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Abstract—Belief propagation (BeP) is a candidate for
the accelerated evaluation of statistical averages if com-
pared to Monte-Carlo approaches. For binary systems on
infinite grids or with periodic boundary conditions (regular
grids), we investigate the physical fixed points and their sta-
bility. Critical slowing down of the method is observed at
the 2nd-order phase transition with TC ≈ 2.89. Above TC,
convergence is guaranteed. Below the critical temperature
TC, BeP convergence depends dramatically on the choice
of initial conditions. This leads to convergence patterns
typical for fractal basin boundaries.

1. Introduction

Belief propagation (BeP) is a relatively new and power-
full method for inference and optimization problems. In-
ference problems arise in many fields of statistical physics,
error-correcting codes and machine learning. Interestingly,
some of the previously developed methods such as tur-
bocodes or the transfer matrix approach in physics are in
fact just variations of the same belief propagation tech-
nique. Inference problems deal typically with questions
such as: Given a set of variables with statistical depen-
dencies, what are their most probable states when only the
states of a possibly small group of variables is known from
data? As an example, think of the following system, taken
from [1]: Holidays in an Asian country (A) increase the
risk of tuberculosis (T), whereas smoking (S) can cause
lung cancer (L) or bronchitis (B). Either (E) tuberculosis
or lung cancer can be detected by an X-ray analysis (X),
which, however, can not distinguish between both illnesses.
Shortness of breath (Dyspnoea, D) can either be caused by
bronchitis (B) or either (E) lung cancer or tuberculosis (see
Fig 1).

Such systems are called Bayesian networks and can
be represented by graphs, where each variable corre-
sponds to a node and the dependency between variables
is denoted by interconnecting lines (”edges”). In our
example, the dependencies between nodes are directed.
Smoking increases the probability of lung cancer, but not
vice-versa. In the context of Fig. 1, two probabili-
ties are of main interest: The overall joint probability,
p(x) that any event, i.e. illness, diagnosis etc. occurs,
defined as p(x) = p(xA)p(xS )p(xT |xA)p(xL|xS )p(xB|xS )
·p(xE |xL, xT )p(xD|xB, xE)p(xX |xE). More generally, the
joint probability can be written in the form p(x) =
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Figure 1: The directed graph example (see text).
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Figure 2: a) MRF graph. Black circles denote observed
nodes, whereas white nodes are unknown. b) Message up-
date rule for the belief propagation algorithm.

∏N
i=1 p(xi|Par(xi)), where Par(xi) denotes the parents of

node i. In many cases, however, the probability of a certain
diagnosis, xD for example, is of greater relevance. This
question deals with the marginal probabilities, which are
calculated by summing over all possible states of a node’s
parents:

p(xN) =
∑

x1

∑

x2

. . .
∑

xN−1

p(x1, x2, . . . xN) (1)

From this definition, it is obvious that an exact mathemati-
cal computation is only practical for small graphs, since the
number of terms in the sum grows exponentially with the
number of nodes.

Pairwise Markov Random Fields (MRF) and Ising
models: Consider the computer graphics task to infer some
quantities of the underlying scene xi (Fig. 2 a) from pixel
image data yi. We further assume that there is a statistical
relation φ(xi, yi) between xi and yi for each pixel i. This
function is often called evidence for xi, as it influences the
probability for a scene site i to be of value xi, given that one



observes yi. Additionally, in order to deduce anything at all
from the image, there has to exist an underlying structure in
the scene, expressed by a compatibility function ψi j(xi, x j).
The compatibility function can be understood as a coupling
between the scene quantities xi (the word ”coupling” is
used here as it turns out that ψi j reduces to the physical
coupling constant J for Ising systems).

Given these quantities and functions, we can write the
overall joint-probability as

p({x}, {y}) =
1
Z

∏

i j

ψi j(xi, x j)
∏

i

φ(xi, yi) (2)

where Z is the normalization constant and the product runs
over all connected xi’s (for example, the nearest neigh-
bours on a regular grid). In contrast to the Bayesian net-
work discussed above, the MRF is undirected and pair-
wise, since the compatibility functions ψi j only depend on
pairs of nodes i and j. As with Bayesian networks, the
computation of exact marginal probabilities is only possi-
ble for very small systems. The instructive part of MRF
is how they relate to magnetic spin models. The energy
of such a system is given by its spin-part Hamiltonian,
E = −

∑
(i, j) Ji jsi · s j −

∑
i hisi, where the first sum is taken

over a site’s nearest neighbours and si is the spin of i-th site.
Here, Ji j/T is identified essentially with log(ψi j). Its phys-
ical interpretation is that of a coupling strength between
sites i and j. log(φi) is essentially identified with hi/T , fol-
lowing the physical interpretation of an external magnetic
field. From statistical physics it is known that the states
of the system in the canonical ensemble obey Boltzmann’s
law: The probability of finding the system in some spin
configuration {s} is p({s}) = 1

Z eE({s})/kBT . Comparing this
to Eq. (2), we realize that the MRF corresponds to a spin
model at temperature T . It also follows that the normal-
ization constant Z in (2) can be interpreted as the system’s
partition function.

Belief propagation approach: Because of their close
relation to physics, we will focus in the following on MRF.
Again, we are interested in calculating joint and marginal
probabilities, as given by Eq. (2), but in an approximate
manner only. In the following, we will identify φ(xi, yi) ≡
φ(xi), since, for simplicity, we assume the observed nodes
yi to be fixed. The idea behind belief propagation is to ap-
proximate marginal probabilities for a site i by so-called
beliefs bi(xi). The beliefs are calculated from messages m ji

sent to the i-th site from its neighbours j:

bi(xi) = kφi(xi)
∏

j∈N(i)

m ji(xi) (3)

That is, we take the product over all messages coming in
from the neighbouring sites N(i), multiply by the local ev-
idence φi and normalize by a constant k (all beliefs at a
site have to sum to one). The messages m ji are determined
self-consistently by the iterative update rule

mi j ←
∑

xi

φi(xi)ψi j(xi, x j)
∏

k∈N(i)/ j

mki(xi) . (4)

In other words, the new message site i is going to send
to site j is determined by the messages that were previ-
ously sent to the i-th site from all its neighbours except j,
weighted by the ”coupling strength” ψi j and the local evi-
dence φi (see Fig. 2 b). It is easy to prove that the beliefs
bi(xi) converge to the exact marginal probabilities pi(xi) for
singly connected graphs [1]. However, in contrast to the
direct calculation of the marginals (1), computing time for
belief propagation on singly connected graphs only grows
linear with the number of connections between the nodes.

For loopy graphs, the situation is worse. On such graphs
it is not guaranteed that belief propagation converges at all.
For spin systems, it was shown that there exists a critical
temperature TC above which loopy belief propagation con-
verges [2]. In this regime, the choice of initial messages
is irrelevant and has only small influence on the required
computing time. At lower temperatures, near and in the
ferromagnetic phase, convergence, however, may not be
achieved. It is important to note that if BeP converges, the
beliefs correspond to stationary points of the Bethe free en-
ergy. This correspondence finally justifies the use of BeP
for simulating thermodynamical systems such as the Ising
model. A proof of this theorem can be found in [1].

2. BeP convergence and critical slowing down

The behaviour of BeP in dependence on the temperature
is of great interest, e.g. for sequential superparamagnetic
clustering (SSC, [3]). SSC is based on magnetic spin mod-
els and requires sweeps over large temperature ranges to
come up with natural data clusters. The task can be accom-
plished by Monte Carlo simulations ([3]), but BeP is much
faster (up to a factor of 20) - if it converges [4]. When
clusters break apart, BeP slowing down is observed, where
it can be shown that this temperature is exactly the criti-
cal temperature of the phase transition. To investigate this
phenomenon, we will restrict ourselves to Ising systems,
for they allow a message parametrization [2],

tanh νi j := mi j(+1) − mi j(−1) , (5)

which simplifies the update rules significantly:

tanh ν′i j = tanh Ji j tanh(h j +

∑

k∈N(i)/ j

νk j). (6)

Assuming uniform coupling Ji j = J and vanishing ex-
ternal field, two uniform fixed point solutions exist for Eq.
(6), namely νi j = ν = 0 (zero magnetization, paramagnetic
phase) and νi j = ν , 0 (non-vanishing magnetization, fer-
romagnetic phase), cf. Fig (3 a). For stability analysis, the
Jacobi matrix can be calculated to be

∂ν′ji

∂νkl
=

1 − tanh2(h j +
∑

t∈N( j)/i νt j)

1 − tanh2(ν′ji)
· tanh Ji jδ jl1N( j)/i(k)

(7)



It is straightforward to guess that a uniform initialization
of the messages νi j is an eigenstate of the regular grid with
periodic boundary conditions: Let us assume that each site
has q nearest neighbours. We can then write the tensor (7)
as a q · N × q · N matrix M, where N is the total number
of sites, by numerating the pairs i j as rows and the pairs
(kl) as columns of M. From (7) it is clear that each matrix
row only contains q − 1 non-zero entries, since every node
receives q − 1 messages only. With uniform message ini-
tializations, all q − 1 non-zero matrix entries per row take
the value

m :=
1 − tanh2((q − 1)ν)

1 − tanh2(J) tanh2((q − 1)ν)
tanh(J). (8)

Hence, the vector (1, 1, . . . , 1) is an eigenvector with eigen-
value (q − 1)m. In fact, this eigenvalue is the largest one.
Proof: Recall that a special form of Frobenius’ theorem
states that if An×n ≥ 0 is irreducible, each of the following
is true: 1) r = ρ(A) ∈ σ(A), where ρ is the spectral radius
and σ(A) the spectrum of A. 2) The unique vector p de-
fined by Ap = rp, pi > 0 and ‖ p ‖1= 1 is called the Perron
vector. 3) There are no other positive eigenvectors. Since
m > 0, the Jacobian (7) is clearly positive semi-definite. Ir-
reducibility of a matrix, on the other hand, is equivalent to
an underlying graph being strongly connected. A strongly
connected graph is a graph where each pair of nodes can
be connected by a sequence of directed edges. This is ob-
viously the case in the Ising example, since the nodes and
edges form a regular grid structure. Thus, the eigenvector
(1, 1, . . . , 1) is the Perron vector and its eigenvalue is the
largest one. This result remains valid for all grids having
the same number of neighbours to each node, i.e. an in-
finite regular grid or a finite grid with periodic boundary
conditions.

Paramagnetic phase: From the above theorem it fol-
lows immediately that the fixed point ν = 0 is stable as
long as J < tanh−1(1/(q − 1)) (Fig (3 b)). The critical
coupling/temperature is therefore J ≈ 0.347 or T = 1/J ≈
2.89. This is in accordance to numerical simulations, where
a typical critical slowing down can be observed in the BeP
computing time (Fig. 3 c).

Moreover, it can be shown that BeP converges irrespec-
tive of the choice of initial conditions if |σ(A)| < 1 [2],
where σ(A) is the spectral radius of the matrix

Ai j,kl = tanh(J)δil1N(i)/ j(k) , (9)

which is the message independent part of the Jacobi ma-
trix (7). The condition guarantees BeP convergence for all
(i.e. also non-uniform) initial conditions in the paramag-
netic phase.

Ferromagnetic phase: In the ferromagnetic phase, de-
spite having a stable, attractive fixed point (Fig. 3 b), con-
vergence depends heavily on the choice of the initial mes-
sages νi j. Although physical solutions should break sym-
metry and switch to a uniform magnetization density ±1,
BeP does not necessarily converge, according to (9).
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Figure 3: a) Uniform fixed points ν corresponding to the
ferromagnetic and paramagnetic phases. b) Stability of
the fixed points: T < TC (≈ 2.89): The ferromagnetic
fixed point is stable (but not globally attractive, see text);
T > TC: the paramagnetic fixed point becomes stable and
globally attractive. c) A typical critical slowing down is
observed at the 2nd order phase transition.

One of possibly many initial conditions for which BeP
does not converge in the ferromagnetic phase is a situation
as shown in Fig. 4 a). In the simulations, such a vortex
was considered as a perturbation of the fixed points (6) on
a 3 × 3 regular grid with periodic boundary conditions.

In our simulations, the system was simulated for tem-
perature sweeps below TC. The messages were initialized
to either the stable ferromagnetic fixed point (without loss
of generality, ν > 0 in the following) or to the (in this
temperature regime) unstable ν = 0 fixed point. Before
the simulation was run, a perturbation of variable strength
directed towards the vortex was once applied (Fig. 4 b).
BeP was then started, and the iterations required for con-
vergence were counted. If more than 500 iterations were
required, the system was assumed not to converge.

The criterion for convergence was that messages would
differ by less than ε = 10−16 between successive updates.
The same simulation procedure was then repeated for dif-
ferent temperatures and perturbation strengths λ. Since the
temperature range considered belongs to the ferromagnetic
phase, one would expect the perturbed system to converge
to the ν > 0 fixed point (Fig. 4 b).

This is indeed true when perturbations are applied to the
ferromagnetic fixed point. A typical convergence plot for
this situation is shown in Fig. 5 a), from which we see
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Figure 4: a) Vortex message initialization on a regular Ising
grid. b) Illustration of the perturbations applied to the two
fixed points. The red arrows indicate the expected behavior.
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Figure 5: a) Vortex perturbation of the stable ferromagnetic
ν > 0 fixed point as a function of perturbation strength λ
and temperature T . λ = 150 (arbitrary units) corresponds to
a perturbation leading exactly to a vortex setup. b) Vortex
perturbation of the unstable ν = 0 paramagnetic fixed point,
as a function of the perturbation strength λ and temperature
T .

that BeP converges for all perturbations except for the exact
vortex initialization. In the latter case, the convergence de-
pendence as a function of temperature seems to be inverted
to the general case: In the ferromagnetic phase, the vortex
initialization never converges. Upon temperature increase,
the vortex, however, arrives at a critical point T ′C < TC,
above which it always converges. Note that the vortex ini-
tialization also converges quickly at temperatures at which
critical slowing down is observed in the general case. The
previously mentioned ”cut-off” at 500 iteration steps be-
comes reasonable when looking at the results in Fig. 5 a):
First, a higher cut-off would only slightly narrow the peak
around TC. Second, the vortex initialization does not con-
verge below T ′C, even if we use significantly longer simu-
lation runs.

A completely different behaviour is observed when we
start with a perturbation of the unstable paramagnetic fixed
point ν = 0, as shown in Fig. 5 b). Another critical tem-
perature seems to separate convergent from non-convergent
regions at T ′′C ≈ 0.75. Above this temperature, BeP con-
verges, independently of the perturbation strength λ. Below
T ′′C , convergent and non-convergent initializations can be

found. The behaviour is non-trivial and depends strongly
on the choice of the parameters T and λ. Furthermore, as
one would expect, for very small λ, BeP tends to converge
more often. Apart from that, the choice of λ does not in-
fluence the behaviour on a larger scale, in contrast to the
temperature.

Below T ′′C , when zooming in the black square of Fig. 5
b), a self-similar structure is revealed. Even for high mag-
nifications, a distinct boundary separating converging from
non-converging regions is missing. It is an open question
whether the nature of these findings lie in the theory of frac-
tal basin boundaries.

3. Conclusion

Although loopy belief propagation on Ising systems has
stable, attractive fixed points in both magnetic phases, it
does generally only converge in the paramagnetic case. A
BeP critical slowing down at TC ≈ 2.89 is observed at the
phase transition, where both BeP fixed point solutions be-
come unstable. In the ferromagnetic phase, vortex pertur-
bations to the BeP fixed points reveal two entirely different
behaviours: Perturbations of the stable ferromagnetic solu-
tion does not heavily influence BeP efficiency and conver-
gence. With exact vortex initialization, BeP does not con-
verge at low temperatures, whereas, interestingly, the vor-
tex starts to converge to the paramagnetic phase at temper-
atures well below TC. Perturbations of the unstable para-
magnetic solution reveal a more complex situation. Con-
vergence is usually achieved for T > T ′′C ≈ 0.75 only. At
lower temperatures, self-similar patterns are observed, the
nature of which yet remains to be analyzed. An appeal-
ing explanation are fractal basin boundaries, separating the
convergent from the non-convergent initial conditions.
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