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Abstract— Scale-free networks are an important class of com-
plex networks since many “real-world networks” fall into this
category. In our contribution we investigate the influence of this
property on the performance of an affordable neural network.
By means of computer simulations, we confirm that affordable
neural networks, when the affordable neurons are chosen in
a scale-free manner, perform significantly better compared to
random selection.

I. INTRODUCTION

Since the scale-free networks were discovered by Barabasi
et al. [1], studies assessing the influence of this property on
the efficiency of networks have been carried out in various
fields. One way of how to characterize the difference between
random and scale-free networks is by means of the distribution
of the number of links � a node has. From Fig. 1, where we
contrast the two network types, it is evident that in the scale-
free network, although most nodes only have few connections,
some nodes (marked in red) act as highly connected hubs.
This distinction is captured in a more quantitative way by the
distribution of the number of links vs. the number of nodes,
as shown in Figure 2. Random networks display a bell-shaped
curve, implying that most nodes have the same number of
links, and no highly connected nodes (see Fig. 2 (a)). Scale-
free networks, in contrast, often have many nodes with a
few links only, whereas quite a few hubs exist that have a
large number of links. Mathematically, scale-free networks are
characterized by power law distributions (Fig. 2 (b)). Because
scale-rules emerge in many areas and disciplines of science
(e.g. engineering, economics, social sciences and so on), we
expect that also in the development of the science of complex
networks, they will play an important role.

(a) Random network. (b) Scale-free network.

Fig. 1. Example of random and scale-free network.

In a previous study on artificial neural networks, we pro-
posed a new network structure with affordable neurons in the
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(a) Random network. (b) Scale-free network.

Fig. 2. Comparing random and scale-free distribution.

hidden layer, for efficient BP-learning [2]. We christened this
network “Affordable Neural Network.” In this network, some
extra neurons are inserted into the hidden layer. When the
network operates, not all of the neurons present in the hidden
layer are updated; the affordable neurons are by-passed. By
using different sets of neurons for the update in the hidden
layer, the network is able to operate at a high performance.
By computer simulations [2], the affordable neural network
has been confirmed to achieve an improved performance over
conventional networks for BP-learning, in terms of speed of
convergence and of learning efficiency. Moreover, we have
investigated the performance of the affordable neural network
for noise-polluted input data. We found that the affordable neu-
ral network is able to generate noise-cleaned outputs, which
leads to the conclusion that the affordable neural network has
the generalization property. However, we believe that many
advantageous characteristics of the affordable neural network
are yet to be unveiled, and we also believe that the operation
of the affordable neural network embodies important general
features of the BP-learning process.

The first step in this programme deals with the performance
of the affordable neural network if the affordable neurons are
selected by a scale-rule, instead of making a random choice.
We will show by computer simulations, that the affordable
neural network under scale-rule selection achieves a better
performance, compared to random selection.

II. AFFORDABLE NEURAL NETWORK

A. Network Model with Affordable Neurons

In Ref. [2], we introduced the affordable neurons to reflect
important properties of the brain. During BP-learning, not all
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of the neurons in the hidden layer are used at every updating:
some of the neurons are selected for the learning and the
rest of the neurons are deactivated. The underlying network
model and the described mode of operation of the affordable
neurons in the hidden layer is sketched in Figs. 3(a) and (b),
respectively.
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(a) Network model with affordable neurons.
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(b) Operation of the affordable neurons in the hidden layer.

Fig. 3. Affordable neural network.

B. Selection of Affordable Neurons

The two models of the selection of the affordable neurons
in the hidden layer are implemented as follows.

1) Scale-rule selection: Our scale-rule selection procedure
is described in terms of a parameter denoted by a vector S.
The dimension s of S equals the number of neurons present
in the hidden layer; each component of S corresponds to one
single neuron indexed by i. The values of the components are
evaluated in each update by

Si = random()/i2 (1)

where random() means the uniform random function pro-
ducing values from 0.0 to 1.0. This implies that the neuron
with the highest index will generally have a small value,
whereas the first neuron will – unless the random function
states something different – have a larger entry. Note that the
values of the entries follow a power-law distribution. Using
these values, we select in each update the set of active neurons
according to the values of S. From the s neurons in the hidden
layer, exactly the k neurons with the smallest entries are
chosen as the affordable neurons. Figure 4 illustrates this scale-
rule selection of the affordable neurons, where the number of

the neurons in the hidden layer is set to be 100 and the number
of affordable neurons is 20, 40 and 60, respectively. Our
simulations will be based on 100000 updates. In this Figure,
the horizontal axis indicates the neuron number, whereas the
vertical axis displays the number of times the corresponding
neuron was in the set of operating neurons. By this Figure it is
confirmed that the operation time decreases gradually with the
neuron number of the hidden layer. Furthermore, histograms
of the number of neurons that have a given operation time
are shown in Fig. 5. The resemblance with the scale-free
distribution of Fig. 2 (b) is evident, although, when inspected
in details, the distribution is not of a simple power law type.

2) Random selection: For comparison let us also consider
random selection of affordable neurons. The results we obtain
are shown in Fig. 6. As can be expected, under random
selection, the operation time is similar for any neuron. Figure 7
shows again the distribution relationship between the selected
time and the number of neurons. This curve clearly reproduces
the bell-shaped distribution.
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Fig. 4. Scale-rule selection (Hidden: 100).

 0

 5

 10

 15

 20

 25

 30

 70000  75000  80000  85000  90000  95000

N
um

be
r 

of
 n

eu
ro

ns

Selected time for operating neuron

 0

 5

 10

 15

 20

 25

 30

 40000  50000  60000  70000  80000  90000

N
um

be
r 

of
 n

eu
ro

ns

Selected time for operating neuron

(a) Affordable neuron: 20 (b) Affordable neuron: 40.
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(c) Affordable neuron: 60.

Fig. 5. Distribution of scale-rule selection (Hidden: 100).
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Fig. 6. Random selection (Hidden: 100).
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(a) Affordable neuron: 20 (b) Affordable neuron: 40.
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(c) Affordable neuron: 60.

Fig. 7. Distribution of random selection (Hidden: 100).

III. BP-LEARNING ALGORITHM

BP is the most common learning algorithm for feedfor-
ward neural networks, and the effectiveness of BP-learning
has been confirmed in pattern recognition, system control,
signal processing, and so on [4]-[6]. The standard BP-learning
algorithm was introduced in [3]. In this study, we use the batch
BP-learning algorithm. The batch BP-learning algorithm can
be expressed similarly to the standard BP-learning algorithm,
with the difference lying in the timing of the weights. In
standard BP, the update is performed after each single data
input, whereas for batch BP, the update is performed after all
input data has been processed. The total error E of the network
is thus defined as

E =
P∑

p=1

Ep =
P∑

p=1

{
1
2

N∑
i=1

(tpi − opi)2)

}
, (2)

where P is the number of the input data, N is the number of
the neurons in the output layer, tpi denotes the value of the
desired target data for the pth input data, and opi denotes the
value of the output data for the pth input data. The goal of the

learning is to obtain weights between all layers of the network
that minimize the total error E. In order to achieve this, the
weights are adjusted according to the equation

wk−1,k
i,j (m + 1) = wk−1,k

i,j (m) +
P∑

p=1

∆pw
k−1,k
i,j (m),

∆pw
k−1,k
i,j (m) = −η

∂Ep

∂wk−1,k
i,j

,

(3)

where wk−1,k
i,j is the weight between the ith neuron of the

k − 1th layer and the jth neuron of the layer k, m is the
learning time, and η is a proportionality factor known as the
learning rate. In this study, we also add an inertia term, which
changes the second line of Eq.(2) into

∆pw
k−1,k
i,j (m) = −η

∂Ep

∂wk−1,k
i,j

+ ζ∆pw
k−1,k
i,j (m − 1), (4)

where ζ denotes the inertia rate.

IV. SIMULATED RESULTS

For our simulations we want to teach our network to
generate typical time series of the skew tent map. To this end,
the network is trained – using time series of the tent map –
to output, starting from given initial conditions, the same time
series as the tent map would have generated.

The skew tent map and an example of time series are shown
in Fig. 8. The length of chaotic time series is set to 50 steps;
the size of the set of learning patterns is 20. In our approach,
this requires the network to have 50 nodes in the input and
the output layers. Each data is inputted to each node in the
input layer. We carried out BP-learning by using the following
parameters. The parameter of the learning rate and the inertia
rate are fixed at η = 0.05 and ζ = 0.02, respectively. The
initial values of the weights are chosen between −1.0 and 1.0
at random. The learning time is set to 5000.
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(a) Skew tent map. (b) Time series.

Fig. 8. Skew tent map.

A. Learning Ability

First, we investigate the learning efficiency as the average
of the total error between the output and the desired target,
when the network structure of the hidden layer is changed. The
“Average Error Eave” for this learning example is defined by
the following equation.

Eave =
1
P

P∑
p=1

{
1
2
(tp − op)2

}
(5)
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Fig. 9. Learning ability by changing the number of affordable neurons
(Number of neurons in hidden layer: 100).

We consider the case that the hidden layer consists of 100
neurons. The number of the affordable neurons is varied from
10 to 70. The results of this simulation are shown in Fig. 9,
where the horizontal axes are the number of the affordable
neurons and the vertical axes are Eave for the pattern learning.
From this Figure, we can confirm that the scale-rule selection
method achieves a better performance if compare to the
random selection. It is also seen that the difference between
the errors of the scale-rule and the random selection networks
increases with the number of affordable neurons. Even when
the number of affordable neurons becomes large, the scale-
rule selection network continues to show good learning ability.
From this result, we can conclude that the scale-rule selection
method of affordable neurons could play an important role for
learning processes, in particular in biological systems.

B. Network Characteristics

In this Section, we compare the characteristics of the
affordable neural network under the scale-rule selection to
the random selection methods. We pay attention to the total
adjustment of the weights of neurons in the hidden layer. The
total adjustment of the weights (Taw) is defined as the sum of
the absolute values of the adjustments of the weights between
input and output. This can be written as

Taw =
R∑

r=1

|∆ω1,2
i,j + ∆ω2,3

i,j |, (6)

where R is the updating time. The results of the relationship
between total adjustment of the weight and the number of the
neurons obtained in our simulations are shown in Figs. 10
and 11. In the case of scale-rule selection, the number of the
neurons decreases gradually, by increasing the total adjustment
of the weight (Fig. 10). In contrast, the graph of the random
selection has a peak (Fig. 11). In this way, we have confirmed
that the operation of neurons in the hidden layer of affordable
neural networks with the scale-rule selection follows some

scaling rule. We conclude that with the scale-rule character-
istics, the performance of affordable neural networks can be
boosted considerably.
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(a) Affordable neurons: 20. (b) Affordable neurons: 60.

Fig. 10. Network characteristics of scale-rule selections (Hidden:100).
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(a) Affordable neurons: 20. (b) Affordable neurons: 60.

Fig. 11. Network characteristics of random selections (Hidden:100).

V. CONCLUSIONS

In this study, we investigated the performance of affordable
neural networks when the affordable neurons are selected by
a scale-rule. By computer simulations, we confirmed that the
affordable neural network with scale-rule selection achieves
a better performance compared to random selection. Fur-
thermore, we have provided evidence that the operation of
neurons in the hidden layer of affordable neural network with
scale-rule selection follows a scaling rule. We thus conclude
that in the context of affordable neural networks, scale-rule
selection of affordable neurons has an important impact on its
performance.
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