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Abstract. In order to understand the general principles along which
sensory processing is organized, several recent studies optimized partic-
ular coding objectives on natural inputs for different modalities. The
homogeneity of neocortex indicates that a sensitive objective should be
able to explain response properties of different sensory modalities. The
temporal stability objective was successfully applied to somatosensory
and visual processing. We investigate if this objective can also be ap-
plied to auditory processing and serves as a general optimization objec-
tive for sensory processing. In case of audition, this translates to a set
of non-linear complex filters optimized for temporal stability on natural
sounds. We show that following this approach we can develop filters that
are localized in frequency and time and extract the frequency content of
the sound wave. A subset of these filters respond invariant to the phase
of the sound. A comparison of the tuning of these filters to the tuning
of cat auditory nerves shows a close match. This suggests that temporal
stability can be seen as a general objective describing somatosensory,
visual and auditory processing.

1 Introduction

The human neocortex is to a great extent homogeneous throughout all its ar-
eas [1, 2]. This suggests that it should be possible to describe its structure and
dynamics with general concepts and models. This line of thinking appears most
prominent in experimental and theoretical work that proposes a “canonical mi-
crocircuit” as a basic computational unit [3]. Such a general view does imply
that any relevant computational neuronal model should explain response prop-
erties of neurons of different areas of the neocortex. Thus, one would expect that
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also in sensory processing, the same model can be applied to replicate response
properties of different modalities.

It has long been assumed, that sensory systems adapt to the statistical prop-
erties of their input leading to the general approach of explaining receptive field
properties of sensory systems by optimizing a particular coding objective for nat-
ural stimuli [4]. In a series of theoretical studies, several general coding principles
have been exploited for different sensory modalities. In visual processing, learn-
ing sparse codes from natural images leads to simple-cell like receptive fields as
found in primary visual cortex [5]. An extension of this approach to a multi-layer
network enabled to learn contour coding in natural images [6]. Similarly, optimiz-
ing for temporal stability can replicate properties of V1 simple cells [7], but also
invariant representations similar to V1 complex cells [8, 9, 10, 11, 12], color se-
lective cells [13] and viewpoint invariant object representations [14, 15]. Recently
it has been shown that the optimization of a multi layered network for temporal
stability combined with local memory can account for a complete visual hierar-
chy, including place fields, by processing a continuous natural input stream gen-
erated by a mobile robot [16]. In a different approach, a hierarchical model was
optimized based on a MAX-like operation for object recognition [17]. Another ob-
jective function, predictability, was proposed to yield self-emergent symbols in an
optimization process [18]. In auditory processing, it was shown that optimizing
a set of filters for efficiency can explain the formation of adequate auditory fil-
ters [19, 20, 21]. Further, optimizing a spectrographic representation of speech for
sparseness leads to similar spectro-temporal receptive fields (STRF) as observed
in primary auditory cortex [22]. Temporal stability optimization is not restricted
to a visual input stream but was also successfully applied to preprocess data for
somatosensory discrimination of texture [23]. This diversity of approaches to ex-
plain sensory processing contradicts several theoretical and anatomical studies
suggesting that the same computational strategy is likely to be involved in pro-
cessing information from different sensory modalities [1, 2, 24, 25, 26, 27].

In this study we investigate whether temporal stability may be an appropri-
ate objective for the auditory domain and serve as a general objective to repli-
cate neural responses in somatosensory, visual and auditory sensory processing.
Auditory processing begins when the cochlea transforms sound energy into elec-
trical signals and passes them to the auditory nerves. Ignoring the nonlinearities
and amplification features of the cochlea and the primary auditory system, the
response properties of auditory nerves can be described by a set of filters, with dif-
ferent frequency tunings, forming a spectro-temporal representation of the sound
[28]. It is not clear how this representation is tuned to the statistics of the sound
environment. In order to get a filter set adapted to the input statistics we op-
timize a set of complex filters to show a maximally stable response across time
for natural sounds. Following this approach we do not describe the details of how
cochlea and auditory nerve realize the spectro-temporal separation but reveal the
general principle around which sensory processing is organized. While different
types of filters emerge, we find that the tuning of the filters is in accordance with
experimental data from cat physiological data. This suggests that the response
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properties of auditory nerve fibers can be explained in terms of temporal stabil-
ity optimization. Thus the somatosensory, visual and auditory sensory processing
can be explained within the same framework of temporal stability.

2 Methods

2.1 Input

The natural sounds used to learn the stable representations consist of differ-
ent words in 6 distinct languages, spoken by three male and three female native
speakers. The sound samples are re-sampled to 22050 Hz from the language illus-
trations accompanying the handbook of the International Phonetic Association
(IPA) [29]. In addition to the raw sound wave we investigate band-passed sound
waves. We consider four different band-pass filters with characteristic frequency
bands of 1 Hz - 324 Hz, 324 Hz - 1050 Hz, 1050 Hz - 3402 Hz and 3402 Hz -
11025 Hz. According to the logarithmic organization of the cochlea we increased
the bandwidth of the different filters logarithmically.

2.2 Filters

We optimized a set of complex filters with an analysis window covering 5.8 ms
of the raw sound wave which corresponds to 128 data points. At each iteration
of the optimization the sound wave is shifted through this window by the time
interval τ . Thus, by changing τ we can change the overlap of subsequent analysis
windows.

The activity (Ai) of the filter i is given by the absolute value of the scalar
product between the input I and the complex filter function hi ∈ C128. Real
and imaginary values can change independently and thus each filter is defined
by 256 parameters.

Ai = abs(hi · I) (1)

The absolute value function implies that the filters are not linear. Mathematically
they are equivalent to the energy model proposed by Adelson and Bergen [30]
and applied in different studies [9, 16, 23].

2.3 Optimization

In the present study we optimized a goal function which contains two terms such
that the total objective Ψ is given by:

Ψ = (1 − γ)Ψstab + γΨdecor (2)

where γ is used to balance between the relative contribution of the two objectives.
The first part is the temporal stability objective Ψstab given by:

Ψstab = −
∑

i

〈Ȧ2
i 〉t

vart(Ai)
(3)

Ai is the activity of the filter and the sum is over all filters i. Ȧ denotes the
discrete temporal differentiation given by:
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Ȧi = Ai(t) − Ai(t − τ) (4)

where τ is the time interval by witch the analysis window is shifted each iteration.
The floating average at time t, 〈 . 〉t is calculated iteratively with a time
constant ζ = 500 ms and defined by:

〈Ai〉t = (1 − 1
ζ
)〈Ai〉t−1 +

1
ζ
Ai(t) (5)

The temporal derivative in equation 3 is divided by the variance in order to avoid
the trivial solution where all the parameters of the filter are zero. The variance
is computed using:

vart(Ai) = 〈A2
i 〉t − 〈Ai〉2t (6)

As the filters should have different receptive fields, collectively representing the
statistics of the input, each of them must encode different information. There-
fore, the second term, i.e the decorrelation objective Ψdecor (7), is introduced to
augment the statistical independence of the filters.

Ψdecor = −
∑

j �=i

(ρij(Ai, Aj))2 (7)

ρij(Ai, Aj) =
〈AiAj〉t − 〈Ai〉t〈Aj〉t√

vart(Ai)vart(Aj)
(correlation) (8)

The filter functions hi change following an on-line learning algorithm along the
gradient in order to maximize the total objective function Ψ .

2.4 Time and Frequency Analysis

To characterize each of the filters we extracted the center frequency (CF), the
spectral bandwidth (BW), the quality factor (Q), the temporal extent (TE) and
the relative shift φ as key characteristics. The CF of the filter corresponds to
the maximum of the power spectrum of the filter function. This is the frequency
for which the filter is most sensitive. The BW is the width of the frequency
response measured at 10 dB down from the peak at the CF. Q corresponds to
the sharpness of the filter and is defined by the CF divided by the BW. The
subscript in Q10dB indicates the level at which the BW is measured. The TE of
a filter is defined as the width that is used to cover 90 % of the filter power. φ is
given by the relative phase shift of the real and the imaginary part of the filter
and is calculated with respect to the CF of the filter.

3 Results

We optimize 64 filters on the raw sound wave using an update interval τ between
0.1 - 2.8 ms in steps of ≈ 0.1 ms for different simulations. Each filter is defined
by its 256 parameters hi ∈ C

128. Most of the resulting filters are sinusoidal,
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Fig. 1. Auditory filters after temporal stability optimization using an update interval
τ of 0.7 ms. The plot shows a representative subset of the total population of 64 filters.
The filters are plotted in the time domain where the solid line corresponds to the real
part of the filter and the dashed line to the imaginary part. On top of each waveform
the key characteristics of the filter are indicated: center frequency (CF), relative shift
(φ), temporal extent (TE), spectral bandwidth (BW) and quality factor (Q).

amplitude modulated, and cover the whole window width (Figure 1). The filters
have a single peak frequency tuning such that their CF is well defined.

The investigation of the distribution of the CFs, shows that it matches the
Power Spectrum Density (PSD) of the sound (Figure 2). The higher the PSD in
a frequency interval, the higher the number of filters with a CF in this interval.

A part of the nonlinear sinusoidal filters (≈ 60%) exhibit a relative shift of
≈ π/2 between their real and imaginary components that conforms to a filter se-
lective for a particular frequency while being invariant to the phase of the sound
wave. Other filters have no relative shift and therefore do depend on the phase.

As pointed out above, the distribution of the CFs is correlated with the PSD
such that we only obtained filters within the lower part of the frequency spec-
trum. To enable the system to form filters with CFs in other frequency ranges
we band-passed the signal of the speech ensemble before optimizing. For each
band-passed signal we optimized 16 filters. The filter set that emerged covers a
frequency range of 120 - 5500 Hz. Frequencies higher than 5500 Hz are not cov-
ered as the main energy of the band-passed signal with the highest pass range,
lies between 3400 Hz and 5500 Hz. Preliminary experiments showed that higher
CFs can be obtained by applying higher band-pass (data not shown).

To get an impression of the distribution and coverage of the filter sets in
time and frequency, we considered the extent of the filters on the time-frequency
plane. (Figure 3 A). The filter set possesses both, temporally localized and non-
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Fig. 2. Distribution of the CFs (bars) and the PSD of the signal (line). The bars
indicate the relative density of filters for the corresponding frequency range. The PSD
is superimposed where the energy density is given in an arbitrary scale.

Fig. 3. Characteristics of the filter sets for the band-passed signals. A Tiling the time
frequency plane. The extent of each filter is represented by an ellipse. The height of the
ellipse corresponds to the frequency bandwidth and the width to the temporal extent of
the filter. The histogram at the bottom indicates the distribution of the temporal extent
for each filter set. B Q10dB of the optimized filters compared to the Q10dB measured
from cat auditory nerve fibers. For comparison the regression line for the optimized
filters and the physiological data are superimposed. Notice that the regression for the
physiological data only includes the data points with a frequency lower than 5500 Hz.
The physiological data is replotted from [28].

localized filters. Corresponding to the time frequency uncertainty relation, filters
with narrower temporal extent (TE) have a broader frequency extent (BW).
Further, one can observe that the TE decreases for higher frequencies.

In order to validate the emerged filters against physiological data we com-
pare the tuning of the filters to cat auditory nerve fibers [28]. The sharpness
(Q) of the optimized filters is consistent with the sharpness measured for cat
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auditory nerve fibers (Figure 3 B). Linear regression on the physiological data
in a range of 1− 5500 Hz i.e. the range covered by the filters that emerged from
temporal stability optimization, yields a stiffness of 0.744 [0.675, 0.831] and an
offset of −4.542 [−5.176, −3.908]. For the optimized filter set linear regression
yields a stiffness of 0.736 [0.703, 0.769] and an offset of −4.259 [−4.487, −4.031].
The numbers in brackets correspond to the 95% confidence interval. Thus, both
the stiffness and the offset of the two curves are very close. The deviation for the
stiffness is 1% and for the offset 6%. The confidence interval for the optimized
filters lie within the confidence intervals of the physiological data. This suggests
that some of the response properties of the auditory nerve fibers can be well
explained in terms of temporal stability optimization.

4 Discussion

In this study we investigated if temporal stability is a general objective under-
lying sensory processing and can be applied in the auditory domain. We have
shown that temporal stability optimization in the auditory domain leads to fil-
ters that extract the frequency content of speech. Due to a relative shift of π/2
between the real and imaginary parts of the complex filters, some filters have
an invariant response to the phase of the sound wave. Further we found that
the distribution of the CFs is related to the PSD such that frequency bands
with high energy have a high filter density. Our approach rendered filters which
show a quantitative match to the filter properties of the cat auditory nerve. This
suggests that the physiological properties of this part of the auditory pathway
can be explained in terms of temporal stability optimization.

The design of filters involves an inevitable trade-off between time resolution
and frequency resolution [31]. To get precise information about the frequency
content one has to integrate over a characteristic time length of the sound signal,
leading to a decrease in temporal precision. In other words, it is not possible to
design a filter that captures both the frequency and the timing of a sound with
arbitrary accuracy. However, in order to be able to process natural sounds it is
often important to have information about both frequency and timing. Which
spectro-temporal representation is optimal depends on a number of factors such
as the importance of the information available, the biological or computational
constraints and the statistics of the sound. A common mis-characterization of
the peripheral auditory system is that it performs a short time Fourier transform
(STFT) or a kind of wavelet decomposition. For the STFT, the bandwidth of
the signals is approximately constant whereas for a wavelet representation the
sharpness of the filters remains constant for all frequencies. Neither of the two
properties are observed experimentally [28]. Instead, similar to the filters found
in our approach, the sharpness of the auditory nerve fibers follows a sub-linear
power law (Figure 3 B). Therefore, an optimal set of filters for the analysis of
speech must exhibit both, Fourier and wavelet characteristics.
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This study is complementary to the work of Lewicki and Smith [19, 20, 21]
who optimized a set of real-valued linear filters, for sparseness on different sound
ensembles including speech. While all the filter responses resulting from Lewicki’s
approach must vary with the phase of the incoming signal due to linearity, we
have found that a part of the nonlinear complex filters are phase invariant. Sim-
ilarly, some of the auditory nerve fibers at the cochlea do code the phase of
the signal, which is important to determine sound location in the early auditory
pathway. At higher levels of processing, this phase information is lost, suggesting
that phase invariance constitutes a first step towards sound classification [32]. A
further difference to the work of Lewicki can be found in the distribution of the
CF of the filters. Optimizing for sparseness leads to a distribution of CFs covering
the whole frequency range up to the Nyquist frequency. Optimizing for tempo-
ral stability, however, results in a distribution which is correlated to the PSD
and therefore confined to reagions with high energy. The question that arises is
to what extent the features that carry the main energy also carry the relevant
information. For speech, the slowly varying features are the vowels whereas the
consonants vary much faster and have higher frequencies. Therefore, temporal
stability optimization tends to extract the information that is contained in the
vowels but mostly ignores the consonants whereas sparseness mainly extracts
features with higher frequencies. However, for word discrimination both vow-
els and consonants are important. We have shown that we can account for the
whole range of frequencies by band-passing the signal before optimizing for tem-
poral stability. Given the acoustic properties of the cochlea, such band-passing is
likely to happen already at a mechanical level at the basilar membrane [32]. The
subsequent levels of auditory information processing would therefore already be
supplied with an appropriately band-pass filtered signal.

In order to validate our results against experimental data, we compared the
learned filters with cat physiological data. Primary auditory cortex (A1) neurons
are characterized by Spectro-Temporal Receptive Fields (STRF) [33, 34, 35].
As our filters do not include a temporal component their activity is only depen-
dent on the spectral content of the sound and thus a direct comparison is not
possible. We could however compare the characteristics of the optimized filters
with the characteristics of the cat auditory nerve fibers. For this comparison it
is not clear to what extent human speech is an adequate auditory stimulus for
cats or whether animal vocalization would be more appropriate. Speech contains
a mixture of various auditory features which are present in different classes of
natural sounds [19]. Thus, given that any animal is exposed to a mixture of envi-
ronmental sounds and vocalization, speech constitutes a good compromise. We
have found, that the sharpness of the filters for the band-passed speech ensem-
ble matched the sharpness measured for cat auditory nerve fibers. Hence some
of the response properties of auditory nerve fibers can be explained in terms of
optimizing a set of complex filters for temporal stability. Therefore, temporal
stability can be considered a general objective underlying sensory processing.
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