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Abstract—We describe a spiking neuronal network which 
allows local synaptic weights to be assigned to individual 
synapses. In previous implementations of neuronal networks, 
the biases that control the parameters of a particular synapse 
are global to all synapses of the same type regardless of the 
target neuron. In this new implementation, the parameters for 
a synapse are set by on-chip Digital-Analog-Converter (DAC) 
circuits, and the DACs are updated before the selected 
synapses are activated. Results from the fabricated chip show 
that the local weights are programmable and the DACs settle 
in the order of microseconds. These on-chip DACs allow the 
user to program a selected synaptic weight for connections 
between neurons and they can also be used for mismatch 
calibration. 

I. INTRODUCTION 
Various aVLSI implementations of spiking multi-neuron 

arrays are currently being developed in several labs [1 – 7, 
13]. The output spikes of the neurons are transmitted 
asynchronously off-chip in the form of a digital address 
unique to each neuron. This transmission is based on an 
asynchronous protocol called Address-Event-Representation 
(AER) [2, 3]. An AER infrastructure surrounding systems of 
spiking neuron chips allows the creation of connections 
between neurons on-chip and across chips. Questions 
surrounding event-based processing can be investigated 
using these chips [4 -7]. 

In many systems, parameters like the synaptic weights 
are controlled by global biases. Global synaptic weights, for 
example, will constrain the types of computation that can be 
studied with these spiking networks. Local synaptic settings 
can be added by using, for example, non-volatile technology, 
but this solution leads to bigger pixels and the necessity of a 
high-voltage power supply [8]. Another way of 
implementing a local synaptic weight is by using a spike 
burst encoding scheme where multiple spikes are transmitted 
to a synapse for every input spike [9]. This technique 
requires a large overhead in time and skews the timing of the 
original input spike. Yet another solution is to update an off-

chip DAC that normally sets the global synaptic weight 
before each input spike but this method creates a finite 
latency (tens of microseconds to milliseconds) in the spike 
timing because of the settling time of the DAC. 

In this work, we describe another solution for generating 
local synaptic weights by incorporating an on-chip global 5-
bit current-mode digital-to-analog converter (DAC) for each 
synaptic weight parameter [10]. This circuit operates over 5 
decades of current from 10pA to 1µA and produces a stable 
output within a few microseconds.  The synaptic weight for 
each local synapse is set by using part of the input address 
space of the targeted synapse as the bits to the DAC. The on-
chip DAC decodes these bits and its output sets the weight of 
the targeted synapse. This synapse is then stimulated after a 
delay which is set to the maximum settling time of the DAC.  

The paper is structured as follows. Section II describes 
the 5-bit current-mode DAC and how it is used to drive the 
local synapses of each neuron. Section III describes test 
results from the fabricated chip. 

II. CURRENT-MODE DIGITAL-TO-ANALOG CONVERTER 
The global DAC and the use of it in driving the local 

synapses of each neuron are shown in Figure 1. The DAC 
itself is indicated by the special transistor symbol, MDAC 
(Figure 2). The input current to the DAC is generated by a 
mirrored version of the output of a reference current circuit 
(Figure 3).  The DAC [10] circuit (shown in Figure 2) is 
based on the MOS current division technique which 
guarantees that the current is split by an octave at each 
branch of the DAC independent of the operation regime of 
the transistors [11]. The reference current circuit in Figure 3 
comes from part of a bias generator circuit described in [12].  
The reference current Iref can be varied through the off-chip 
resistor R. By varying Iref over 3 decades and by additionally 
changing the digital control word W = {b4 b3 b2 b1 b0} of 
the DAC, we can get a DAC output current that spans a total 
of 5 decades from about 10pA to 1µA. 
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Figure 1.  Global DAC driving the synaptic circuits of each of the 
integrate-and-fire neurons on the chip. 

The output current of the DAC is summed at the 
transistor MP1 and is mirrored to the synaptic weight 
transistor MP2 of each synapse circuit (Figure 1). This 
synaptic current drives an integrate-and-fire neuron circuit 
which was previously described in [5].  

An amplifier is added between the Dacout node and the 
gate of MP1 so that we can speed up the DAC response by 
isolating the Dacout node from the large capacitive load of 
the synapse fanout [12].  

III. EXPERIMENTAL RESULTS 
A test chip was fabricated in a 4-metal 0.35um CMOS 

technology. It has 16 integrate-and-fire neurons, and two 
global 5-bit DACs which control the weights of the 
excitatory and inhibitory synapses. Figure 4 shows the layout 
of the DACs and the bias current generator. The size of the 
transistors in the current splitter is 2.4um/1.2um. 

A. Measured DAC Outputs 
We first describe the measured operating range of the 

fabricated DAC circuit. The first thing we verified was the 
monotonic behavior of the DAC, that is, the output current of 
the DAC should increase with a corresponding increase in 
the digital control word W. With an off-chip resistor  of 
R=100kOhm, we get the staircase-like data with increasing 
W shown in Figure 5 as measured for 4 chips. The jumps at 
W = 8, 16, and 24 are caused by transistor mismatch and can 
be reduced by increasing the transistor sizes in the current 
splitter. As previously mentioned, the operating range of the 
DAC can be increased by changing the value of the off-chip 
resistor R. The plot in Figure 6 of the individual branch 
currents against different off-chip resistor values shows an 
almost reciprocal relationship [12]. From both Figures 5 and 
6, we show how we can operate the DAC from about 10pA 
to 1µA by changing R and W. The dynamic response of the 
DAC was also tested as shown in Figure 7. The settling time 
of the DAC is around 0.4µsec for an output current 
Idac=747nA, and 6µsec for Idac=26.8nA. Simulations  

  

  

  

 

Figure 2.  Voltage biased DAC based on the current splitter principle. The 
parameter, m, is the W/L ratio of the vertical transistors. 

  

 
Figure 3.  Circuit which creates a reference current Iref that is tunable 
through resistor R [12]. 

 
 

Figure 4.  Layout of DACs with bias current generator 

show that the settling time will increase to about 100 µsec 
for Idac=10pA. However, we do not normally need such low 
currents for the operation of the aVLSI multi-neuron 
network. 

B. Mismatch Compensation 
We now show how we use the DAC to compensate for 

mismatch in the synaptic weights. We first measured the 
excitatory postsynaptic potential (EPSP) at each neuron for 
all 32 values of the digital word W, by stimulating their 
corresponding synapses.   

From these measurements (shown in Figure 8), we 
describe how we compensate for the mismatch using the 
DAC.  For each neuron and each value of W, we find a new 
W that will result in an EPSP that is closest to the mean 
EPSP value of the original W for all neurons. This 
information is stored in a look-up table and is used to set the 
proper W every time a particular neuron is stimulated. In this 
way, the programming and the calibration are combined 
using one DAC. Figure 9 shows the distribution of EPSPs 
after mismatch calibration, and Figure 10 compares the 
coefficient of variation (CV) of EPSPs before and after 
calibration. The high CV at low W is due to the power 
supply noise which has comparable magnitude to the EPSP  
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Figure 5.  Measured current output of the DAC for different chips with an 
off-chip resistor R=100kOhm. 
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Figure 6.  Current through each branch of current splitter of the DAC with 
resistor R sweeping from 100kOhm to 100MOhm. 

itself. As can be seen in Figures 9 and 10, the variance of the 
EPSP drops by a factor of 10 for intermediate values of W. 
The increase in variance for high values of W can be 
explained by the dependence between the desired EPSP and 
the synaptic mismatch. When the desired EPSP is higher 
than the highest EPSP that a synapse can put out for W=31, 
we cannot compensate for the mismatch of that synapse 
through the DAC. Thus, the EPSP variance increases after 
the mismatch calibration. This problem can be mitigated by 
using two DACs for controlling the synaptic weight; one for 
programming and the second for calibration [13]. With the 
additional DAC, the calibration will not be restricted by the 
W from the programmed EPSP, and a better CV can be 
expected in this case. 

C. Synaptic Programming 
We show a simple example of how we used the DACs to 

program a particular synaptic weight profile. Figure 11(a) 
shows a predefined weight vector that follows a normal  
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Figure 7.  Settling time of the DAC for different Idac. The top figure shows 
the timing of the signal (Req) that indicates the validity of the addresses to 
the DAC. The middle and bottom figures show the settling time of the 
Dacout node in Figure 3 for two values of Idac (26.8nA, 747nA). 

distribution. The spatial connectivity of an external neuron to 
the neurons on-chip is programmed with this weight vector. 
The input from the external neuron is a spike train with a 
regular spike rate of 100Hz. The spiking activity of the 
neurons (shown in Figure 11(b)) shows a similar profile to 
that of the weight vector. 

IV. CONCLUSION 
In this paper, a 5-bit current-mode DAC is used to set the 

local synaptic weights on an aVLSI array of integrate-and-
fire neurons. We show how we can use this global DAC for 
simultaneous mismatch compensation and unique weight 
programming for each local synapse.  
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Figure 8.  Measured EPSP (blue dots) of each neuron and the mean of 
EPSPs for each W (red crosses) for every DAC value from 0 to 31. 
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Figure 9.  Measured EPSP (blue dots) of each neuron and the new mean of 
EPSPs for each W (red crosses) after mismatch calibration . 
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Figure 10.  Coefficient of variation (CV) of EPSP before (blue asterisks) 
and after (red circles) mismatch calibration. 
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  (a)                                               (b) 

Figure 11.  Programming the DACs for a specific spatial firing pattern. (a) 
Predefined digital control DAC word W which follows a normal 
distribution is used to set the spatial connectivity of an external neuron to 
the neurons on-chip. (b) The spike rate of the neurons when a regular spike 
train with 100Hz is fed to each neuron by the external neuron. 
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