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Abstract The sharing of primary data in the field of
neuroscience has received considerable scrutiny from
scientific societies and from science journals. Many see
this as value added for science publishing that can enhance
and inform secondary examination of data and results. Still
others worry that data sharing is an undue burden for
researchers with little long term value to science. But
examples of how data sharing can be done successfully do
exist. The fMRI Data Center, established at Dartmouth
College in 2000 and now based at the University of
California Santa Barbara, has worked to facilitate the open
sharing of neuroimaging data from peer-reviewed papers to
foster progress in cognitive science. The fMRI study on the
representation of objects in the human occipital and
temporal cortex, published in 2000 in the Journal of
Cognitive Neuroscience (JOCN), marked the first deposi-
tion in the new database. Despite initial concerns about
fMRI data sharing, this data set was frequently down-
loaded. We describe the original results of distributed brain
activation patterns elicited by faces and objects in the
human visual system, and overview several secondary
analyses by independent investigators. A philosopher tested
Husserl’s temporal components of consciousness, whereas

other brain imagers deployed new analytic tools, from
Dynamic Causal Modeling, which estimates the neural
interactions between cortical regions, to a novel method for
constructing reproducibility maps. These re-analyses
revealed new findings not reported in the original study,
provided new perspectives on visual perception, generated
new predictions, and resulted in new collaborations and
publications in high profile journals.

Keywords fMRI . Data sharing . Data base

Introduction

The sharing of neuroscientific data has taken on an
increasingly important role in the activities of peer-
reviewed journals (Shepherd 2002) and the missions of
scientific societies. In an era where more and more
experimental data is digitally acquired or represented, the
desire to have that information made available so that
others may examine and scrutinize it has grown in kind.
This is especially true in the context of data that goes into
published research articles. The sharing of that primary data
in support of the reported results and conclusions in
published research articles is now achievable. Online
archives and resources that play the role of data brokers
accompanied by registries of the emerging and mature tools
to analyze that data (Kennedy and Haselgrove 2006) are
fast becoming critical elements in everyday neuroscience
research.

One such neuroscience database, the fMRI Data Center
(fMRIDC; http://www.fmridc.org), has been instrumental in
promoting data sharing, re-use, and re-analysis. The data
from the first study contributed to the archive represent a
fine example of how new research and results can be
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obtained from contributed data and how these can lead to
new insights into human brain function. In this article, we
discuss this initial contribution to the fMRIDC archive,
how the data from it have been re-used, and the principles
of data sharing and dissemination in the large scale
archiving of data from published fMRI studies. We provide
thoughts on how such efforts can be evaluated and what
challenges exist in their implementation. Finally, we
comment on the role that leading scientific organizations
and science journals have in the open sharing of primary
research data.

The fMRI Data Center

In 2000, with the intent of capturing a segment of this
literature and the data that underlies it, the fMRIDC was
founded at Dartmouth College (Van Horn et al. 2001).1

This effort sought to facilitate progress in understanding
cognitive processes through the collection, archiving and
open distribution of neuroimaging data sets in the peer-
reviewed literature. fMRIDC project directors reasoned that
there could be several positive outcomes to making the
complete study data sets available to others. First, the study
findings could be independently confirmed, helping to
strengthen the findings drawn by the original authors.
Second, new statistical methodologies could be applied to
the data, providing novel insights into cognitive processes.
Different studies could be compared, possibly identifying
unanticipated functional homologies between seemingly
different cognitive tasks. Moreover, these studies could be
used to train the next generation of neuroscientists by using
fMRI data that had already undergone interpretation by
those who collected it and had published it in leading
journals. The focus was on fMRI data from published
articles, which allowed collecting and managing the data, as
well as constructing an archive that was representative of
the field's body of work.

Since the time of the first contributed article, the data
from over 120 complete articles have been through this
submission process. These data, in turn, have been
disseminated to laboratories throughout the USA (Fig. 1)
and the world.

We mention the first article contributed to the fMRIDC
(Ishai et al. 2000a), as this study, in particular, has enjoyed
considerable prominence in the community not simply because
of its important findings on the cognitive representation of
objects. It has also been subjected to novel re-analyses that
have broadened the scope of the original research findings
and led to new research collaborations. In the next section,

we describe this study and the several ways in which it has
been examined.

Visual Perception, Consciousness and Models
of Cortical Connectivity

The functional architecture of the ventral visual pathway is
a matter of on-going debate. Brain imaging and electro-
physiological recording studies in humans have reported
discrete cortical regions in posterior ventral temporal cortex
that respond preferentially to faces (Kanwisher et al. 1997),
buildings and scenes (Aguirre et al. 1998; Epstein and
Kanwisher 1998), letters (Polk and Farah 1998), animals
and tools (Chao et al. 1999), and human body parts
(Downing et al. 2001). These findings suggest a category-
specific, anatomically-segregated modular organization of
the object vision pathway. While it may be true that there
are dedicated neural mechanisms for certain biologically
relevant objects, such as faces, which emerge through
evolution, it seems highly unlikely that there are modules
for all object categories. An alternative possibility is that
the representation of objects in ventral temporal cortex is
more widely distributed. To test the modular model, an
fMRI study was conducted in which activation elicited by
faces and two categories of other objects, namely houses
and chairs, were measured using two tasks (passive
viewing and delayed matching) and two stimulus formats
(grayscale photographs and black and white line draw-
ings). Although each category elicited maximal activation
within a specific region (e.g., houses in medial fusiform
gyrus, faces in lateral fusiform gyrus and chairs in inferior
temporal gyrus), each object category was associated with
overlapping and distributed patterns of activation that
encompassed a wide expanse of ventral temporal cortex
(Ishai et al. 1999). Subsequent analysis revealed that
faces, houses and chairs evoked similar patterns of dif-
ferential activation in ventral occipital cortex (Ishai et al.
2000a). These findings were replicated and extended with
additional categories of man-made objects (Haxby et al.
2001). As the representation of an object is not restricted
to a cortical “module’, the object-form topology hypoth-
esis has been proposed, according to which the functional
architecture of the ventral visual pathway is a continuous
representation of information about object form that has
a highly consistent and orderly topological arrangement.
The distributed representation model is not only physi-
ologically plausible, but consistent with single unit
recordings in monkeys (Tanaka 1996) and computational
models of object recognition (Edelman et al. 1998). The
fMRI data from the Ishai et al. 1999; and 2000a publica-
tions were deposited in the fMRIDC and to date, the re-
analysis of these data resulted in several publications, of

1 As of January 2007, the fMRI Data Center is based at the University
of California Santa Barbara.

Neuroinform (2007) 5:146–153 147



which some have received particular recognition for their
novel use of shared data (Van Horn 2002).

The first published re-use of the Ishai data were in the
context of human consciousness. Daniel Lloyd, a philoso-
pher from Trinity College in Hartford, obtained four data
sets from the fMRIDC (Hazeltine et al. 2000; Ishai et al.
2000b; Mechelli et al. 2000; Postle et al. 2000) in order to
test specific predictions about human consciousness. Lloyd
adopted Husserl’s criteria, according to which the phenom-
enology of consciousness is based on three essential
principles: intentionality (the external world as it is
experienced and not as it is); superposition (sensory and
non-sensory properties are present in perception); and
temporality (all objects share perception of present, past,
and anticipated future). If indeed these aspects of con-
sciousness are implemented in the brain, the empirical
evidence should include temporal flux (with passing time,
the multivariate differences between images should in-
crease) and superposition (images sharing task or stimulus
conditions should be similar). Using multivariate distance
analysis and artificial neural networks, Lloyd showed a
time-distance effect (i.e., as the time series progressed, the
distance between images increased) and that the past and

future brain states, retention and protention, respectively,
are embedded in present brain states. Thus, as time passes,
the brain changes “globally, incrementally, and monotoni-
cally” (Lloyd 2002). Previous fMRI studies of conscious-
ness compared one state of awareness with another,
assumed localization, and ignored the temporal flux (Rees
et al. 2002). Lloyd’s original approach proposed method-
ological and conceptual advantages. He was not looking for
the loci of consciousness, nor did he identify regions of
interest in the human brain. Rather, he analytically defined
the characteristic features of consciousness, and tested
whether distributed patterns of activation that mediate the
phenomenal structures of consciousness could be detected.
Because conscious awareness is implicated in all cognitive
functions, he utilized data sets from four different studies
that included a variety of cognitive tasks (target tracking,
passive viewing, delayed matching, reading, and spatial
working memory), stimuli (faces, objects, words, pseudo
words, 2-D arrays of squares, colored circles), and motor
responses (button presses and saccades). Lloyd successfully
demonstrated how the neural manifestations of structures of
consciousness, concepts that were proposed more than
100 years ago, can be investigated by reanalyzing existing

Fig. 1 A Google Maps API (http://www.google.com/apis/maps/) plot
of locations in the USA and Canada to which one or more complete
fMRI study data sets from the fMRIDC archive were delivered. The
online maps itself can be viewed at http://www.fmridc.org/google
maps/async.html. Clicking on each brain icon will show the fMRIDC
study accession number hyperlink for that data set. Pink icons

represent study requests from 2000–2004, blue icons from 2005,
and green icons from 2006. This map shows how widely study data
sets have been disseminated in North America alone. Requests for
one or more data sets and delivered to laboratories in other countries
include China, Australia, Germany, UK, Japan, France, Belgium,
and Switzerland
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data sets. Inspired by his fMRI data analysis experience,
Lloyd then wrote a literary book (Lloyd 2003) in which he
explored paradigms of consciousness while solving the
murder of a graduate student at fictional brain imaging
laboratory.

The Ishai data set was also used to test novel analytic tools
for fMRI research. Carlson and colleagues used these data in
one of the first “decoding” analyses of fMRI data. Using
linear discriminant analysis, they looked for the voxels that
best predicted which object category the subject was
presented with. The main results showed that distinguishing
one object category from another did not depend on detecting
object information from scrambled objects. Moreover,
attentional demands, reflected by activation during delayed
matching as compared with passive viewing, improved the
ability to predict objects from scrambled objects, but did not
contribute to object classification (Carlson et al. 2003). Since
then, the application of linear discriminant analysis and
other classification techniques became very popular in fMRI
research, with the ambitious goal of decoding human mental
states (Haynes and Rees 2006).

Liou et al. (2003, 2006) introduced a Bayesian method
for estimating the reproducibility of activation within
voxels. Given an optimal statistical threshold, a voxel was
defined as ‘strongly reproducible’ if its active or inactive
status was consistent in at least 90% of the sessions. The
reproducibility maps were constructed for visually-respon-
sive voxels, namely voxels that responded more to faces,
houses, and chairs than to scrambled objects. When the two
tasks, passive viewing and delayed matching, were com-
pared, the density of Student’s t values as a function of the
reproducibility of voxels, revealed a bimodal distribution.
When the same comparison was performed on the delayed
matching task with different stimulus formats (grayscale
photographs and black and white line drawings), a uni-
modal distribution was found. These results suggest that
subjects used different strategies to perform the viewing
and matching tasks (Liou et al. 2003, 2006). As the ultimate
goal of fMRI research is to understand behavior and to
correlate task performance with the underlying neural
mechanism, the method suggested by Liou and colleagues
could reveal differential strategies used by subjects to
perform a variety of cognitive tasks.

The category-related patterns of activation in the ventral
stream do not seem to reflect the mere product of a
hierarchical, bottom–up, ‘feature’ analysis suggested by
early fMRI studies (Malach et al. 1995). Selective attention
(Kastner et al. 1999) and visual imagery studies (Ishai et al.
2000b; Ishai et al. 2002) have indicated that face and object
perception is also modulated by top–down effects, likely
originating in parietal and frontal cortex. Mechelli and
colleagues investigated the extent to which category-related
responses in the ventral stream are mediated by bottom–up

and top–down effect, using conventional statistical para-
metric mapping (SPM) with a novel analytic approach,
dynamic causal modeling (DCM), which allows, within a
Bayesian framework, the assessment of effective connec-
tivity in cortical networks (Friston et al. 2003). The original
fMRI data set was re-analyzed in SPM to identify the visual
response (i.e., regions that responded more to faces, houses,
and chairs than to scrambled pictures), and the category-
responsive regions (i.e., regions that responded maximally
to one category relative to the other two). Then, for each
individual subject, dynamic causal models were constructed
for the face-, house- and chair-responsive regions in the
ventral stream, as well as two visually responsive, but not
category-specific, dorsal regions, namely V3 and parietal
cortex. Interestingly, in all subjects, the category-related
responses were mediated by input from V3, but not from
parietal cortex. For example, when subjects were viewing
chairs, the intrinsic effective connectivity from V3 to the
chair-responsive region in occipital cortex was stronger
than the connectivity to the face- or house-responsive
regions (Mechelli et al. 2003). The Ishai data set was used
again by this group to compare various dynamic causal
models (Penny et al. 2004).

Encouraged by these findings, Mechelli and Ishai
established a new collaboration in which they further
investigated the bottom–up and top–down effects during
perception and imagery of objects. In a study published in
Neuron, Ishai and colleagues showed that visual imagery
from long-term memory of faces, houses and chairs
activated small subsets of the category-selective regions in
ventral temporal cortex. Moreover, visual imagery activated
a network of regions in parietal and frontal cortices, which
likely mediate the top–down influence on category-related
representations of objects stored in extrastriate cortex (Ishai
et al. 2000b). The re-analysis of this data set, using both
SPM and DCM, showed that during visual perception,
category-selective patterns of activation in extrastriate
cortex are mediated by content-sensitive forward connec-
tions from early visual areas. Furthermore, during visual
imagery, category-selective activation is mediated by
content-sensitive backward connections from the prefrontal
cortex. Importantly, these novel findings were only revealed
in the DCM analysis and were not reported in the original
study, which only used conventional SPM analysis. Finally,
content-unrelated connectivity between parietal cortex and
the category-selective regions were found during both
perception and imagery, suggesting that non-selective,
top–down processes, originating in superior parietal areas,
contribute to the generation of mental images, regardless of
their content, and their maintenance in the “mind’s eye”
(Mechelli et al. 2004).

A challenge to functional brain imaging studies of the
human brain is to identify optimal models that can explain
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the information flow between activated regions and move
from a semi-modular approach to a more realistic, integrat-
ed, cortical networks perspective. Inspired by the novel
DCM findings, Ishai and colleagues conducted effective
connectivity analyses on the cortical network that mediates
face perception. Face stimuli elicit activation within a
distributed cortical network in the human brain. The
network includes visual (“core”) regions, as well as limbic
and prefrontal (“extended”) regions, which process invari-
ant facial features and changeable aspects of faces,
respectively (Haxby et al. 2000; Ishai et al. 2005). In the
new study, DCM was used to investigate effective
connectivity and functional organization between and
within the core and the extended systems, and how
experience-dependent changes alter the strength of coupling
between these regions. The DCM analysis revealed that the
“core,” visual system is hierarchically organized in a
predominantly feed-forward fashion, and that the fusiform
gyrus exerts the dominant influence on the limbic and
prefrontal “extended” system. Moreover, emotional faces
increased the coupling between the fusiform gyrus and the
amygdala, whereas famous faces increased the connectivity
between the fusiform gyrus and the orbitofrontal cortex.
This study has shown for the first time content-specific
dynamic alterations in the functional coupling between
visual-limbic and visual-prefrontal face-responsive path-
ways (Fairhall and Ishai 2007).

Taken collectively, these examples of data sharing
demonstrates that re-analyses of published data can reveal
new findings that were not reported in the original study,
provide new perspectives on visual perception, generate
new predictions, and result in new collaborations and high
profile publications.

Practical Neuroimaging Data Exchange

As an experiment in neuroscience databasing, the fMRIDC
should be considered a major success. However, by no
means is the fMRIDC approach the only framework for the
sharing of neuroscience data. There are places for a variety
of different data-sharing frameworks within neuroscience,
each with their strengths as well as weaknesses. One
common expectation from those drawing from these
resources should be an adequate description of the data,
how it was obtained, details of scanner protocols, from
what subjects, under what experimental manipulations were
under study, etc. This “meta-data” is the important
contextual information needed to reproduce the results of
the study with maximal fidelity. Several approaches to
standardize meta-data organization and format have been
discussed elsewhere (Kotter and Wanke 2005; Dameron
and Musen 2007) and an elaboration of their merits is

beyond the scope of this particular article. It suffices to say
that carefully constructed frameworks for meta-data de-
scription that promote efficient data exchange and re-use
need to be developed and put in practice.

However, developers should be mindful that most
neuroscientists are not necessarily familiar with the concept
of ontologies (i.e. the formal hierarchical frameworks used
to describe study meta-data) and the process for providing
meta-data should be easy and transparent to them. Not all
meta-data is the same and can be loosely classified in terms
of micro-meta-data (e.g. the parameters of a particular
image file—its dimensions, data type, bits/pixel, etc.—
contained in a file header) and macro-meta-data (e.g. the
collection of all parameters from a complete study).
Distinctions should be made between these types and one
should not be used as if it were the other. Moreover, the
development of meta-data ontologies for the simple sake of
there being a need for ontologies is not sound practice and
the proliferation of too many ontologies leads to confusion
and needless duplication of effort. Finally, there is a danger
that ontologies themselves can become as complicated, if
not more so, than the data they are trying to describe and/or
run a risk of being so overly inclusive as to lose their ability
for practical applications. We do not doubt that such meta-
data frameworks are achievable with careful consideration
of the needs of the users they meant to serve. With these in
hand, researchers will be able to reproduce the published
research findings of the original studies as closely as
possible and then work to extend them in novel ways.

Evaluating Success

In one sense, the success of any database of shared data is
in the degree to which researchers are willing to contribute
to as well as draw from that resource. While the exact
metrics used to gauge the individual or comparative success
of such an effort are open to debate, one need only look to
large-scale efforts such as GenBank and related databases.
The success of these efforts lies not in how many web-hits
they have received, the volume of data they maintain, or
even how many download requests they receive. The metric
of success that resonates most highly is that these efforts
have given rise to a paradigm shift in the way molecular
and biological sciences now conduct business. The emerg-
ing discipline of bioinformatics was in its infancy a decade
ago but now forms the bridge between fields of computer
science, statistics, and molecular biology. These researchers
troll through volumes of data to craft new knowledge that
can lead to novel, testable hypotheses about genes, their
function, and dysfunction. It is possible using genomic
tools to conduct examinations within and between the
genomes of, for instance, several different species of
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primates without laying eyes on a single monkey or having
to hybridize a single nucleotide. Researchers and their
students, skilled in the use of sophisticated software that
can process volumes of genetic data, are exploring the vast
ways that different organisms are built and do so every day.
This is not simply a necessary evil, nor an adjunct to the
direct collection of new data—this is their means of
research, it is their science. Thus, the impression in which
a biologist was someone working in a wet-lab over test
tubes and Petri dishes has been augmented to include those
informatics-oriented researchers using computer-based
tools, looking for unseen or unappreciated relationships
between genes that could lead to novel treatments for
Society’s most serious diseases. The field of biology and
molecular science has been revolutionized due to its
willingness to openly share and mine primary data.

This has been the hope for brain imaging—that people
would purposefully contribute the data from their peer-
reviewed studies such that others can benefit from their
efforts and broaden the scope of the original research
findings. Overcoming the sociological barriers to sharing
data, as demonstrated by the fMRIDC effort, was a first step.

Relation to the Published Literature

The relationship between the neuroscience databases and
peer-reviewed journals is an important one. The partnership
between the fMRIDC and JOCN is one that is extendable to
other journals that publish neuroimaging data for their own
contributions to the fMRIDC or other formal data archive.
As well, the basic model of this partnership could be

Fig. 2 Family tree of studies using the Ishai data set. The open
availability of the data via the fMRI Data Center has allowed that data
to inform multiple sub-disciplines within neuroimaging and foster new
interactions between researchers. The figure illustrates how the
various studies relate to one another, their diversity of application
using that data, and the re-use over time. Also noteworthy is the
number of citations being accumulated to the studies that have used
these data. Line thickness is drawn proportional to how frequently that
article has been cited. Collectively, as of April 2007, the total number

of citations to articles utilizing these data, including the Ishai et al.
JOCN article, is 279 in comparison to the 306 citations for the earlier
Ishai et al. PNAS article. Citation values for each article were obtained
using Harzing’s Publish or Perish program (http://www.harzing.com/
pop.htm, Version: 2.0.2673, April 2007). We believe that tracking
citation incidences and rates for studies based upon shared data from
published studies may be an effective way to measure the utility and
long-term impact of neuroscience data sharing
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adapted easily to accommodate studies and study data from
other neuroscientific domains and modalities. Having
software tools that facilitate and make easy the data
contribution process are essential. The process and its
eventual outcome represents value-added for the journal in
terms of enhancing what is being made available with each
published article. It also represents the opportunity for
researchers in the field to obtain and examine primary data
from the published literature itself, confirming results,
testing new hypotheses, or exploring emerging analytic
approaches. We would conjecture that the Ishai article, for
example, has taken on greater importance because of having
its data openly available. Figure 2 depicts how, due to the
availability of the data from the Ishai JOCN article through
the fMRIDC archive, its use has spread across neuroimaging
domains, and the collective number of citations across these
resulting articles (279 citations), is nearly as great as that
for the original data’s description in a higher impact journal
(e.g. Ishai et al., PNAS 1999; 306 citations). The re-use and
re-interpretation of data from published studies helps to
inform and energize subsequent published literature. Non-
published brain imaging data and archives thereof also have
value but in the case of published results, these are the
foundation of our field, our collective body of peer-reviewed
work, and have the greatest value to scientists.

Discussion

Large-scale brain imaging data sharing and archival efforts
like the fMRIDC have now begun to produce significant
scientific rewards for cognitive neuroscience and brain
mapping. Other databases, too, hold great promise for
linking images of brain activity with other useful biological
information (e.g. BrainMap, http://www.brainmap.org/; The
Laboratory of Brain Imaging (LONI), http://www.loni.ucla.
edu). The involvement of other researchers as well as
multiple scientific communities in examining published
brain imaging data must be welcomed and encouraged as
this will strengthen and improve the inferences and con-
clusions that can be made from these data. As a result of these
infrastructural and data resources, novel research, hypotheses
and education using existing data can reach across scientific
disciplines—engaging workers from other fields to apply
sophisticated new tools for data analysis and integration.

The human scale of these projects is not insignificant,
however, often requiring a dedicated curatorial staff to
manage study deposition and to keep computer systems
operational. Government mandates to share and archive
primary research data cannot be successful unless federal
agencies support the infrastructure programs and required
personnel that are needed to make such sharing easy and
accessible to others. The abrupt demise of the NIMH

Human Brain Project was a black eye for ongoing
neuroscience databasing and neuroinformatics efforts and,
as yet, has not been sufficiently replaced (Gazzaniga et al.
2006). Further progress will certainly necessitate that
funding bodies continue to invest in new means for
experimentation, but also in supporting study data reposi-
tories, thereby ensuring their survival as essential archival
and scientific resources (Bloom 2006). In these times of
funding uncertainty, perhaps government investment in
these resources is a way to maximize the most science
from every research dollar spent. Examples of studies that
have been widely re-examined, like the Ishai article, can be
used to illustrate the value these efforts have in supporting
and extending scientific discovery.

We expect that, over time, because of the enormous
scientific and educational benefits, the sharing of neu-
roimaging and other brain data will simply be an expected
part of scientific publishing in high impact factor periodicals.
We hope that our experiences with successful data sharing
would further encourage the interests of leading scientific
societies to move toward greater exchange of data. In so-
doing, the neurosciences will, like the biological sciences, be
able to maximally leverage its collected scientific knowledge
into a rich understanding of the human brain with its
complex cognition.
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