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Abstract—We demonstrate robust classification of correlated
patterns of mean firing rates, using a VLSI network of spiking
neurons and spike-driven plastic synapses. The synapses have
bistable weights over long time-scales and the transitions from
one stable state to the other are driven by the pre and post-
synaptic spiking activity. Learning is supervised by a teacher
signal which provides an extra current to the output neurons
during the training phase. This current steers the activity of the
neurons toward the desired value, and the synaptic weights are
modified only if the current generated by the plastic synapses
does not match the one provided by the teacher signal. If
the neuron’ s response matches the desired output, the synaptic
updates are blocked. Such a feature allows the neurons to classify
spatial patterns of mean firing rates, even when they have
significant correlations. If synaptic updates are stochastic, as in
the case of random Poisson input spike trains, the classification
performance can be further improved by combining the outcome
of multiple neurons together.

I . INTRODUCTION

Memory is a fundamental component of all learning mech-

anisms which lead to the class ification of different s timuli.

It is widely believed that memory is s tored in the synaptic

weights of neural networks . However in real phys ical sys tems ,

either biological or electronic, synapses cannot s tore the values

of their weights on long time scales with arbitrary precis ion

and reliably. In real phys ical neural sys tems , synaptic weights

are res tricted to vary in a limited range and long term

modifications cannot be arbitrarily small ( i . e. they have limited

resolution) . Such systems cannot preserve memories for long

time [ 1 ] , [ 2] , as their weights are continuous ly modified

by ongoing activity and by the storage of new memories .

Specifically, memory lifetimes are inversely proportional to

the fraction of the synapses that are modified, and do not

depend much on the ratio between the range in which the

synaptic weights can vary and the minimal long term synaptic

modifications [ 2] . Such a fraction can be strongly reduced

if the synaptic modifications are consolidated only with a

small probability, at the price of s lowing down the learning

process [ 1 ] . In the case of supervised learning the number

of modified synapses can be further reduced. For example

memory lifetimes can be greatly extended if the synapses are

modified only when necessary, i . e. only when the response of

the output neurons differs from the des ired one. This is the

same principle used in class ical perceptron learning, and not

only it extends memory lifetimes , but it also allows to s tore

memories whose representations are highly correlated.

It has been shown that networks of spiking neurons that

use this learning strategy can class ify complex patterns of

spike trains ranging from stimuli generated by auditory/visual

sensors to images of handwritten digits from the MNIST

database [ 3 ] . Other examples of spike-driven synaptic models

that focus on spike-timing dependent plas ticity (such as the

ones proposed in [ 1 0] , [ 1 1 ] ) , do not cons ider the problem of

memory preservation in case of realis tic bounded synapses .

Here we show how it is poss ible to class ify both random and

highly correlated patterns of mean firing rates us ing a VLSI

implementation of the plas ticity mechanism described in [ 3 ]

despite the inhomogeneities present in the chip.

II . S PIKE- DRIVEN PLAS TIC ITY IN VLS I

The VLSI device used in this work comprises a network of

1 6 neurons , and 2048 dynamic synapses , implemented us ing

full custom hybrid analog/digital circuits .

The full chip, fabricated us ing a standard 0 . 35µm CMOS

technology, occupies an area of 6 . 1 mm2 . For each neuron

there are 4 non-plas tic excitatory synaptic circuits , that exhibit

biologically plaus ible temporal dynamics [ 7] , 4 inhibitory

ones , and 1 20 excitatory ones with the additional circuits that

implement the spike-driven learning algorithm (see black, grey

and white blocks respectively in Fig. 3 (a)) .

Input and output spikes are transmitted us ing an asyn-

chronous digital bus . Each spike is represented as an Address-

Event, where the address encodes either the source neuron

(while transmitting spikes ) or the target synapse (while re-

ceiving) . Networks of arbitrary topologies can be configured

by using an Address -Event Representation infras tructure [ 8 ]

and routing output spikes back into input synapses of the same

chip, to additional ins tances of the same chip, or to other AER

devices . Alternative VLSI implementations of the same spike-

based learning algorithm have been recently proposed [ 9] .

They have additional flexibility for configuring the synaptic

matrix ins ide the chip but lack the temporal dynamics aspect

of synaptic transmiss ion.

The spike-driven learning mechanism implemented on our

chip acts on the weight of each plas tic synapse. The synaptic

weight, s tored as a voltage across a capacitor on the chip, is

updated each time a the synapse receives an input spike. Upon
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Fig. 1 . S top- learning mechanism control s ignals (measured data) . The top
trace (V[Ca] ) represents the post- synaptic neuron’ s integrated spiking activity.
The post trace represents the neuron’ s membrane potential. The lower two
traces VUP and VDN are the eligibility traces : they switch to their active s tate
(dotted line) if the post- synaptic neuron fires at intermediate rates and are
inactive if it fires at too high or too low rates .

the arrival of a pre-synaptic spike, the weight can be increased

with an upward jump, if the post- synaptic depolarization is

above some threshold, or decreased with a downward jump

otherwise. Over long time scales a bis tability mechanism

drives the synaptic weight either to its maximum value, if the

weight is above a threshold, or to its minimum, otherwise.

Therefore the synapse makes a trans ition to a s table s tate

only if enough jumps accumulate during the stimulation.

Furthermore, if input spike trains have Poisson dis tributions ,

the synaptic trans itions become stochastic, and their trans ition

probability can be directly controlled by modulating the input

mean frequencies . Potentiation tends to occurs when both pre

and post- synaptic neurons are firing at elevated rates , whereas

depress ion tends to occur when the pre-synaptic neuron has

high activity and the post- synaptic neuron has a low one (e. g.

typical spontaneous activity levels ) .

All synaptic modifications are blocked on the entire den-

dritic tree if the activity of the post- synaptic neuron is either

too high or too low. This s top- learning mechanism prevents the

synapses from being updated when the total synaptic current

generated by the plas tic synapses matches the input generated

by the supervisor and it implements the perceptron principle.

Indeed the post- synaptic activity is maximal when both the

plas tic input and the supervisor are highly active and it is

minimal when they are both inactive. This is an indication that

the post- synaptic neuron would perform correctly also in the

absence of the supervisor input, and hence there is no need

to modify the synapses . To evaluate the mean post-synaptic

activity and decide when to stop learning a current-domain

low-pass filter integrates the neuron’ s output spikes . The s ignal

V[Ca] of Fig. 1 is a function of this integral. When V[Ca] assumes

intermediate values the two eligibility traces VUP and VDN are

activated. If a pre-synaptic spike stimulates a synapse while

one of these two traces is active, the synaptic weight undergoes

a corresponding up or down jump. The circuits that determine

whether to activate the eligibility traces or not are based on a

series of current-mode winner- take-all circuits , that compare

the neuron’ s mean output frequency with fixed thresholds [ 5 ] .
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Fig. 2. Time evolution of synaptic weights as training progresses . The gray
bars represent the neuron’ s output frequency his togram in response to different
patterns before training. Black bars represent the neuron’ s output frequency
his togram during training. The top row shows the evolution when a high
teacher s ignal is used for training, while the bottom row shows the case for a
low frequency teacher s ignal. Synaptic weights s top changing when the output
frequency is too high or too low.

I II . CLAS S IFICATION OF RANDOM B INARY PATTERNS

We stimulated 60 plas tic synapses with binary input pat-

terns , represented as vectors of Poisson dis tributed spike

trains with only two (high or low) poss ible values of mean

frequencies (30 or 2Hz) , and a 0. 5 probability of having a

high or low value.

During training the neuron receives an additional Pois son

spike train (teacher s ignal) to one of its non-plas tic excitatory

synapses . Depending on the des ired output frequency (high

or low) the teacher s ignal has a mean frequency of 250Hz or

20Hz. We trained a s ingle neuron to class ify random input

patterns us ing either a teacher high s ignal, or a teacher low

one. We tes ted the state of the synapses after a few training

sess ions , by presenting the input pattern without the teacher

s ignal, and measuring the neuron’ s mean output frequency.

In Fig. 2, we show the evolution of the synaptic weights as

training progresses . The top row shows the neuron’ s output

frequency his togram for a high teacher s ignal while the bottom

row shows the his togram for a low teacher s ignal. The light

gray bars show the his togram of the neuron’ s response when

tes ted with different random patterns before training. The

dark bars represent the frequency his togram measured during

tes ting, as the training progresses . When trained with a high

teacher s ignal synaptic plas ticity pushes the output frequency

to higher values (top row) . However, the output frequency

does not increase in an unbounded manner as the s top- learning

mechanism takes over. In the bottom row, the same patterns

produce low output frequencies when the neuron is trained

with the low teacher s ignal.

To quantify the chip’ s class ification ability, we generated

several random input patterns of mean firing rates and ran-

domly ass igned them to a C+ class (associated to a T+ teacher

spike train of 250Hz mean rate) or to a C− class (associated

to a T− teacher s ignal of 20Hz) . Fig. 3 shows a set of two

patterns where black circles represent a high input frequency

(30Hz) , and white circles represent a low input frequency

(2Hz) .
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Fig. 3 . (a) S ilicon neuron representation with two examples of binary
input patterns (to the left and to the right) , labeled as C+ and C− class ,
with corresponding T+ and T− teacher s ignals . (b) Area Under ROC curve
(AUC) for class ification experiments of multiple input patterns with one
s ignle neuron (solid line) , and class ification performance of a pool of 20
neurons obtained us ing a majority rule decis ion (dashed line) . (c) Individual
class ifier results , and majority rule decis ion outcome for class ification of
1 0 different patterns . Dark and light gray bars represent the vote count of
correct (pos itive) and incorrect (negative) class ification outcomes . Black bars ,
represent the sum of vote counts . Negative black bars (not present) would
represent misclass ification error, while black bars within ±2 would represent
“unclass ified” decis ions .

Training sess ions with C+ and C− patterns were done in

random order for many iterations with new Poisson dis tribu-

tions created each time. At the end of training, the neuron

was tes ted to see if it correctly memorized the patterns . If

the training phase was successful the neuron dis tinguished

between patterns belonging to the C+ or C− classes by firing

with a high or low frequency respectively. To decide for class

C+ or class C− in the tes ting phase, it is sufficient to see if the

neuron’ s output firing rate is above or below a set threshold.

In order to determine the optimal class ification threshold we

used a discrimination analys is based on the Receiver Operating

Characteris tics (ROC [6] ) . Figure 3 (b) shows performance of a

s ingle neurons class ifier (solid line) and for a pool of neurons

taken together (dashed line) as a function of the number

of patterns being memorized. The data points on the solid

line represent the Area Under the ROC Curve (AUC), which

is cons idered a standard performance metric for class ifiers

with graded outputs . A magnitude of 1 denotes 1 00% correct

class ification where as 0. 5 denotes class ification performance

down to chance level. The data points on the dashed line

represent the results obtained by combining the outcome of

multiple output neurons us ing a binary decis ion mechanism.

The right hand axis in Fig. 3 (b) denotes the percentage correct

class ification performed by the pool of neurons .

The class ification performance greatly improves for the mul-

tiple output neurons condition, because the synaptic updates

are s tochastic and independent on different neurons . As a

consequence every output neuron can be regarded as a weak

class ifier and the errors made by each of them are independent.

The binary decis ion mechanism that combines the result of the

different output neurons was implemented us ing a majority

rule decis ion process : each neuron in the pool individually

class ifies the learned pattern to be in C+ or C− and votes

for the class chosen. The score is pos itive (+1 ) if the vote

is correct, and negative (- 1 ) otherwise. The total outcome is

computed by counting all the scores and using a majority rule.

Figure 3 (c) shows the outcome of a pool of 20 neurons for 1 0

different input patterns . The dark and light gray bars represent

the correct and incorrect votes during class ification. The black

bars represent the net sum. Using this method we can also

define an “unclass ified” outcome. For example, a pattern can

be defined to be unclass ified (rather than misclass ified) if the

difference between the correct and incorrect votes does not

exceed 1 0% of total members in the pool.

To s implify the tes ting procedure in the experiment of

Fig. 3 (c) , rather than us ing a pool of 20 different s ilicon

neurons we used a s ingle neuron and repeated the training and

tes ting procedure on the same input patterns multiple times .

For each trial the specific realization of the Poisson trains of

spikes generating the teacher s ignal was different, as if we

were cons idering a different output neuron.

IV. CLAS S IFICATION OF CORRELATED INPUT PATTERNS

To generate correlated patterns we used a random prototype

as a s tarting point and generated additional patterns by chang-

ing only a randomly selected subset of channels . In Fig. 4 four

patterns (labeled 1 -4) are generated starting from the prototype

labeled ’ 0’ . Patterns in Fig. 4(a) have 30% correlation, and

indeed show a small degree of s imilarity to the prototype.

Patterns in Fig. 4(b) , with 90% correlation, have most of

their input channels in the same state as the prototype. In

the experiments that follow we systematically increased the

percentage of correlation, and repeated the experiment for

increas ing numbers of input patterns , ranging from two to

eight.

Figure 5 shows the AUC obtained from ROC analys is for

a series of experiments carried out us ing multiple sets of

correlated patterns . The curves show a rapid drop in AUC,

indicating low class ification performance, when the correlation

between the patterns increases above 90% , due to the bis table

nature of the synaptic weights . S imilar to the result described

in Fig. 3 (b) there is also a cons is tent drop in performance with

increas ing number of patterns to be class ified.

To evaluate the effect of the stop- learning mechanism, we

compared the performance of the system with the correspond-

ing circuits enabled and disabled. We carried out a class i-

fication experiment s tarting with two completely orthogonal
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Fig. 4. Four correlated patterns (labeled 1 -4) are created from the same
randomly generated prototype (labeled 0) . (a) Patterns with 30% correlation
with the prototype. (b) Patterns with 90% correlation.
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Fig. 5 . Area under ROC Curve (AUC) as a function of percentage of
correlation, for different sets of patterns .

sets of four patterns . The two patterns ass igned to C+ class

cons is ted of random binary vectors for synapses 1 -30 and

all zeros for 3 1 -60. Other two patterns belonging to the C−

class were generated by ass igning random binary vectors to

synapses 3 1 -60, and setting the synapses 1 -30 to zero.

Additional patterns with increas ing overlap were generated

following an analogous procedure: the random binary vectors

were ass igned to overlapping subsets of synapses (e. g. 1 -3 3

and 27-60 for 1 0% overlap) The inset of Fig. 6 shows an

example of four patterns with 20% overlap (see grey dashed

box) . Due to the random nature of the binary vectors , the

number of correlated synapses is usually less than the overlap

percentage. When the overlap is set to 1 00% this experiment is

equivalent to that of random uncorrelated patterns described in

Sec. III. Conditions with little or no overlap between patterns

were class ified properly (high AUC values ) even with the

stop- learning mechanism disabled (see the squares in Fig. 6) .

However, the effect of the stop- learning mechanism becomes

evident for high values of overlap (see the circles in Fig. 6) .

V. CONCLUS IONS

We presented robust class ification results of correlated

patterns of mean firing rates , us ing a VLSI implementation

of a recently proposed spike-driven stop- learning plas ticity

mechanism. Our results demonstrate the correct functionality

of the spike-based learning circuits and confirm the theoretical

predictions about the scaling properties of the network [ 3 ] .

Despite the inhomogeneities present in the VLSI device the
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Fig. 6. Class ification performance with (circles ) and without (squares ) the
s top- learning mechanism enabled. Examples of C+ and C− patterns with 20%
overlap are shown in the figure inset (the overlapping region is within the
dashed box) .

device tes ted could perform robust and real- time class ification

of spike trains . It is therefore an ideal computational block for

learning tasks in adaptive neuromorphic sensory-motor sys -

tems and brain-machine interfaces . We are currently applying

the chip presented in this paper to class ification tasks on real-

world problems (such as auditory s ignal class ification) us ing

real- time spike data obtained from AER sensory devices .
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