded in 
its excitatory connections — the 
cortical ‘hypothesis’. 

The explanation for this 
remarkable processing property 
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is as follows. Consider the 
network illustrated in Figure 2. A 
weight matrix can describe the 
synaptic interactions between 
the various neurons of the 
network. Notice, however, that 
if a neuron is not active, it is 
effectively decoupled from the 
circuit and so does not express 
its interactions. In this case the 
full weight matrix of the network 
can be replaced by a reduced 
matrix, the ‘effective weight 
matrix’, which is similar to the 
full matrix, but with all entries 
of the silent neurons zeroed 
out. Consequently, as various 
neurons rise and fall across 
their discharge threshold, the 
effective weight matrix changes. 
Some of these matrices may be 
stable, but others may not be 
so. We will consider how the 
network can converge to its 
steady-state output by passing 
through various combinations of 
active neurons and thus various 
effective weight matrices.

Imagine that a constant input 
pattern is applied to the input 
neurons. If, in the unlikely case 
that the outputs do not change 
at all, then the job is done: the 
network has already converged. 
More likely, some or all of the 
neurons will change their activity 
as a result of a combination 
of feedforward and feedback 
activation. One possibility is that 
all the neurons could increase 
their activity as a result of 
unstable positive feedback. But 
this instability is forbidden by 
the common inhibition applied 
to all excitatory neurons, which, 
provided the inhibition is strong 
enough, precludes a regenerative 
common increase in activation. 
The remaining possibility is 
that although the feedback is 
unstable, only some neurons 
are able to increase their 
activation, while others must 
decrease. Then, eventually one 
of the decreasing neurons will 
fall beneath threshold, at which 
stage it no longer contributes 
to the active circuit and so 
the effective weight matrix 
must change, removing the 
interactions of this newly silent 
neuron. This pruning process 
continues until finally the 
network selects a combination of 
Current Biology

Figure 4. Comparison of standard recurrently connected network left (equivalent to 
Figure 2), and the ‘pointer-map’ configuration of recurrence. 

Both networks have inhibitory feedback (−β, red). In both cases the overall feedback 
between excitatory neurons is the same. In the standard network this feedback is ap-
plied monosynaptically. In the pointer-map, a small, for example two cell, population 
of ‘pointer neurons’ is inserted in the feedback loop. In this way, the feedback is de-
composed into two successive stages, each providing gain α. The two pointer neurons 
have differently biased connectivities to the map of excitatory neurons. The left pointer 
neuron is more strongly connected to the leftmost neurons of the map, and the right 
pointer to the rightmost neurons of the map. If the pointer neurons are not perturbed 
by their inputs (p) then the pointer-map behaves like the simple recurrent network at 
left. When the ‘feedback’ or ‘top down’ input p is applied, it differentially activates 
the pointer neurons, and so biases the distribution of feedback gain to the map. For 
example, if input p is applied only to the left pointer, amplification of ‘bottom up’ map 
input m will be increased towards the left of the map, and reduced toward the right, so 
providing an attentional focus toward the left. 
neurons (a ‘permitted set’), the 
effective weight matrix of which 
is stable, and allows the network 
to converge to a steady state. 
The important observation here 
is that positive feedback can be 
unstable — the feedback gain 
is greater than one — during 
the transient behavior of the 
networks, and that the network 
can use this instability to 
explore new partitions of active 
neurons until a suitable (stable) 
partition, consistent with the 
input pattern, is found. It is in 
this modulation of the strength 
of positive feedback that the 
computationally interesting 
properties of the recurrent 
cortical circuits rests.

How ‘top-down’ connections 
steer local circuits
The control of gain within the 
local recurrent circuits illustrates 
how patterns of thalamic input 
can be effectively selected. This 
is possible because the thalamic 
inputs map topographically 
across a cortical area and 
because the recurrent circuits 
are local. Similar considerations 
probably apply to the processing 
of ‘feedforward’ inputs from 
other cortical areas, which, 
like the thalamic input, target 
the middle layers of the 
cortex. However, ‘feedback’ 
connections, which target the 
superficial and deep layers of 
cortex, are usually thought to 
be too weak to drive the local 
circuit. Nonetheless, it is clear 
that the response of cortical 
neurons to an appropriate 
stimulus changes dramatically 
according to whether a stimulus 
is being attended to or not; 
these changes are thought to 
be mediated by feedback or 
‘top down’ projections. These 
modulations in the magnitude of 
a response can be interpreted as 
changes in the gain of the local 
circuit controlled by an external 
attentional input, for example 
from another cortical area. 

What sort of circuit could 
achieve this? Figure 4 illustrates 
one simple idea, which is an 
extension of the concept of the 
‘permitted set’. In this network, 
the recurrent activity is not 
transmitted monosynaptically 
between members of the cortical 
map, but instead via a group of 
‘pointer neurons’. The pointer 
neurons, which form only a small 
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the Face of Medicine David G. 
NathanWiley, New Jersey, 2007 
ISBN 978-0-471-94654-0

“We all labour against our own 
cure; for death is the cure of all 
diseases.” So reflected Sir Thomas 
Browne, the great 17th-century 
physician and aphorist. In our 
society today we labour even 
harder; death is no longer seen as 
a valid option, more as an affront 
to medical science. Well within 
living memory cancer treatment 
was a hit-and-miss affair. The way 
George Bernard Shaw saw it, if 
the patient died it was put down 
to ‘natural causes’, while if he 
lived, the doctor took the credit. 
The available treatments were 
surgery, radiation and a little later, 
chemotherapy of an unsparing 
kind, likened by David Nathan to 
carpet-bombing — destruction, 
that is, of the entire terrain in the 
hope of knocking down the target 
before the patient. But now such 
butchery is being edged out, 
as Nathan’s title implies, by the 
rigours of science, and the skills of 
the ‘physician scientists’, virtuosos 
of the genome and the proteome, 
no less than of the stethoscope 
and scalpel. Drugs of a new kind 
are directed not just at malignant 
cells, but at those of the particular 
malignancy, and they have induced 
recoveries unimaginable a decade 
or two ago.

David Nathan is an eminent 
doctor, researcher and teacher, 
whose academic progeny populate 
medical faculties around the 
world. He speaks, we may take 
it, with authority, and this book 
now reveals him to be a writer 
of enviable lucidity and style. He 
has built his narrative round the 
fortunes of three patients with 
fraction of the total neurons in 
the map, distribute their output, 
or ‘point’, to different regions of 
the cortical map. The strength 
of their pointing is determined 
by the external inputs, which 
then have control over the gain 
of the local circuits that form 
the cortical map. Thus in a 
situation where there are two 
competing inputs supplied by 
the feedforward circuits, the 
activity of one can be enhanced 
at the cost of the other by the 
pointer neuron system. 

Conclusions
A surprising, but consistent 
pattern across all areas of 
neocortex examined, is that 
the most of the thousands 
of synapses formed on the 
dendritic tree of any neuron 
come from its neighbouring 
excitatory neurons located in 
the same cortical area. Very few 
synapses are contributed by long 
distance connections, whether 
they arise from neurons in 
subcortical nuclei (principally the 
thalamus) or other cortical areas. 
Thus, the local circuit is the 
heart of cortical computation. 
While limitations on connectivity 
and power, and the necessity of 
robustness and reliability, have 
no doubt propelled the evolution 
of this kind of neocortical 
architecture, the consequences 
of this architecture have been 
difficult to study experimentally, 
particularly so in the case of 
the physiological interactions 
of local versus long distance 
projections. Thus, although we 
have developed very powerful 
tools, such as molecular and 
optical methods, for observing 
fine details of the structure and 
function of neocortical circuits, 
the challenge of understanding 
how these circuits actually 
work and what they actually do 
has not diminished. Here we 
have offered an interpretation 
of the neocortical architecture 
and have used simple models 
to illustrate some possible 
mechanisms by which the local 
recurrent circuits behave and 
interact with the long distance 
‘feedforward’ or ‘feedback’ 
projections. Already these rather 
simple circuits provide a rich set 
of behaviours that are consistent 
with known computations of the 
neocortex. 
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