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Biological neocortical neurons are arranged in a columnar clustered architecture. Using a math-
ematical model in which the clustering properties can be monitored by means of a connectivity
probability function, we investigate the information propagation in the associated networks, by
means of simulations and a semi-analytical approach. Our analysis demonstrates that for sys-
tems with n-nearest neighbor coupling, the information propagation increases linearly in the
neighbor order n. For fractal coupling, shown to give rise to small-world network characteris-
tics, in contrast, an enhanced dependence is found, that, in our model of the neocortex, quickly
saturates at a high level, indicating the superiority of this network type.
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1. Introduction

Complex relationships can often be abstracted
into a network of nodes, where the interactions
between the nodes are represented as edges. A
recent observation made in this context is that
many real-world systems show a small-world struc-
ture [Albert & Barabasi, 2002]. Watts and Strogatz
[1998] introduced a paradigm that, by rewiring
the links between the nodes, leads from n-nearest
neighbor coupled networks via small-world net-
works to randomly coupled networks (see also
[Newman & Watts, 1999]). Two parameters are
generally used in order to describe this transition.
The mean path length L (defined as the mean of the
shortest path between all pairs of nodes) specifies
salient global features of the network. In contrast,
the clustering coefficient C (defined as the average
number of connections between the neighbors of a
node, divided by the number of edges of a glob-
ally coupled neighborhood) is an important local
characterization of the network. Imagine a (pure)
n-nearest neighbor coupled network (n � 1), which
implies large L and C. Rewiring randomly a small

portion of the links leaves the local network struc-
ture almost unchanged (preserving the large value
of C), reduces, however, greatly the mean path
length L, by means of shortcuts. The resulting net-
works are called small-world networks. A further
increase of the rewiring probability leads to a ran-
domly coupled network, where L and C are both
small [Watts & Strogatz, 1998].

The graph degree k, i.e. the average across
the graph of the number of edges emanating from
a node, is a simple and convenient macroscopic
parameter to go from networks of low to high con-
nectivity. We will use the characteristics L and C to
specify the properties of fractally coupled networks
(FCNs). The latter network type was introduced by
Raghavachari and Glazier [1995], inspired by fractal
structures of dendritic trees. If the probability for
the existence of a connection between the locations
ri and rj is given by

pi,j ∝|ri − rj|−α, (1)

the number of connections in a d-dimensional
sphere of radius R scales with Rd−α, where α is
a semi-positive real number, hence the term fractal.
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The exponent α determines the graph degree.
Increasing α from zero to infinity, the network
changes its characteristic from a globally coupled
network, via fractally coupled networks, to next-
neighbor coupled networks. Interestingly, fractal
connection distributions were recently experimen-
tally found in the visual cortex V 1 of ferrets.
This neocortical neuronal network is organized in
a columnar structure, where the neurons within a
column code for the same feature in the visual field
[Bear et al., 1996]. Roerig and coworkers [Roerig
& Chen, 2002] determined the dependence of the
number of connections to a central neuron on the
distance, and found a long-tail histogram that can
nicely fit a power-law (not shown). Since the tar-
get neurons are located in orientation columns that
have a well-defined diameter, it is plausible to
assume that the distance distribution between neu-
rons is well-represented by the distance distribution
between a neuron and its synaptic inputs.

In our work, we will model this columnar net-
work structure, extract its topological properties,
and investigate the information transfer between
the columns. By using Eq. (1), we will artificially
generate the corresponding topology and superim-
pose it with the temporal dynamics of a coupled
map lattice, so as to take account of the temporal
aspects. The importance of coupled map lattices
in capturing essential features of extended sys-
tems in biological sciences was already pointed out
by Kaneko [1994]. Our numerical simulations will
reveal that in fractally coupled clusters, information
propagation is enhanced, if compared to n-nearest
neighbor coupled networks having an equal connec-
tion density.

2. Topological Properties of
Fractally Coupled Networks

We first concentrate on the topological aspects of
FCNs. We will analyze how their mean path length
L and clustering coefficient C depend on graph
degree, and compare this with randomly coupled
and n-nearest neighbor coupled networks of the
same node degree. We use reciprocal connectivity
and periodic boundary conditions.

The degree of a node is defined as the num-
ber k of links that either point to the node, or ori-
gin at the node. The network is represented as a
linear chain with unitary distance between neigh-
boring elements. In order to obtain a FCN, we
select one node and with probability 1/Rα connect

(a)

(b)

Fig. 1. (a) Mean path length L and (b) clustering coeffi-
cient C versus the graph degree k for n = k-nearest neigh-
bor coupled networks (crosses), FCNs (circles), and randomly
coupled networks (plusses). Network size: N = 128. Shown
results are from individual trials. For all trials, they were
close to the ensemble averages.

it to any other node, where R denotes the distance
between the nodes. The steady state distribution
for α = 0 (k = N − 1) is a randomly/globally
coupled network, whereas for α → ∞ (k = 2),
the system reduces to a first-nearest neighbor net-
work [Raghavachari & Glazier, 1995]. Figure 1 dis-
plays the parameters L and C for purely n-nearest
neighbor, fractally coupled, and random-coupled
networks. Interestingly, the values L � 2.5 and
C � 0.13, obtained for N = 282 in the whole
relevant range, are quite close to those obtained
for the neuronal network of the biological example
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Fig. 2. (a) Mean path length L, and (b) clustering coeffi-
cient C, versus the graph degree k for columnar FCNs. Cir-
cles: {cs = 8, nc = 1}, plusses: {cs = 16, nc = 1}, crosses:
{cs = 8, nc = 2}. Network size: N = 128. Shown results are
from individual trials. For all trials, they were close to the
ensemble averages.

C. elegans (L = 2.65, C = 0.28, for N = 282 [Watts
& Strogatz, 1998]).

The FCN is characterized by a fast decay of
L, which is due to the abundance of long-range
interactions already at high values of the exponent
α (corresponding to low values of k). Therefore, L
of the fractally coupled network rapidly approaches
the values of the randomly coupled network, which
for k ≤ 6 is a decoupled network. In contrast, the
clustering coefficient C of the fractally coupled net-
work increases strongly because of the increased
probability of short-range connections. The plateau
region around k ≤ 20 following the increase, is

caused by the large number of unconnected neigh-
bors due to the increased probability of shortcuts.
In the region 3 ≤ k ≤ 10, the fractally coupled
network’s mean path length L is comparable to
that of the randomly coupled network, whereas
its clustering coefficient C largely exceeds that of
the randomly coupled network. This shows that
FCNs are small-world networks, and therefore can
be expected to provide efficient information propa-
gation [Latora & Marchiori, 2001].

For a more biologically detailed model of the
visual cortex V 1, we divided the original chain com-
prising N elements into N/cs columnar clusters
of size cs. The connections from a given column
were restricted to its nc-nearest neighbor columns.
Within this range, the distribution of connections
follows the power-law Eq. (1). This was imple-
mented by putting all neurons on a line, parti-
tioning the line into chunks of cs neurons. Above
each neuron, the two-sided (power-law) connectiv-
ity probability function is drawn, truncated where
the nc-nearest columnar clusters end, and the con-
nections are chosen accordingly.

To estimate the parameters L and C of this sys-
tem, we used a network of size N = 128. For a first
simulation, a columnar cluster size of cs = 8 and a
coupling range of nc = 1 was chosen. As is shown in
Fig. 2, in the interval 3 ≤ k ≤ 10, a dependence of
L and C characteristic for small-world networks is
observed. When we changed cs = 8 to cs = 16, and
nc = 1 to nc = 2, we noticed no substantial change,
indicating the stability of the observation. The large
value of C is maintained across a range larger than
that covered by the column: The larger the column
size, or the larger the number of coupled nearest-
neighbor columns, the more pronounced it is.

3. Site Dynamics

To demonstrate the relevance of the results of the
previous paragraph for the dynamical environment,
we need to detail the temporal evolution of our
model. As the neural network site maps, we chose
chaotic logistic oscillators f(x(n)) = 1 − ax2(n).
Their interaction is modeled by diffusive coupling

xi(t + 1) = (1 − ε)f(xi(t)) +
ε

Ai

∑

j∈conn

f(xj(t)),

(2)

where t denotes time, Ai the number of connec-
tions to/from the ith site, and j runs over all sites



3412 C. Wagner & R. Stoop

that are connected to site i. The information veloc-
ity along the chain will be estimated by means of
the maximal velocity of the propagation of pertur-
bations through the network [Cencini & Torcini,
2001; Giacomelli et al., 2000]: A small perturbation
is applied to the oscillators of a columnar cluster,
and the information propagation is followed using
the difference to a replica system without perturba-
tion. The information propagation velocity v∗ can
directly be measured from the perturbation at the
leftmost and the rightmost oscillator. For α → ∞,
the information propagation can be understood as
the result of two independent contributions: the
chaotic instability of the map leads to an average
exponential growth of the initial perturbation d0,
whereas the diffusive coupling results in a Gaussian
spreading. The combined effects are then given by
the equation [Giacomelli et al., 2000]

|δxi(t)| ≈ d0√
4πDt

e(λt− i2

4Dt
), (3)

where t represents time, i labels the site, D denotes
the diffusion coefficient, λ is the Lyapunov exponent
of the site map, and d0 is the perturbation strength.
The evolution of an initially localized, infinitesi-
mal perturbation can be described by the convec-
tive Lyapunov exponent [Giacomelli et al., 2000].
It expresses the growth rate of a disturbance when
measured from a frame moving with velocity v. For
spatially symmetric chaotic systems, the convective
Lyapunov exponent Λ is symmetric with respect to
v = 0, with the maximum at the origin. At the
critical value of the velocity v = v∗, the convective
Lyapunov exponent vanishes, as perturbations that
travel faster than v∗ are exponentially damped. The
velocity of the traveling wave front is determined at
the borderline of damped and undamped perturba-
tions, which is given by Λ(v∗) = 0. This yields for
the critical velocity

v∗ = 2
√

Dλ. (4)

4. Simulation Results

To track perturbation propagation, we use the dif-
ference between the original network xi(t) and a
replica system x′

i(t), ∆xi(t)= |xi(t)− x′
i(t)|. A whole

columnar cluster (oscillator indices i = −7 to 0)
was perturbed by adding a perturbation of size 10−8

to the actual value of each cluster element. In the
semi-logarithmic plot of Fig. 3, typical perturbation
evolutions are shown, based on a chain of N = 512

(a)

(b)

Fig. 3. Propagation of perturbations in fractally coupled
clustered networks, for (a) α = 10 (corresponding to n-
nearest-neighbor coupling (k ∼ 1)) and (b) α = 0.6
[k ∼ (9/2)]. Further parameters: N = 512, cs = 8, nc = 1,
ε = 0.8, perturbation strength d0 = 10−8, site map parame-
ter: a = 2.

oscillators. As before, for panel (A) α = 10 was cho-
sen, for panel (B) α = 0.6. The perturbation veloc-
itywas estimated following the suggestion of [Cencini
& Torcini, 2001]. For the two values of α shown in
Fig. 3, we obtain a more than five-fold increased
speed for the FCN. Whereas the width of the wave-
front is related to the maximal coupling radius, its
ruggedness is related to the degree of incomplete cou-
pling (see Fig. 3). Part of the increased information
propagation observed for fractal coupling is due to
the larger number of connections. For Fig. 4, which
shows a comparison between the propagation speed
inFCNsversusn-nearest neighbor coupled networks,
we therefore used networks with the same number
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Fig. 4. Information velocity versus connectivity for different
chaotic maps. Velocities are scaled by the first-nearest neigh-
bor coupling velocity. Circles: nearest neighbor networks,
Squares: FCNs (site map parameter: a = 2). Open symbols:
simulations, Filled symbols: semi-analytical results. Broken
lines are guidelines to the eye. The observed saturation is an
effect by the columnar structure of the network. The results
for a = 1.9, and the symmetric fully developed tent map
closely follows the displayed results.

of connections. For n-nearest neighbor coupled net-
works, a linear increase of the velocity on the connec-
tivity was observed. This increase, however, is vastly
outperformed by the enhanced information propaga-
tion in the fractally coupled columnar clusters.

5. Semi-Analytical Approach

In view of Eq. (4), the origin of the increased
information transfer is a joint effect in the diffu-
sion coefficient D and the Lyapunov exponent λ.
We have therefore studied the dependence of the
diffusion coefficient on the network configuration,
using a Markov chain model. From the connectiv-
ity matrix and the interaction strength ε = 0.8,
the transition matrix P of the Markov process can
easily be derived. Care must be taken to scale P
so that the entries of each row sum up to unity.
Two absorbing states are put at the ends of the
chain. The time τ it takes for a perturbation to
diffuse from the center of the chain to either end,
can be calculated via the fundamental matrix of P
[Kemeny & Snell, 1976]. Denoting this distance by
∆s, the diffusion coefficient can be evaluated as D =
(∆s2/2τ ) ≈ (N2/8τ ). For first-nearest neighbor
coupling, the diffusion coefficient D0 = ε/2 and the
critical velocity v∗0 ≈ 0.72 are well known [Cencini
& Torcini, 2001]. Allowing for a small variation of
the convective Lyapunov exponent only, the speed

of the wave front can be approximated by v(co)∗ =
v∗0

√
(D(co)/D0) [see Eq. (4)], where co indicates the

dependence on the network architecture.
The results of this calculation for a network

with an increasing number of nearest-neighbors and
for the FCN are included in Fig. 4 (full symbols).
In both cases, a good agreement between the calcu-
lated and the simulated velocities is obtained. Since
the velocity enhancement is due to the increase
of the diffusion coefficient, the superiority of the
fractal network, compared to other networks with
decaying connection probabilities, is based on the
particular structure of its transition matrix. Fast
diffusion is achieved if sites far apart are con-
nected (nonzero matrix element far off the diago-
nal). Moreover, the probability for such transitions
must be high. This decreases the probability for
short-distance jumps, as the transition probabili-
ties emanating from a site sum up to unity. These
two conditions force the probability density to decay
quickly in the short-range, and to have a long tail
in the long-range. The power-law of fractal coupling
optimally satisfies these requirements, if compared
to exponential coupling pi,j = exp(−µ | ri−rj | −1),
Gaussian coupling pij = exp(−γ(| ri − rj | −1)2),
and n-nearest neighbor coupling. For a realistic sim-
ulation of the columnar neocortical networks, the
intro-columnar connectivity needs to exceed the
intercolumnar connectivity. When α is varied from
0, 0.2, 0.6, 1, 2, 5 to 10, the mean connections
per site decreases from 11.5, 8.29, 4.81, 2.99, 1.57,
1.02 to 1. The neocortical situation is thus met for
α > 0.8, where k/2 < 4 holds. As can be seen in
Fig. 4, in this range the velocity enhancement is
maximal.

6. Summary

We explored the properties of a one-dimensional
model of the neocortical network V 1, where the
probability p of a connection follows a power-law
p ≈ R−α, R denoting the internode distance. If
the exponent α changes from 0 to ∞, this trans-
forms the system from a globally coupled into a
first-nearest neighbor coupled network. For interme-
diate values of α, our analysis revealed that FCNs
can be classified as small-world networks, where the
classification relies on the values of the mean path
length L and the clustering coefficient C.

On a clustered network structure mimicking
V 1, we introduced dynamical behavior by repre-
senting the neurons as chaotic oscillators. In these
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networks, we studied the information propagation
by simulations and semi-analytically. We found a
considerable increase in speed for fractal coupling,
over all other compared network types. In the
semi-analytical approach, the propagation veloc-
ity is determined in terms of the Lyapunov expo-
nent of the oscillators and the diffusion coefficient
of the chain [Eq. (4)]. Using a Markov process
formulation, which takes into account the connec-
tion scheme as well as their coupling strength, we
could easily evaluate the diffusion coefficient. The
obtained results coincide with the numerical sim-
ulations to great accuracy. The Markov process
explicitly shows that fast information propagation
is mediated by means of long-range connections.
In FCNs, these are located in the long tail of
the power-law probability distribution. In order to
increase the probability of the long-range connec-
tions, the number of short-range connections needs
to be reduced. If we compare the dynamic simula-
tions with the network analysis, we find that the
propagation enhancement goes in parallel with a
decrease in the mean path length. In contrast, the
increased clustering coefficient cannot be seen as
an origin of the velocity enhancement. Rather, it is
required in order to keep the network connected.
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