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Abstract— Event-driven spike-based processing systems offer
new possibilities for real-time vision. Signals are encoded asyn-
chronously in time thus preserving the time information of
the occurrence of an event. We examine this form of coding
using experimental data from a multi-layered multi-chip system
which consists of an artificial retina, a convolution filterbank
and a winner-take-all network which detect the position of
a moving object. The spike outputs of the convolution stage
can be described by an inhomogeneous Poisson distribution of
Gaussian profile, although the underlying building blocks are
completely deterministic and exhibit only a small amount of
variation. We discuss a method for measuring the accuracy
of the asynchronous spiking representation in both time and
value, thereby quantifying the performance of the winner-take-
all network in determining the position of a ball rotating in front
of the system.

I. INTRODUCTION

Event-driven processing hardware architectures inspired by
biological computational principles have evolved to a state
in which large-scale multi-chip systems can be assembled,
e.g. [1], [2], [3]. These systems offer new possibilities for ap-
plications that require short response times and large process-
ing power, such as in vision processing. The key features of
these new systems are the use of spikes (or short digital pulses)
to encode signals and to trigger event-based computation. With
spikes, signals can be represented with the same principle
across all stages of a processing chain. To successfully build
spike-based systems that are complex enough to solve real-
world tasks, we need a thorough understanding of the encoding
of spike-based signals, since their properties differ largely from
that of conventional synchronous architectures.

In this work we analyze how signals are encoded in the
form of spikes at different levels of a large-scale processing
system. The CAVIAR (Convolution AER Vision Architecture
for Real-time processing) project is a multi-lab EU-funded
research project that explores spike-based computation in a
multi-chip vision architecture [1]. The system consists of
an artificial retina, a convolution filterbank, a winner-take-all
decision network and a learning module, that together detect
and classify the different trajectories of a moving object.

We show that the spike outputs of the convolution stage in
response to a moving object can be described by a wave of
activity that travels along the neurons of the winner-take-all
network. The wave can be described by an inhomogeneous
Poisson distribution with a Gaussian profile. The winner-
take-all (WTA) network transforms these inputs into a sparse

representation of the object position. This asynchronous en-
coding is subject to variation in both time and value, which
translates to jitter in the output spikes and errors in the
classified position. We discuss how we measure the accuracy
of this output representation in terms of the object location.
Understanding the statistics of the input and output spikes of
the WTA network allows us to quantify the performance of
the spike-based WTA operation in the context of a real-world
application.

We first introduce the CAVIAR system and the experiment in
Section II. We then introduce our analysis method of the spike
outputs of the convolution stage in Section III. From the output
spikes of the WTA network we quantify the object position in
Section IV before we disucss the results in Section V.

II. EXPERIMENTS

The modules in the CAVIAR system communicate using
an asynchronous spike-based communication protocol, the
address-event-representation (AER). In principle, the building
blocks are interchangeable and can be assembled into different
architectures. The CAVIAR system specifies a system architec-
ture that serves as a demonstrator.

Figure 1 describes the functionality of the system. Input
to the system is first processed by a contrast-sensitive spike-
based retina which codes the temporal contrast edges in ON
(positive contrast edges) and OFF spikes (negative temporal
contrast edges) [4] [5]. The spikes are transmitted to a set
of convolution chips [6], whose output indicates if the the
convolution operation exceeds a positive threshold (’positive
spikes’) or a negative threshold (’negative spikes’). The object
chip detects the current object position from these output
spikes using the WTA operation [7]. The position of the
detected object is expanded over time in the delay line chip,
and the resulting trajectories are learned by the learning chip.
The output of the learning chip is one of its 32 neurons that
span the presented input space.

In the experiment considered here, the stimulus is a
constant-speed rotating disc with a set of different-sized circles
on a white background. Each of the four convolution chips
contains a matched-filter circular kernel of a particular size.
The winner-take-all selects the strongest input signal and
suppresses the output of all other neurons. We do not consider
the subsequent learning stage in this work.
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Fig. 1. Overview of the spike-based CAVIAR demonstrator: Input to the transient retina in this case was 4 rotating black disks on a white background moving
with constant speed. The retina converts temporal contrast edges into spikes (left inlay): black dots represent ’OFF’ events (responses to negative temporal
contrast edges), white dots ’ON’ ones (responses to positive contrast edges). The spikes are transmitted to a group of convolution chips. Each spike-based
convolution chip detects the center of the disk that best matches the programmed convolution kernel (middle inlay). Spikes indicating positive outputs of the
convolution operation are shown as white dots, spikes indicating negative outputs as black dots. Four convolution chips are tiled to increase the resolution; in
other configurations they can be programmed to detect different objects. The output of the spatial filtering is cleaned by the ’object’ chip, which performs a
winner-take-all process to decide the best object position (right inlay). The white dot marks the spike output of the object chip; the black dot represents the
spikes of the inhibitory neurons involved in the computation. Object position and size (in case of the convolution kernels programmed for different ball sizes)
are then expanded over time in a delay line chip and the resulting trajectories are classified by the learning chip. Additional logic modules between the chips
can be used to monitor the spike trains in the system, to map the synaptic connections, and to inject artificial spike trains into the system.

III. OUTPUT OF CONVOLUTION STAGE

For this analysis we focus on the ON-spikes of the convo-
lution stage that indicate the presence of an object matching
the programmed kernel in both space and time with a certain
probability (the negative spikes are not taken into account
here). Depending on the parameters of the convolution, the
number of spikes and their relevance will change, resulting in
a different shape of the average spike waveform that forms the
input to the WTA network.
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Fig. 2. Spatial trajectory of the stimulus center. The stimulus is a disc that
rotates with constant velocity in front of the retina. The convolution stage
contains a matched-filter kernel; its output is a smoothed version of the center
of the object (a). The gray level gives the spike count for one revolution of the
stimulus. For the analysis, we consider only pixels that fall onto the trajectory
of the stimulus (b). We masked these pixels with a manually defined region
of interest.

We consider the neurons to be arranged along a one-
dimensional space. We mapped the two-dimensional convo-
lution output onto this one-dimensional space by considering
only neurons along the stimulus trajectory (Fig. 2). This is
possible since we know the trajectory in this simple problem.
The transformation discards activity from neurons outside the
trajectory of the stimulus center. These outliers receive less
input than neurons on the trajectory and do not evoke output

spikes from the WTA. Our analysis focuses on the spatio-
temporal estimation of the stimulus position, for which only
the neurons with a significant spike input are relevant.

To assess how well the input data to the WTA can be de-
scribed by a travelling Gaussian wave with Poisson statistics,
we examine the average input to each neuron of the one-
dimensional WTA. Since the neurons are aligned to a certain
stimulus position, the input to each neuron corresponds to a
movement step of the stimulus. We can describe the input in
response to this step by the Peri-Stimulus Time Histogram
(PSTH), a commonly used method to describe spike train
responses. In the PSTH, spike trains from different trials
are aligned to the stimulus onset. The histogram is obtained
by binning all spikes using a fixed bin time. The resulting
histogram is normalized to the number of trials, resulting in
the average input response of each neuron to the stimulus.
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Fig. 3. Raster plot of the input spike trains. Input channels along the trajectory
are sorted in the order of the stimulus movement. Each point marks one spike
(every spike train contains about 20-40 spikes). Data from one revolution of
the stimulus disc are shown.
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In our case the stimulus is rotation symmetric, so the input
to different neurons of the one-dimensional WTA can be seen
as different trials of the same experiment. We obtain the PSTH
by averaging over all neurons and over multiple revolutions
of the stimulus.

Figure 3 shows the spike trains before alignment, but sorted
by their mean spike time. From this representation the average
travelling time d from one neuron to the next can be calculated,
by averaging the difference in the mean time between each pair
of neighboring input channels. The resulting PSTH is shown
in Fig. 4, together with a Gaussian fit.
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Fig. 4. Peri-Stimulus Time Histogram (PSTH) obtained by averaging the
convolution spikes over about 2500 trials (60 neurons and multiple revolutions
of the stimulus). The red line shows a Gaussian fit.

From the fit, the parameters σ (standard deviation) and peak
spike rate rmax are extracted. To quantify the goodness of
the fit, we extracted the parameters separately for each input
channel and then averaged over the results of each spike train.
All parameters are listed in Table 1.

Parameter CAVIAR simulated Poisson
d 95ms ± 31% 95ms ± 9.5%
σ 46ms ± 11% 46ms ± 4.5%
rmax 373Hz ± 37% 372Hz ± 17.6%
CV 0.83 ± 23% 0.96 ± 16%

TABLE I
COMPARISON OF PARAMETER VALUES BETWEEN THE CAVIAR DATA SET

FOR A GAUSSIAN-SHAPE TRAVELLING WAVE STIMULUS WITH AN

ARTIFICIALLY CREATED DATA SET.

To determine the variation in the spike times, we have
transform the non-stationary spike trains of the convolution
output into stationary ones. We use the time-rescaling theorem,
which rescales the spike times according to an average rate
function that is obtained by smoothing the PSTH [8]. The
resulting spike train is homogeneous which allows us to test
for Poisson statistics. We calculate the coefficient of variation

(CV) as the standard deviation of the inter-spike intervals
(ISIs) by their mean (see Table 1). As a sufficient test condition
for Poisson statistics, the ISIs have to follow an exponential
distribution. Figure 5 shows the distribution of the inter-spike
intervals.
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Fig. 5. Inter-spike interval distribution after transforming the spike trains into
a homogeneous process. Data from one stimulus revolution. The continuous
line shows an exponential fit excluding the peak at the minimum inter-spike
interval that originates from subsampling in the system.

The distribution has a large peak at minimum inter-spike
intervals that is induced by subsampling. From the retina reso-
lution of 128x128 the input channels are sub-sampled to 64x64
for the convolution stage, and 32x32 for the winner-take-
all stage. Sub-sampling combines neighboring input channels.
Since these channels originate from spatially related stimulus
input, neighboring spike trains exhibit correlations that result
in minimum inter-spike intervals in the distribution.

The resulting distribution of inter-spike intervals can be
well approximated by an exponential function (see Fig. 5,
continuous line), which implies a Poisson distribution of the
output spike trains of the convolution chip.

IV. OUTPUT OF WINNER-TAKE-ALL

The WTA network integrates the output spikes of the
convolution stage. The winner, that is the neuron that reaches
threshold first, makes an output spike and suppresses the other
neurons through strong inhibition. The output spikes of the
WTA network indicate the object position, discretized in value,
that is, to the neurons that indicate the object position; and in
time, that is, to the time occurrence of the output spikes.

Figure 6 shows how the stimulus position is reconstructed
from this asynchronous representation. The ideal output of the
network is an update of the object position as soon as the
object is aligned to a new neuron, resulting in a staircase
function. Since the object in our experiment moves with
constant speed, the transition times from each neuron to the
next are constant.

The object position reconstructed from the output spikes of
the WTA network deviates from this ideal case in both time
and position. We call an error in the position ’classification
error’, if a neuron other than the one aligned to the object
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position makes an output spike. Spiking before or after the
ideal object position results in jitter. Both errors are induced
by the Poisson statistics of the input and the variation in its
parameters.

Jitter and classification error are not independent. For ex-
ample, an earlier spike can also be seen as the classification
of a different position. We combine both errors by defining an
area error e, which quantifies the area difference between the
reconstructed object location and the ideal case, normalized to
one neuron.
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Fig. 6. Reconstruction of object position from the winner-take-all output
spikes. The ideal output of the network is an update of the object position
as soon as the object is aligned to a new neuron (dashed staircase). In the
sparsest representation the network would elicit one spike at each vertical line
of the dashed staircase function. In the CAVIAR data (continuous staircase),
the WTA network elicits more spikes than one spike per position, as illustrated
by the output spike train of the network at the top. This leads to switching
in the predicted object position, for example between neurons 17 and 18. In
addition, the output sometimes indicates an incorrect position, for example at
neurons 18 and 19, or the spike times are jittered, for example at neurons 13
and 14. The area error e quantifies these errors by considering the area
between the predicted ball position (dashed staircase) and the actual prediction
from the data (continuous staircase), normalized to one neuron. The area error
from this data is e ≈ 0.64.

V. DISCUSSION

Our analysis of the output of the CAVIAR convolution stage
show that the output spike trains of the convolution stage can
be approximated by a Gaussian waveform of Poisson statistics
that travels along the neurons. The building blocks of the
CAVIAR system are completely deterministic and have only
a small amount of variation across the neurons. A spiking
system exhibits two types of variation. First, there is variation
in the spike rates, for example, in response to a fixed contrast
change seen by the retina pixels. Second, there are variations
in the spikes latencies, resulting in spike jitter. Mismatch in
the input circuits of for example, the sensor, will affect both
timing and the output spike rate, since it varies how fast the
neurons reach threshold.

We were astonished to find that these small variations add
up to Poisson statistics already at the output of the first post-
processing stage after the sensor. Further analyses are neces-

sary to determine if this phenomenon is due to the hardware
of the system or due to the nature of the problem, that is,
the law of large numbers leading to a Poisson distribution.
Interestingly, the Poisson distribution is also one of the most
commonly used distributions used to model biological spike
train statistics.

We then quantified the output of the winner-take-all imple-
mentation, a sparse representation in which each output spike
indicates a new stimulus position. Although the area measure
as the difference between estimated and measured position
does not capture all properties of the output spike trains, it
allows a quantification of the classified stimulus position and
therefore the performance of the network. We had developed
a theoretical model of the winner-take-all performance in
dependence of the Poisson parameters of the input published
in [9]. This shows that the output of winner-take-all in CAVIAR
system as we analyzed it here comes close to the performance
limit that is induced by the Poisson statistics of the input spike
trains.
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