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The grid cells of the rodent medial entorhinal cortex (MEC) show activity patterns cor-
related with the animal’s position. Unlike hippocampal place cells that are activated at
only one specific location in the environment, MEC grid cells increase firing frequency at
multiple regions in space, or subfields, that are arranged in regular triangular grids. It
has been recently shown that a conjunction of MEC grid cells can lead to unique spa-
tial representations. However, it remains unclear what the key properties of the grids are
that allow for an accurate reconstruction of the position of the animal and what the com-
parison with hippocampal place cells is. Here we use a theoretical approach based on
data from electrophysiological recordings of the MEC to simulate the neural activity of
grid cells. Our simulations account for the accurate reproduction of grid cell mean firing
rates, based on only three grid parameters, that is grid phase, spacing and orientation.
The analysis of the key properties of the grids first reveals that for an accurate position
reconstruction, it is necessary to combine cells with different grid spacings (which are
found at different dorsoventral locations of the MEC) or orientations. Second, the rela-
tionship between grid spacing and subfield size observed in physiological data is optimal
to predict the animal’s position. Third, the regular triangular tessellating patterns of grid
cells lead to the best position reconstruction results when compared with all other regular
tessellations of two-dimensional space. Finally, the comparison of grid cells with place cells
shows that populations of MEC grid cells can better predict the animal’s position than
equally-sized populations of hippocampal place cells with similar but unique spatial fields.
Taken together, our results suggest that the MEC provides highly compact representations
of the animal’s position, which may be subsequently integrated by the place cells of the
hippocampus.

Keywords: Grid cells; place cells; medial entorhinal cortex; hippocampus; position recon-
struction; spatial cognition.
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1. Introduction

A prerequisite for efficient navigation in complex environments is the ability to
localize oneself in space. In mammals, neurons have been identified whose activity
is correlated with the location of the animal. In particular, the place cells of the
hippocampus are activated at specific and generally unique regions in an environ-
ment [1, 2]. It has been proposed that these neurons form a cognitive map, in which
the location of the animal is represented [2–5]. Indeed, a population of hippocampal
place cells provides highly specific position information that supports the accurate
localization of a rat in an arena [6, 7]. More recently, the activity patterns of the so-
called grid cells of the medial entorhinal cortex (MEC) were also found to correlate
with the position of the animal [8–12]. One synapse upstream from the hippocam-
pus, these cells increase firing frequency at multiple regions in an environment, or
subfields, that are arranged in regular triangular grids. Neighboring grid cells share
common grid spacing and orientation but different phases, and the grid spacing
increases isometrically along the dorsoventral axis of the MEC, in a quadratically
proportional relationship with the grid subfield size [10].

An individual grid cell expresses only ambiguous position information: the max-
imum firing rates of different subfields have similar intensities that are only weakly
correlated over sessions [10]. It is thus difficult to discriminate between the multiple
subfields, and, consequently, to determine the position of the animal when the cell
is firing. It has been proposed that the integration of grids with different spacings
and/or orientations could help to resolve this ambiguity [10]. Moreover, it has been
recently shown that place cells can be mapped from grid cells [13–15] and that these
place cells could provide unique place codes [16]. In the latter study [16], simulated
grid cell activity patterns were used to drive a population of place cells. The correla-
tion of the place cell population vector was then computed across different locations
in the environment, in order to quantify the distinction between distant positions.
This methodology allows to answering the question whether the animal’s location
can be uniquely determined from the population activity pattern of grid cells, but
does not allow for a quantification and comparison of the relative contribution of grid
cells with that of place cells. In addition, the use of a non-physiologically constrained
model prevents the comparison with electrophysiological recordings.

Hence, in the present study, we quantify to what extent populations of grid
cells can predict the position of an animal and use a physiologically constrained
model that accurately reproduces the mean firing rates of grid cells combined with
well established Bayesian position reconstruction method. To identify the different
properties of the grids that allow for an accurate representation of the position
of the animal, we first compare different subsets of neurons with distinct parame-
ter distributions. Second, we generate populations of grid cells with different pro-
portionality factors between grid spacing and subfield size, in order to determine
whether the quadratic proportionality factor found in physiological data is optimal
in terms of position reconstruction. Third, we make the comparison of the three
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regular tessellations of two-dimensional space to determine which one provides the
better quality position information. Finally, to compare the position information in
populations of grid cells with populations of place cells, we construct equally-sized
populations of place cells with similar, but unique subfields.

2. Methods

We use a theoretical approach to assess the question of the representation of the
animal’s position by a population of grid cells since, for several reasons, it is difficult
to conduct these investigations experimentally. First, during a recording session, the
grid cells of one hemisphere are generally recorded from a single location. According
to the topographical organization of grid cells in the MEC, these neighboring cells
share common grid spacing and orientation, and thus the same periodicity, which
restricts the scope for integration over different grids. Second, it has not been possible
so far to sample the activity of large enough numbers of cells in the MEC in vivo.

Our model simulates the activity of grid cells as a function of the position of
a virtual rat exploring a 1 m × 1 m square arena. The grids are characterized by
three parameters, the grid spacing d, orientation α and phase p = (px, py) (Fig. 1),
that are uniformly distributed consistently with a previous study [10], i.e., the grid
spacings are distributed between 0.39 m and 0.73 m, the grid orientations between
0◦ and 60◦ and the grid phases vary over the whole environment. The grid subfields
are represented by a combination of Gaussian functions, whose centers regularly
tessellate the environment with triangles. In addition, we integrate into the model
the small random grid shifts and rotations across sessions, that can be observed in
physiological data (Fig. 2 and Methods). We make as few assumptions as possible
about how position information is generated in the MEC. Our model simply but
accurately reproduces the firing rates of grid cells, with a mean squared residual
error of less than 4% of the mean firing rates observed in physiological data (Fig. 2).
Subsequently, we use a standard and well established Bayesian framework for posi-
tion reconstruction [7] that is uniquely based on instantaneous neural firing rates
and on the position of the animal.

(a) (b) (c)

Fig. 1. Characterization of the grids with three parameters: (a) grid spacing d, (b) grid orientation
α and (c) grid phase p = (px, py) (along the x- and y-axes). Circles represent grid subfields.
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(a) (b)

Fig. 2. Simulation of grid cells with small random grid shifts and rotations across trials. (a) Top:
Mean activity map (i.e. mean activity of a cell as a function of the animal’s position in the arena,
white = medium and black = low or high mean activity) of a real grid cell (recording time of
20 min). Bottom: Mean activity map of a simulated grid cell, whose grid parameters are fitted to
the real cell, with different shift-rotation parameter values. (b) Mean squared residuals between
real grid cell mean activity maps and simulated grid cell mean activity maps as a function of the
shift-rotation parameter. The gray region indicates ± s.d.

2.1. Generation of grid cell activity

The activity A(x) of a simulated grid cell is a function of the position x of the
animal:

A(x) = max
k=1,2,3,4

exp
(
−||(Rαx− p) mod c − sk||2

σ2

)
, (1)

where the angle α determines the grid orientation and where Rα is the rotation
matrix defined by

Rα =
(

cos(α) sin(α)
−sin(α) cos(α)

)
, (2)

and where c = (d,
√

3 d), s1 = (d/2, 0), s2 = (0,
√

3 d/2), s3 = (d,
√

3 d/2), s4 =
(d/2,

√
3 d). σ determines the subfield size and depends on d.

2.2. Generation of place cell activity

We compute place cell activity as a Gaussian function of two distal cues, repre-
senting two perpendicular walls in a square environment [17]. The place field size is
determined by the parameter τ , which has the same distribution as σ.

The equation of the activity B(x) of a place cell is thus given by

B(x) = exp
(
−||x − q||2

τ2

)
, (3)

where q is the position of the center of the place field. In our experiments, q is
uniformly distributed within the environment.
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2.3. Small grid rotations and shifts across sessions

The place fields of hippocampal place cells are found to be slightly shifted across
sessions [18]. Shifts of similar magnitude can be found in grid cell recordings, as well
as small rotations of the grids (mean shifts of 4.2 cm along the x-axis of the grid,
of 4.4 cm along the y-axis of the grid, and mean rotations of 2.6◦, observed in a set
of eight grid cells recorded in the dorsolateral band of the MEC (layer II), (data
courtesy of the Center for Biology of Memory, NTNU, Norway [9]). To illustrate the
robust readout of position in the grid cell activity, we integrate these small shifts
and rotations in our model. Hence, the activity Ã(x) of a simulated grid cell with a
small grid rotation �α and shift �x is

Ã(x) = A(R�α(x + x̃) − x̃ + �x), (4)

where x̃ ∼ U(0, 1) × U(0, 1) determines the center of the rotation of the grid and
where �x ∼ N (0, δ2

x) × N (0, δ2
y) and �α ∼ N (0, δ2

α). U(a, b) describes an uniform
distribution between a and b and N (µ, σ2) describes a normal distribution of mean
µ and variance σ2. In our experiments, since δx, δy and δα represent subfield motions
of similar magnitude, we use δ = δx = δy = δα.

2.4. Bayesian position reconstruction error

Given the activity n(t) of a set of N cells at time t, i.e. n(t) = (n1(t), . . . , nN (t)), we
determine the reconstructed position x̂(t), as the position x(t) that maximizes the
probability P (x(t) |n(t)). To compute the probabilities P (ni(t) |x(t)) ∀i = 1, . . . , N ,
derived from P (x(t) |n(t)) using Bayes rule (Eq. (5)) [7], we discretize the environ-
ment into 30× 30 bins over 1 m2 and the cell activities into five activity levels. The
choice of the activity discretization is justified by the observation that no critical
improvement of the position reconstruction is found in a set of 16 cells with twice
the resolution. We assume, without loss of generality, that the animal’s trajectory
covers the environment uniformly: we simulate 30 sessions in each of which each bin
is visited exactly once. The probabilities are computed over a set of 29 sessions, the
last session (so-called testing set) being used to compute the reconstructed position,
given by

x̂(t) = arg max
x(t)

P (x(t) |n(t)) = arg max
x(t)

N∏
i=1

P (ni(t) |x(t))P (x(t)). (5)

2.5. Relationship between subfield size and grid spacing

The proportionality factor β describes the relationship — found in physiological
recordings [10] — between the grid spacing d and σ (which determines the subfield
size), and is computed as follows. To identify β, we define f as the size of the
contiguous region where the firing rate is above 20% of the peak firing rate of the
cell [9]. From [10], we have

d × 0.55 =
√

f. (6)
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Assuming that the subfields of real grid cells have a circular shape and defining x

as the subfield radius, we get

x =

√
f

π
=

d × 0.55√
π

. (7)

Using the definition of a subfield and the definition of f , we get

e−(x/σ)2 = 0.2, (8)

or

x =
√− ln 0.2 σ. (9)

Thus,

σ =
d × 0.55√−π ln 0.2

, (10)

and

β =
0.55√−π ln 0.2

� 0.25. (11)

2.6. Computation of the chance level of the position

reconstruction error

The chance level of the position reconstruction error can be computed as the mean
distance E between two uniform random variables in a normalized square:

E =
M−1∑

i,j,k,l=0

√
(i − j)2 + (k − l)2

M5
, (12)

where M is the number of bins on a side. For M = 30, corresponding to the number
of bins in this study, we have E � 0.52. This value provides the theoretical chance
level for the position reconstruction error that we get with the Bayesian method
applied on grid and place cells.

2.7. Statistics

To determine whether the correlation coefficients of the peak subfield activity in
short sessions of three minutes are different from zero in physiological recordings, we
use a signed rank test, which assumes a symmetrical distribution. This assumption is
assessed by a Kolmogorov-Smirnov test on the data, indicating no critical difference
in the two-tailed distributions. In this study, statistical significance is set at a level
of p < 0.05.

3. Results

3.1. Model validation

To determine the accuracy of our model to reproduce grid cell mean firing rates,
we first computed the least square residuals of the mean activity maps of simulated
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grid cells fitted to the mean activity maps of real grid cells (data courtesy of the
Center for Biology of Memory, NTNU, Norway [9]), optimizing grid phase, spac-
ing and orientation parameters. Small shifts and rotations of the grids using the
shift-rotation parameter of δ = 0.04 (which corresponds to the value observed in
physiological data, see Methods), minimized the mean squared residual difference
between both maps (mean squared residuals of 0.037 ± 0.008, Fig. 2). In addition,
the mean activity maps of the simulated grid cells were all significantly correlated
to the mean activity maps of the real grid cells (p < 0.05, t-test with 30 × 30−2

degrees of freedom).
To determine whether it was reasonable to model each subfield with similar

intensity, we computed the correlation across sessions of the grid subfield peak firing
rates of eight grid cells recorded in layer II of the dorsolateral band of the MEC. We
used recording sessions of 3 min each in order to determine whether small differences
in firing rates could be found repetitively in recording sessions whose size corresponds
to the size of our testing sets. The distribution of the correlation coefficients was
not significantly different from zero (r = 0.15 ± 0.51, Wilcoxon signed rank test,
p = 0.07, Fig. 3), indicating that it is not necessary to consider grid cells with
different subfield peak firing rates.

3.2. Key properties of the grids that allow for an accurate

position reconstruction

To assess the position information provided by a population of medial entorhinal
grid cells, we generated the neural activity of grid cells with different grid spacings,
orientations and phases [Figs. 1, 4(a) and 4(c)]. We computed the mean Euclidean

(a) (b)

Fig. 3. Correlation of the grid subfield maximum activities across recording sessions. (a) Repre-
sentative mean activity maps of three real grid cells of the dorsolateral band of the MEC (layer II),
as a rat explores a 1×1 square meter arena (rows 1 to 3). Cell names refer to tetrode (t) and cell
(c) numbers. Correlation coefficients are indicated at the end of each row. (b) Correlation coeffi-
cient distribution. Each star represents the correlation coefficient of an individual cell between two
recording sessions. The box plot indicates the median (dark line) and the inter-quartile range of
the correlation coefficients (gray rectangle). Whiskers indicate the extent of the rest of the data.
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(a)

(b)

(c) (d)

Fig. 4. Mean activity maps and position reconstruction error of simulated grid and place cells.
(a) First row: mean activity maps of ten simulated grid cells with different grid phases. Second
row: mean activity maps of ten simulated grid cells with different grid phases and spacings. Third
row: mean activity maps of ten simulated grid cells with different grid phases and orientations.
Fourth row: mean activity maps of ten simulated grid cells with different grid phases, spacings
and orientations. (b) Mean activity maps of ten simulated place cells, sorted by place field size.
(c) Comparison of the position reconstruction error of four different subsets of simulated grid
cells: grid cells with different grid phases, with different grid phases and spacings, with different
grid phases and orientations and with different grid phases, spacings and orientations. Error bars
indicate ± s.d. (d) Comparison of the position reconstruction error of a set of simulated grid cells
with different grid phases, spacings and orientations with a set of simulated place cells, as a function
of the number of cells.
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distance between the simulated and the reconstructed position of the virtual rat (the
so-called position reconstruction error, see Methods). For one grid cell, the position
reconstruction error was of 0.509 m ± 0.017 m [mean ± s.d., Fig. 4(c)], which is
near the theoretical chance level of 0.52 m (Methods). The position reconstruction
error rapidly decreased with an increase in the number of cells, reaching a plateau
of 0.06 m ± 0.03 m for 25 cells and more. According to the topographical organiza-
tion of grid cells in the MEC, we constructed three additional subsets of neurons.
The first subset was composed of neighboring cells, sharing the same grid spacing
and orientation, but with different grid phases. The second subset was composed
of non-neighboring cells at the same dorsoventral location, sharing the same grid
spacing, but with different grid phases and orientations, and the third subset was
composed of cells along the dorsoventral axis of the MEC sharing the same grid ori-
entation, but with different grid phases and spacings. We observed that the subset
of neighboring grid cells did not provide high position information, i.e. the position
reconstruction error was of 0.468 m ± 0.017 m for 15 cells, near the theoretical
chance level [Fig. 4(c), Methods]. This high error is explained by the impossibility
of disambiguating between different repetitive grid patterns among cells in a pop-
ulation where only grid translations occur. The superposition of these repetitive
patterns with identical periodicity leads to a population that shares the same ambi-
guity problem as an individual cell. With varying spacings and/or orientations in
the subsets of grid cells, the position reconstruction errors were drastically reduced
[Fig. 4(c), provided by populations of 15 cells]: position reconstruction errors of
0.107 m ± 0.050 m with varying phases and spacings, of 0.092 m ± 0.039 m with
varying phases and orientations (in this case, grid spacing was fixed at 56 cm, that
is exactly between 39 cm and 73 cm) and of 0.081 m ± 0.036 m with varying phases,
spacings and orientations. The minimum position reconstruction error was achieved
in the population of grid cells where different grid spacings, orientations, and phases
were combined.

3.3. Proportion between grid spacing and subfield size

To determine whether the proportion between grid spacing and subfield size observed
in physiological data was optimal in terms of position reconstruction error, we con-
structed grid cell populations with different proportionality factors (Methods and
Fig. 5). We observed no critical difference between the minimal position reconstruc-
tion error (0.053 m ± 0.027 m, using populations of 25 cells and corresponding to a
value of beta of 0.4) and the position reconstruction error using the proportionality
factor of 0.25 found in physiological recordings (Fig. 5, position reconstruction error
of 0.06 m ± 0.03 m).

3.4. Triangular structure of the grids

To determine the role of the regular triangular structure of grid cells, and, in
particular, to determine whether triangular patterns lead to a minimal position
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(a) (b)

Fig. 5. Position reconstruction error as a function of the grid subfield size. (a) Mean activity maps
of simulated grid cells with different values of β, describing the proportional relationship between
grid spacing and the square root of the grid subfield size (Methods). (b) Position reconstruction
error of a population of 15 simulated grid cells as a function of the parameter β. The gray region
indicates ± s.d.

(a) (b) (c) (d)

Fig. 6. Comparison of the position reconstruction error of grid cells with different regular tessel-
lating patterns. (a) Mean activity maps of four simulated (triangular) grid cells. (b) Mean activity
maps of four simulated hexagonal grid cells. (c) Mean activity maps of four simulated square grid
cells. (d) Position reconstruction error of simulated triangular, hexagonal and square grid cells, as
a function of the number of cells. Error bars indicate ± s.d.

reconstruction error, we compared regular triangular tessellations with the other
two regular tessellations of two-dimensional space, i.e. square and hexagonal reg-
ular tessellations. We observed that the position reconstruction error of grid cells
with square and hexagonal grids was higher than the position reconstruction error of
grid cells with triangular grids (Fig. 6). This shows that the triangular grid structure
provides an optimal encoding of location in small populations of grid cells, which
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is theoretically explained by the observation that a regular triangular tessellation
represents the densest of all possible circle packings [19].

3.5. Comparison between grid and place cells

In order to compare the position information provided by entorhinal grid cells with
that generated by hippocampal place cells, we created populations of place cells
based on a well established model [17], with equivalent but unique subfields (Meth-
ods). We observed that the position reconstruction error of sets of four to 40 grid
cells was critically smaller than that found in equally-sized sets of place cells with
similar subfields [Fig. 4(d)]. In larger populations, no critical difference was observed
between grid and place cells. It is interesting to note that the position reconstruction
error of individual cells was smaller in place cells (0.489 m ± 0.017 m) than in grid
cells (0.509 m ± 0.017 m). This illustrates the ambiguity of the representation of
location provided by individual grid cells.

4. Discussion

Using a physiologically constrained model that accurately reproduces the activity
patterns of entorhinal grid cells, we have quantified to what extent populations of
entorhinal grid cells can predict the position of an animal and analyzed what the
key properties of grid cells are that allow for an accurate position reconstruction. In
addition, we have compared the positional information provided by populations of
grid and place cells.

The comparison of different subsets of grid cells with distinct grid parameter
distributions allows us to determine whether a combination of cells from the whole
MEC is necessary for the read-out of the location of the animal by place cells. We
observed that a combination of grid cells at the same dorsoventral region (with
different orientations) is sufficient to allow for an accurate position reconstruction,
suggesting that the combination of cells of the whole MEC is not required. The con-
nections between the MEC and the hippocampus have been shown to be topograph-
ically organized from the dorsolateral to ventromedial axis in MEC to the dorsal
to ventral (or septotemporal) axis of the hippocampus [9, 20, 21]. Our results thus
suggest that combinations of different orientations found at the same dorsoventral
region in the MEC are primarily used to extract location information and facilitate
the formation of place cells.

To determine whether grid cells could represent the position of the animal within
much bigger environments, it is interesting to consider the topographical organiza-
tion of grid cells along the dorsoventral axis of the MEC. In fact, a simple pre-
defined mechanism to form place cells from grid cells has been proposed [22] and
implemented [13], where grid cells with peak firing rates at a given location are
connected to the place cells whose place fields are centered at that location. This
association mechanism explains why place fields increase in size when moving along
the dorsoventral axis of the hippocampus [23]. Small place fields (and consequently
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dense grids) might be used to represent the animal’s position in small environments,
whereas larger place fields might be used in larger environments. Unfortunately, the
exact range of different grid spacings in the MEC is still not yet clearly defined,
since grid cells have been so far only recorded in the most dorsal region of the MEC
[10–12]. However, a recent finding could be used to identify it easily. Indeed, simple
experiments report a correlation between grid spacings and subthreshold oscillations
of stellate cells of the MEC [24]. Thus, it may be possible to estimate this range
in vitro and therefore estimate to what extent grid cells might represent position
within much larger environments.

Our model provides a straightforward mathematization of grid cells and allows
for a high level modeling of their firing activity. Importantly, one of its convenient
aspects is based on the assumption that no consistent pattern is present in the
different peak firing rates at different grid nodes, which was assessed in this study
using neurophysiological data (Results and Fig. 3). The question remains however
open, whether specific experimental conditions could influence the peak firing rates
of certain subfields across sessions. To test this hypothesis, additional investigations
would be needed.

By showing that populations of MEC grid cells can better predict the position of
an animal than equally-sized populations of hippocampal place cells in addition to
the conjunctive representations of the heading direction and the running speed of the
rat [11], our results suggest that the MEC implements highly compact distributed
representations of spatial information. This is further validated by the optimality in
terms of position reconstruction of the quadratic proportionality between subfield
size and grid spacing observed in physiological data [10], and by the observation that
the regular triangular patterns of grid cells generate the most compact representation
of position, when compared with the other regular tessellating patterns of two-
dimensional space. Such a compact coding might be justified by economy in wiring
and the number of cells, and further research is necessary to determine how this
spatial information might be subsequently integrated by other structures in the
brain. In particular, although the position representation in populations of grid cells
is compact and accurate, it is certainly not represented in a way that facilitates
associations with other sources of information. It has been shown that the spatial
information of the MEC is fundamentally dissociated from non-spatial information
in the lateral entorhinal cortex [25], which indicates that these two input pathways
can only be associated downstream in the hippocampus. This suggests that the
compact spatial representations of the MEC are subsequently integrated by the
place cells of the hippocampus to provide an associative substrate that allows for
specific information to be correlated with single locations and individual cells [18].
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