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Townsend, Benjamin R., Liam Paninski, and Roger N. Lemon.
Linear encoding of muscle activity in primary motor cortex and
cerebellum. J Neurophysiol 96: 2578–2592, 2006. First published
June 21, 2006; doi:10.1152/jn.01086.2005. The activity of neurons in
primary motor cortex (M1) and cerebellum is known to correlate with
extrinsic movement parameters, including hand position and velocity.
Relatively few studies have addressed the encoding of intrinsic
parameters, such as muscle activity. Here we applied a generalized
regression analysis to describe the relationship of neurons in M1 and
cerebellar dentate nucleus to electromyographic (EMG) activity from
hand and forearm muscles, during performance of precision grip by
macaque monkeys. We showed that cells in both M1 and dentate
encode muscle activity in a linear fashion, and that EMG signals
provide predictions of neural discharge that are equally accurate to
those from kinematic information under these task conditions. Neural
activity in M1 was significantly more correlated with both EMG and
kinematic signals than was activity in dentate nucleus. Furthermore,
the analysis enabled us to look at the temporal properties of muscle
encoding. Cells were broadly tuned to muscle activity as a function of
the lag between spiking and EMG and there was considerable heter-
ogeneity in the optimal delay among individual neurons. However, a
single lag (40 ms) was generally sufficient to provide good fits.
Finally, incorporating spike history effects in our model offered no
advantage in predicting novel spike trains, reinforcing the simple
nature of the muscle encoding that we observed here.

I N T R O D U C T I O N

Since the pioneering work of Evarts (1968) many studies
have investigated the problem of the coding of motor command
signals in primary motor cortex (M1), by relating the responses
of neurons recorded in this area to the modulation of different
extrinsic movement parameters. A key finding was that M1
neurons are tuned to the direction of movement during a
reaching task (Georgopoulos et al. 1986). This has been ex-
tended to incorporate representations of kinematic parameters,
such as position, velocity, and acceleration (Fu et al. 1995;
Moran and Schwartz 1999; Paninski et al. 2004a,c; Scott and
Kalaska 1997). Tuning for static and dynamic force has also
been extensively demonstrated, in wrist movement and preci-
sion grip tasks (Cheney and Fetz 1980; Hepp-Reymond et al.
1999; Porter and Lemon 1993).

Comparatively few studies have addressed the encoding of
intrinsic movement parameters such as patterns of muscle
activity (Holdefer and Miller 2002; Kakei et al. 1999; Morrow
and Miller 2003). This is despite much evidence of functional
modulation of connectivity between M1 corticomotoneuronal
(CM) cells and muscles used during task performance (Bennett

and Lemon 1996; Fetz and Cheney 1980; Jackson et al. 2003).
Furthermore, theoretical studies suggest that “muscle space”
may be the fundamental coordinate system of M1, given that
apparent encoding of kinematic parameters might arise from
position- and velocity-dependent compensations made during
the direct control of muscle activation (Mussa-Ivaldi 1988;
Todorov 2000). It remains unclear which, if any, of these
variables are explicitly encoded by M1.

The contribution made by the cerebellum toward movement
control has been studied using similar methods. Just as for M1,
tuning of cerebellar neurons, both in the cortex and the deep
nuclei, has been observed for several parameters including
direction of reaching (Fortier et al. 1989), position and/or
velocity (Fu et al. 1997; Mano and Yamamoto 1980), force
(Smith and Bourbonnais 1981), and muscle activity (Wetts et
al. 1985) across a variety of tasks.

Thus it would be of interest to determine the relative impor-
tance of different parameters in the encoding of movement and to
compare this encoding in M1 and cerebellum. To try to tackle
these issues, we applied a basic linear–nonlinear (LN) analysis
(Chichilnisky 2001; Simoncelli et al. 2004) to describe the encod-
ing of muscle activity and kinematic parameters by single neurons
in M1 and dentate nucleus, in the awake behaving macaque
monkey performing a precision grip task. This type of analysis is
ideal for relating neural discharge to the complex time course of
the electromyographic (EMG) signal and has already been applied
to describe the encoding of hand position and velocity by neurons
in macaque M1 (Paninski et al. 2004c). We demonstrate that the
activity of single neurons in both regions can be accurately
predicted using simultaneously recorded EMGs from up to nine
hand and forearm muscles. This tuning of M1 and dentate neurons
to muscle activity is linear in nature and contrasts with a more
nonlinear tuning for kinematic information, whereas the relation
of neuronal discharge to both types of parameters is on average
weaker in the dentate nucleus compared with M1, in agreement
with previous studies of the cerebellar nuclei and cortex (Fu et al.
1997; Thach 1978; van Kan et al. 1993). Overall, our results are
consistent with a system that controls muscle activity in a linear
fashion (Ethier et al. 2006; Todorov 2000), and thus linear
methods are sufficient to describe this encoding, in M1 and
cerebellar dentate nucleus.

M E T H O D S

Experimental procedures

BEHAVIORAL TASK. Three purpose-bred adult monkeys (M. mu-
latta) were used for this study: two females (M36 and M38) and one
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male (M41), weighing 5.0, 6.0, and 6.0 kg, respectively. The animals
performed a variant of the precision grip task (see Baker et al. 2001),
which involved squeezing two levers between thumb and index finger.
Levers were mounted onto the spindles of motors (Phantom, SensAble
Technologies), computer controlled to produce a variety of position-
dependent forces. One complete trial involved moving both levers into
a target displacement window and maintaining this position for 1 s
before releasing (Fig. 1A). For monkey M36, this target window was
between 6 and 8 mm from baseline for both levers. Monkeys M38 and
M41 were not as accurate in their performance of the task, so slightly
larger windows between 5 and 8 mm were used. Three auditory cues
were presented to the animal: the first indicated that both digits were
in the target displacement window, the second that they had been held
there for the required duration, and the third was accompanied with a
fruit reward once the levers had been released and returned to
baseline.

A springlike or compliant force was generated on each lever by the
Phantom device. The resistive force F depended on the displacement
of the lever d according to the relationship F(d) � sd � o, where s
represents the spring constant and o is the offset required to ensure the
levers returned to baseline as they were released at the end of each
trial. The monkeys were presented with a variety of load conditions
(0.02, 0.04, 0.06, and 0.08 N/mm, all with offset o � 0.015 N).
However, our analysis was not aimed at addressing the influence of
spring constant on the encoding of muscle activity; thus we selected
data only from the 0.04 N/mm condition. This was chosen because it
represented the middle of the range of forces produced by the animals
and could be performed with relative ease, thus resulting in a good
number of trials for the analysis. Only successfully completed trials
were included, giving an average of 72 trials (SD �37) per session.

Off-line, two time periods were defined (Fig. 1A). The movement
period was defined as the time during which either finger or thumb
velocity was �30 mm/s. The hold period began once both finger and
thumb positions were within the target window and lasted for 1 s.
These periods were used for off-line trial selection criteria applied to
data sets that were used for the comparison of fits by the model to
EMG and kinematic data. Here it was important to ensure that trial
performance was as homogeneous as possible because greater vari-
ability in task performance could weaken the correlation of kinematic
parameters with neural discharge. In all animals, roughly 40% of trials
performed passed these criteria and were available for analysis.

The criteria used were as follows: First, the movement period
(defined by finger or thumb velocity being �30 mm/s) had to last �1
s (Fig. 1B). This criterion rejected trials where the finger or thumb
levers did not move swiftly into the target displacement window on
the first attempt. Second, the length of time that either finger or thumb
levers were kept in their hold windows was �0.5 s but �1.25 s. This
criterion rejected trials where the hold was not achieved directly and
where the levers did not rapidly return to baseline at the end of the
hold period. This latter point was important because, although suc-
cessful completion of the 1-s hold was signaled by an auditory signal
(see above text), sometimes the monkey kept the levers within the
target window for a short period after instead of immediately
terminating the trial. An example of an accepted trial is illustrated
in Fig. 1A.

RECORDING. Details of surgical procedures and the Eckhorn multi-
ple-electrode recording system (Thomas Recording, Marburg, Ger-
many) were previously described (Baker et al. 1999, 2001) for
recordings from primary motor cortex (M1). All procedures were
performed in accordance with appropriate UK Home Office regula-
tions. Data were recorded directly to hard disk by two A2D cards
(PCI-6071E, National Instruments).

EMG recordings. Monkeys M36 and M38 were implanted with
subcutaneous EMG patch electrodes (Miller et al. 1993) sutured
directly onto the surface of intrinsic hand and forearm muscles, in the
hand used to perform the task. The electrode leads ran subcutaneously
to a connector on the monkey’s back. The muscles implanted and their
abbreviations in this paper are detailed in Table 1. EMGs were
recorded bipolarly with gains of 1,000–5,000, high-pass filtered at 30
Hz (NL824, Digitimer), and were sampled at 5,000 Hz. This was
downsampled to 500 Hz for purposes of the analysis described below.

The criteria used for selecting muscles for EMG implants were as
follows. First, no proximal muscles were implanted because only
distal muscles act on the thumb and index finger during precision grip
(Maier and Hepp-Reymond 1995). Furthermore, the monkey’s arm
was supported by a loose sleeve that was securely fixed to the side of
the experimental chair just above the elbow joint, so proximal muscles
were uninvolved in task performance.

The intrinsic hand muscles are particularly important for the control
of skilled finger movements, including the generation of finely graded

FIG. 1. Example trial performed by monkey M38 selected according to the
off-line criteria described in METHODS. A: thumb (thin line) and finger (thick
line) lever position traces. Dashed lines indicate target position window for
levers. B: lever velocity profiles. Dashed line indicates 30 mm/s velocity
threshold from which movement period is defined.

TABLE 1. List of muscles implanted with subcutaneous EMG
electrodes for monkeys M36 and M38

Muscle Abbreviation M36 M38

Flexor digitorum profundus FDP Implanted Implanted
Flexor digitorum sublimis FDS Implanted —
Flexor carpi ulnaris FCU — Implanted
Extensor digitorum communis EDC Implanted Implanted
Extensor carpi radialis longus ECR-L Implanted Implanted
Extensor carpi ulnaris ECU — Implanted
Abductor pollicis longus AbPL Implanted Implanted
Thenar — Implanted Implanted
First dorsal interosseous IDI Implanted Implanted
Abductor digiti minimi AbDM — Implanted
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force during precision grip in humans and monkeys (Maier and
Hepp-Reymond 1995; Porter and Lemon 1993). We therefore re-
corded EMGs from the intrinsic hand muscles 1DI and two muscles of
the thenar eminence (flexor pollicis brevis and adductor pollicis
brevis) that, because of their close proximity and the small size of the
macaque thumb, were sampled by a single implanted electrode and are
referred to as the “thenar” EMG. The long flexors of the fingers (FDP
and FDS) were recorded from because they too are primarily involved
in the generation of pinch force by the index finger. The extensors of
the wrist (ECU, ECR-L), extensors of the fingers (EDC), and flexors
of the wrist (FCU) were implanted because these would be active
during the removal and insertion of the hand and digits from/into the
manipulandum. These muscles also act to stabilize joint torques and
maintain equilibrium during precision grip (Maier and Hepp-Rey-
mond 1995; Schieber and Santanello 2004). Coordinated activity in all
these muscles is required to perform the precision grip and thus we
recorded EMGs from multiple muscles simultaneously rather than one
at a time.

To assess the extent of correlation between EMG signals we
calculated the mean absolute correlation coefficient between each
possible pairwise combination of EMGs, across all data sets in
monkey M38 (nine EMGs � 36 possible pairs) and M36 (seven
EMGs � 21 possible pairs). The mean level of correlation was 0.31
(SD 0.10) for M38 and mean 0.54 (SD 0.03) for M36, indicating quite
low background levels of correlated activity. However, in both ani-
mals particular pairs of EMGs showed strong correlations, such as
ECU � 1DI in M38 (0.67) and thenar � 1DI in M36 (0.85), consistent
with the similar actions that these muscles exert on the hand. In
contrast, other pairs showed particularly weak correlations, such as
AbPL � FDP in M38 (0.05) and EDC � FDS in M36 (0.3), in
agreement with the different actions that these muscles exert on the
hand. Overall there was a mixture of correlation strengths between
pairs of muscles, with no clear tendency toward very strong or weak
correlations across all pairs. Note that the level of physical cross talk
in these EMG recordings was very low (see Brochier et al. 2004).

Task data. Digital events (trial start and end times, end of hold
period) were recorded, together with lever position signals sampled at
500 Hz.

Cortical recordings. Recordings were made in the hand area of M1,
contralateral to the performing hand. Right M1 was recorded in
animal M36 and left M1 in M38 and M41. M1 chamber center
coordinates were about A10 L17 in all three animals. At least five
glass-insulated platinum electrodes (impedance 1–3 M�, 4 � 4 grid
with interelectrode spacing of 300 �m) were independently lowered
into the cortex to search for cells. Pyramidal tract neurons (PTNs)
were identified by their antidromic response to stimulation in the
pyramid (latencies, 0.9–4 ms; thresholds, 20–200 �A) and collision
testing (Lemon 1984). All other cells in M1 that did not respond to
stimulation were labeled as unidentified neurons (UIDs). In M38 and
M41 at least two electrodes were inserted into the cerebellum in each
session, ipsilateral to the performing hand, to make recordings from
dentate nucleus simultaneously with M1. Electrodes were introduced
by fine sharpened guide tubes that were advanced through the cortical
dura, �5 mm below it, before the electrode was advanced. The total
depth of penetration was about 25–30 mm. Cerebellar chamber center
coordinates were A8 and L6 in M38 and A9.5 L6.5 in M41. During
a session, we selected cells for recording that showed clear task-
related modulation in their firing rate and whose interspike-interval
histograms did not contain counts in bins at short intervals (�2 ms),
which is evidence that the recorded spikes we discriminated came
from a single neuron. Neuronal activity was recorded as the analog
activity, filtered between 1 and 10 kHz, and sampled at 25 kHz. We
were typically able to make stable recordings from single neurons for
around 30 min. Off-line, single units were discriminated using prin-
cipal component analysis on the spike waveform and cluster cutting
(Eggermont 1990).

Analysis

INSTANTANEOUS FIRING RATE ESTIMATION. For each discriminated
unit, an estimate of the instantaneous firing rate (IFR) throughout the
recording period was first calculated, according to techniques de-
scribed in Pauluis and Baker (2000). Briefly, this method uses the
reciprocal of the interspike interval as a first approximation to the IFR,
explicitly detecting significant changes in firing rate while smoothing
the periods in between these times. For this analysis, IFR profiles were
calculated with a sampling resolution of 500 Hz and smoothed with a
Gaussian kernel of width 10 ms.

ENCODING MODEL. To study how cells in M1 and dentate encode
muscle activity, we described the dependency of cell firing rate on
EMG activity from multiple muscles using a linear–nonlinear (LN)
model (Fig. 2). This analysis used standard techniques based on
spike-triggered regression. Full descriptions of these procedures can
be found in previous work (Chichilnisky 2001; Paninski et al. 2004c;
Shoham et al. 2005; Simoncelli et al. 2004). Applications of these
methods to EMG data are outlined as follows.

The input vector w� was formed by concatenating the full-wave–
rectified EMG signals from each of the nine hand and forearm
muscles (seven in monkey M36) at a particular lag � after each spike
bin (Fig. 2A).

Regression was used to estimate the cell’s weighting of the EMG
activity from each muscle k�, as k� � [E(w� tw� )]�1Ew� � spike(w� ). The first
term is the inverse of the correlation matrix of w, which is computed
to remove any correlations of the EMG input vector with itself. This
is a key requirement of spike-triggered regression techniques (the
probability distribution for values of the input vector is assumed to be
radially symmetric or “white”; Chichilnisky 2001). The second term
is the cross-correlation of the EMG input vector with the spike train,
which reduces to a conditional expectation (E) because of the binary
nature of the spike train.

The term k�, as the spike-triggered average (STA), gives the average
value of the normalized EMG activity in each muscle at � � 40 ms
after the spike. k� can be conceptualized as describing how the cell
weights activity in each of the muscles at this lag (Fig. 2B, top).

The relationship between spiking of the cell and EMG activity in
the set of muscles is then captured by the term (k� � w� ), which is a
linearly filtered version of the concatenated muscle activity in w�
carried out by the cell using its weight vector k� (Fig. 2B, bottom). To
determine the value of the filtered signal at time t, the EMG level in
each muscle at lag � after time t is weighted according to entries of the
fixed vector k�. These values are then summed to give the filtered
signal. Thus a muscle with a positive weight will increase the
amplitude of the filtered signal at time t � �; a muscle with zero
weight will make no contribution; and a muscle with a negative
weight will decrease the amplitude of the filtered signal at time t � �.

Cells in M1 can show nonlinearity in the relation of their discharge
to movement parameters such as hand position and velocity (Paninski
et al. 2004c). Therefore we included a nonlinear term f in the
description of muscle encoding given above. In the LN model, the
filtered signal (k� � w� ) controls cell firing rate through this nonlinearity
f, which is written f (k� � w� ). We did not assume a particular type of
nonlinearity beforehand, but instead estimated f separately for each
cell from (k� � w� ) using an intuitive, nonparametric binning process.
This procedure consists of finding, for any possible value u of the
filtered signal k� � w� , all times {t}u at which k� � w� was found to be
approximately equal to u. The conditional firing rate f (u) is then given
by the fraction of time bins {t}u that contained a spike. In this
procedure, f (u) has an underdetermined scale factor [because a scale
factor in the argument u-axis can always be absorbed by rescaling f
itself (Chichilnisky 2001)]. Therefore we standardized u by linearly
mapping the 1st and 99th quantiles of the observed distributions of u
to �1 and �1, respectively, in all plots.
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In Fig. 2C it can be seen that f (k� � w� ) gives the estimated firing rate
of the cell for each value of (k� � w� ). Mapping the signal (k� � w� ) through
the nonlinearity f therefore provided an estimate of the instantaneous
firing rate of the cell during the experiment. This relationship is
encapsulated in Eq. 1, including terms for the current time bin of
width dt (here this was 2 ms, small enough so that only one spike was
observed per bin) centered at time t

p	spike in 
t, t � dt�� � f 	k � w
t��dt (1)

CROSS-VALIDATION. We used the following cross-validation proce-
dure to test the accuracy of the cascade model at predicting cell IFR
from EMG activity. The analysis was performed on sections of data
from successfully performed trials only, and periods of inactivity
between the end of each trial and the start of the next one were
omitted. For the data set from each recording session, 60% of the trials
were designated training data and 40% of trials as test data. We
selected trials for each of the two sets in an interleaved fashion,
running through the total period of time analyzed from a given
recording session (i.e., trials 1, 3, and 5 � train; trials 2 and 4 �

test) to ensure that no order effects were introduced. These data
sets were separate and nonoverlapping: each trial was allocated to
only one set.

For each neuron, the training set was used to fit k� and the nonlin-
earity f (k� � w� ). First, the signal k� � w� was computed using k� from the
train set and w� from the test set. As described above, this signal
captures the relationship between cell discharge and muscle activity.
In effect, it is a linear prediction of cell discharge made from the EMG
(although scaled between �1 and �1 as detailed above). This pre-
diction was then compared with the cell’s observed IFR for the test set
simply by computing the correlation coefficient of the two signals. This
provided a measure of how accurate the linear stage of the model was at
predicting cell activity from a nonoverlapping data segment.

After this, f (k� � w� ) was used to generate the nonlinear prediction of
cell IFR using f and k� fitted from the training set, and w� from the test
set. Again, this nonlinear prediction was compared with the observed
IFR for the test set by means of the correlation coefficient, to give a
measure of how accurate the nonlinear stage of the model was at
predicting cell activity. In addition, all example encoding functions

FIG. 2. Predicting primary motor cortex
(M1) and dentate instantaneous firing rate
(IFR) from muscle activity. A: sample-recti-
fied electromyographic (EMG) signals from
5 hand and forearm muscles. B: muscle ac-
tivity is linearly filtered by the muscle weight
vector k� to give the filtered signal k� � w� . C:
k� � w� is transformed by the nonlinearity f to
produce a nonlinear prediction of the IFR for
that neuron. Observed IFR shown for com-
parison. Figure displays a randomly chosen
section of the data. Analysis is for a single
M1 pyramidal tract neuron (PTN).
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shown in RESULTS and Fig. 2 were also cross-validated by fitting k� to
the training subset and f (k� � w� ) to the test subset.

This cross-validation procedure provided a measure of how accu-
rate our analyses were in predicting the cell’s activity rather than
simply reproducing observed data. In the analysis, steps were taken to
minimize overfitting, whereby predictions of the test data decrease in
accuracy when too many regressors are fitted to the training data.
These steps are detailed where relevant.

We also carried out the same analysis on kinematic instead of EMG
data, forming the input signal w� from the finger position and velocity
signals, at the same lags that were used for the EMG.

Although the analysis studied the combined activity of several
concurrent EMGs, it was possible that a small subset of these muscles
could dominate the predictions of cell discharge made from the total
combined EMG signal. To address this, we first calculated the fre-
quency at which each muscle was allocated the strongest absolute
weight by k�. In M38 all muscles were not weighted equally: instead,
two muscles in particular tended to be allocated the strongest weights
(EDC and FDP). This may in part be attributed to the strong task-
dependent activity of these muscles: EDC showed strong activity
during the release phase at the end of each trial because it acted to
extend the digits as they were removed from the manipulandum,
whereas FDP would be critically involved in generating and main-
taining force during the grip (Maier and Hepp-Reymond 1995). In
M36, the thenar muscles and FDP tended to show the strongest
weighting across the population. Thus some muscles were weighted
more strongly than others across the population.

Second, for each cell, nonlinear predictions of IFR were generated
separately for each of the nine EMGs from M38 and each of the seven
EMGs in M36. These were compared with the observed IFR by
calculating the correlation coefficient between the two signals. We
then found the frequency at which each muscle provided the best
prediction of cell IFR across the population. In M38, thenar, 1DI, and
ECU tended to give the best predictions when EMGs were fitted one
at a time; in M36, it was 1DI and EDC. Thus for a given cell, it was
not possible to determine in advance the best set of EMGs for making the
IFR prediction from looking at the pattern of weighting in k�. For example,
a cell that allocated a strong regression weight to muscle 1DI might lead
to a poor prediction when cell discharge was fitted to EMG from that
muscle alone because the cell’s activity was dependent on the difference
in activity between 1DI and other muscles with different weights.

SPIKE HISTORY. Our model was used to predict the time-varying
firing rate of the cell, given by f (k� � w� ). In addition, we tested the
accuracy of our model at explicitly generating spike trains based on
fits to EMG data. Spike trains were generated by an iterative method:
in a separate test portion of data, the average spike count in each time
bin t was calculated according to a Poisson process, with the rate
determined by f (k� � w� ) (Chichilnisky 2001). Because this method of
predicting spikes bin by bin is Poisson in nature, it is inherently noisy,
so predictions were repeated 20 times for the same section of data,
summed, and averaged. This average firing rate, derived from spike
trains generated by the model, was compared with the observed IFR
for the same period by means of the correlation coefficient to give a
measure of the accuracy of our model in predicting the spiking
behavior of each cell.

However, neural responses depend on the spiking history of the cell
(Berry and Meister 1998; Keat et al. 2001; Paninski et al. 2004b;
Truccolo et al. 2005). Therefore we fitted M1 and dentate neurons to
an adjusted LN model, which incorporated some of this response
history. This was implemented in two steps. First, we formed a
modified input vector w� H, formed by concatenating the original input
vector w� and the spike count of the neuron in the previous five bins

w� H � w1, w2, . . . , wend, r�1�, r�2�, . . . , r�5�� (2)

where w1 is the first element of the original w� and wend is the last and
r{i} denotes the observed spike count i time bins ago. The linear filter

k� fitted to this modified input vector is referred to as k�H. A single lag
was chosen here in contrast to the full filter length (see Multiple filter
delays section below) to minimize overfitting.

Second, in a separate test set of data, a spike train was again
generated iteratively, using k�H and w� H

p	spike in 
t, t � dt�� � f 	k�H � w� H
t��dt (3)

Here each element r{i} of w� H was the model’s prediction of the
neuronal spike count i time bins ago, instead of the observed spike
count used in Eq. 2. Simulating response history in this way, by
“feeding back” the model’s output rather than using the cell’s real
spike history, ensured that we did not contaminate our model’s
predictions with spike trains that had already been observed. Again,
predictions of the spike count were repeated 20 times, averaged, and
compared with the IFR, which enabled us to compare the prediction
accuracies of the spike history and basic LN models.

R E S U L T S

Data set

Some 51 data sets from three monkeys were analyzed,
constituting a total of 216 neurons. We divided these data as
follows. For fits of the encoding model to both EMG and
kinematic signals, data from M36 and M38 were used. Cells
recorded from these animals were split into three groups: M1
pyramidal tract neurons (PTNs), unidentified M1 neurons
(UIDs), and cells from cerebellar dentate nucleus. This gave 22
PTNs and 14 UIDs from monkey M36, together with 29 PTNs,
32 UIDs, and 33 dentate cells from monkey M38. Sixteen of 22
PTNs in M36 exhibited significant postspike facilitation or
suppression effects in EMG of one or more hand muscles,
which is evidence that they were corticomotoneuronal (CM)
cells. Additional data for the analysis of fits to kinematic
information came from recordings in monkey M41 (no EMGs
were recorded in this animal). This constituted 63 M1 neurons
and 23 dentate neurons.

We first describe linearity of muscle activity encoding by
these neurons and the temporal properties of this encoding.
Next, we compare this encoding to tuning for kinematic
parameters. Finally, the results of an attempt to model
precise spiking behavior in a subset of this population are
discussed.

Nonlinear encoding

We computed the EMG encoding functions f (k� � w� ) for a
total of 130 cells from M1 and dentate nucleus. The majority
were nonlinear in nature; therefore it was of interest to deter-
mine whether predictions of each cell’s instantaneous firing
rate were more or less accurate when incorporating this non-
linearity in the model. This was tested by comparing the
correlation coefficient of each cell’s observed IFR with the
linearly filtered signal k� � w� , versus the coefficient between
observed IFR and the nonlinear predicted activity given by
transforming k� � w� through f (Fig. 3, A and B). The mean
difference between nonlinear and linear prediction accuracies
for monkey M38 was small (0.003) and not significantly
greater than zero (one-tailed t-test, P � 0.05). For monkey
M36, the mean difference was also small (0.01) but significant
(one-tailed t-test, P � 0.05) (Fig. 3, C and D).

By dividing the population into the three cell classes, pre-
dictions of the activity of PTNs were significantly more accu-
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rate than those for dentate units and M1 UIDs, and M1 UIDs
were significantly more accurate than dentate (all comparisons
made using one-tailed t-test, P � 0.05).

Figure 4A compares the encoding function f (k� � w� ) with the
distribution of values of k� � w� (Fig. 4B) for a PTN from M1.
The small improvement offered by incorporating the nonlin-
earity into our model of the cell—despite the fact that the
shape of the encoding function is clearly nonlinear—can be
explained by the restricted range of k� � w� . Most values of k� � w�
are confined to the linear portion of the full encoding function
and thus the behavior of the cell in relation to muscle activity
is effectively linear.

It should be noted that we compared predictions of IFR
made using the linear filter k� obtained through spike-triggered
averaging (STA), to predictions made with k� estimates com-
puted through an “information maximization” technique based
on a probabilistic distance measure between spike-triggered
and “no-spike”–triggered distributions (Paninski 2003). The
conventional STA estimates were at least as accurate in pre-
dicting cell activity.

Comparison with corticomotoneuronal cells

The greater accuracy of fits to PTNs versus UIDs could be
explained by the fact that these cells are more directly involved
in the control of muscle activity. To test this hypothesis further
we analyzed fits made to nine of the subset of 16 PTNs
recorded in monkey M36 that were shown to be CM cells,
using the maximum filter k� length for highest fit accuracy (see
Multiple filter delays below). This group of nine cells showed
only postspike facilitation (not suppression) of one or more of
the seven EMGs recorded in this monkey. Methods for iden-
tification of genuine postspike effects are described in Jackson
et al. (2003). Nonlinear prediction accuracies were compared
with those from a separate collection of nine PTNs from M36,
which showed no significant postspike effects in any of the
EMGs. Of this group, four PTNs came from the original group
of 22 PTNs in M36 and an additional five PTNs from extra data
sets were included purely for this comparison and are not
analyzed elsewhere. For all cells, models were fitted at a single
� � 40 ms using all seven EMGs recorded in this monkey.

FIG. 3. A: scatterplot of nonlinear vs. linear prediction accuracies for cells from monkey M38. Each point represents the correlation coefficient for a single
cell between the observed and predicted IFR, for the 2 types of predictions. Diagonal line indicates unity: cells fall close to this line, indicating that incorporating
the nonlinearity f did not significantly increase the prediction accuracy. Point types correspond to the 3 cell types sampled. Predictions were made using maximum
filter k� length (see Multiple filter delays). C: histogram of differences between nonlinear and linear prediction accuracies. Mean difference is very small (0.003).
B and D: same analyses for M1 neurons recorded in monkey M36. Mean difference � 0.01.
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Mean prediction accuracies for the two cell types were as
follows. For the nine PTNs with no postspike effects, mean
accuracy was 0.26 (SD 0.24). Mean prediction accuracy for the
nine PTNs showing postspike facilitation was 0.61 (SD 0.17).
This difference was significant (one-tailed t-test, P � 0.01).
Also for the nine CM cells showing postspike facilitation there
was a weak positive relationship between the size of the muscle
field and prediction accuracy for the cascade model, which was
not significant (R2 � 0.41). The more accurate fits of CM cells
to EMG in our model is consistent with the fact that the
discharge of these cells directly influences the activity of one or
more of the muscles analyzed, through the precise time locking
of a proportion of CM cell spikes to motoneuron discharge.
Similarly, CM cells showing postspike effects in a larger
proportion of the muscles analyzed (i.e., cells with larger
muscle fields) would be expected to be fitted more accurately.

Furthermore, we looked at the relationship between the
pattern of muscle weighting given by k� and the pattern of

postspike effects in the same muscles, for a subset of 7/16 CM
cells from M36. Three of these cells showed a good degree of
correspondence between the two, so that muscles with large
positive weights in k� also showed significant postspike facili-
tation from the cell, and muscles with negative weights showed
significant postspike suppression. These neurons are akin to a
group of CM cells (“set A”) reported by Bennett and Lemon
(1996) in which the pattern of postspike effects and cell–
muscle covariation would act together to promote a fraction-
ated pattern of muscle activity important for the performance
of precision grip.

In contrast, four cells showed a poor overlap between k� and
the pattern of postspike effects. Although the postspike effects
of these CM cells would also tend to fractionate activity,
this was not reinforced by the weighting of muscle activity
in k�, and so these cells are similar to the “set B” neurons
described by Bennett and Lemon (1996).

Spike-triggered covariance

Earlier in the analysis section, it was assumed that the spike
rate depends on a single dimension of the input signal w� : that
is, the amplitude of this signal. The relationship of cell dis-
charge to the level of EMG activity in multiple muscles
depended on a weight vector or “linear filter,” k�. However, the
spike rate of many neurons (e.g., cells in primary visual cortex,
V1) is best related to not one but multiple dimensions of the
input signal. To account fully for the dimensionality of the
signal to which these cells respond therefore requires multiple
linear filters, k1� , k2� , . . . , kn� (Adelson and Bergen 1985; Rust et
al. 2005). Here, we examined whether single neurons in M1
and dentate nucleus encode multiple dimensions of the EMG
signal, by testing whether the relationship of cell spiking to
EMG was better described by multiple filters instead of only
one. To do so, we applied the following analysis.

The different dimensions along which w� varies can be
thought of as dimensions in a vector space, and each possible
value of w� as a vector in this space. Returning to the basic LN
model, the firing rate depended only on the projection of this
EMG vector w� along a single direction in this space, k�.

However, if in reality the cell responds to multiple dimen-
sions of the signal, then the firing rate would depend not on one
but on multiple vectors in the stimulus space, corresponding to
the multiple linear filters k1� , k2� , . . . , kn� . These multiple vectors
can be estimated using spike-triggered covariance (STC) tech-
niques, full details of which can be found in previous studies
(Brenner et al. 2000; Simoncelli et al. 2004).

For each cell this involved computing the covariance matrix
Cspike, by taking all stimulus vectors s (i.e., values of w� ) that
were conditional on the occurrence of a spike (at time tspike)
according to

Cspike � �s
tspike � �� � s
tspike � ���� � �s
tspike � ��� � �s
tspike � ���� (4)

We next computed Cprior, the covariance matrix formed from
all stimulus vectors s at all times t. Cprior is the covariation
matrix of the EMG input w� with itself

Cprior � �s � s�� � �s� � �s�� (5)

We then calculated �C � Cprior � Cspike. The eigenvectors E
of the matrix �C correspond to linear combinations of the STC
vectors or linear filters: the STC vectors were then extracted by

FIG. 4. A: example nonlinear encoding function f (k� � w� ) � p(spike � k� � w� )
for a PTN from M1. This function gives the conditional firing rate (y-axis) for
each value of the filtered signal k� � w� (x-axis), after applying the nonparametric
binning process outlined in Analysis. B: although the form of f (k� � w� ) is
nonlinear, examining the distribution of values of k� � w� observed for this neuron
indicates that most of the signal was restricted to a narrow range corresponding
to the linear portion of the encoding function. Therefore the dependency of the
firing rate of this cell on the EMG signal w� filtered by its weight vector k� was
effectively linear.
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computing (Cprior
�1 )E. We selected two STC vectors giving two

linear filters k1� , k2� , by taking the two eigenvectors that were
most different from zero. The LN model was then applied in
the usual manner except that now the response of the cell
modeled in Eq. 1 was given by the filtering of the EMG input
w� by two filters

p	spike in 
t, t � dt�� � f 	k�1 � w� 
t�, k�2 � w� 
t��dt (6)

According to Eq. 5, the cell firing rate is dependent on a two-
dimensional (2D) nonlinear encoding function f (k�1 � w� , k�2 � w� )
applied to the two filtered signals k�1 � w� and k�2 � w� . We
computed 2D encoding functions for each cell from M38.
Figure 5A shows an example for a representative cell in M1:
contours of firing rate modulation are approximately linear in
the region where most stimulus vectors conditional on spiking
were distributed (gray points in Fig. 5B), suggesting that the
relationship of cell firing to muscle activity is sufficiently
captured by the application of a single filter. To test the accuracy
of this new model in predicting cell activity we mapped the
filtered input signal (k�1 � w� , k�2 � w� ) through the corresponding
2D encoding function and compared the predicted firing rate to
the observed IFR by means of the correlation coefficient as
above. For all cells, these predictions were less accurate as a
result of overfitting; computing two filters and the resulting 2D
encoding functions for each cell involved fitting a greater
number of regressors to the training data, which decreased the
accuracy of predictions of the test data. This suggests that a
single linear filter k� (i.e., the spike-triggered average) is suffi-
cient to describe the encoding of muscle activity by M1 and
dentate neurons.

Single filter delays

Prediction accuracies were calculated as described above,
for different single delays � between spike and EMG (ranging
from �160 to �320 ms in 10-ms increments), to assess the
temporal evolution of tuning for muscle activity in these
neurons. Because linear and nonlinear predictions were found
to be equivalent, we refer to firing rate predictions made using
f (k� � w� ) unless otherwise stated. Different cells had a different
value of � that gave the best fit (Fig. 6A). For example, the
tuning of the cell given by the topmost curve reaches peak
prediction accuracy at close to � � 0 s, whereas the curve
below peaks at about � � 0.18. There was no consistent
optimum � across cells.

When the model was fitted to one EMG at a time, the level
of heterogeneity in optimum lags across cells showed some
dependency on the muscle that was fitted. To quantify this, the
top 50% of neurons from each cell group in M38 were fitted at
a range of lags �, one muscle at a time, which gave a total of
47 individual temporal tuning curves for each muscle. The
optimal lag � corresponding to peak prediction accuracy was
found from each curve. We then used Levene’s test for homo-
geneity of variance (Miller 1986) to determine whether the
levels of variation in optimal lag values for fits to each muscle
were the same: this was significant (P � 0.05), indicating that
they were not. In line with this, fits to thenar EMG showed
more variance in the optimal lag across cells (SD 0.03),
whereas fits to 1DI showed less variance in the distribution of

optimal lags (SD 0.02), suggesting that cells showed more
variation in the temporal profiles of their spike–EMG correla-
tions with some muscles than with others.

Overall, temporal tuning curves were broad (Fig. 6A). These
broad curves were not an artifact of the filtering and smoothing
that we applied to the EMG data. The total filter length (as
measured by applying the same preprocessing to a signal
comprising a spike in a single bin) was 78 ms, shorter than the
time scale of the correlations we observed. We also confirmed
that this broadness was not simply a result of combining
multiple EMGs that were acting at different times relative to
each other during task performance because the same broad
tuning curves were found for correlations with single muscles.

FIG. 5. Spike-triggered covariance (STC) analysis of a PTN from M1. A:
example 2-dimensional (2D) nonlinear encoding function f (k�1 � w� , k�2 � w� ) �
p(spike � k�1 � w� , k�2 � w� ) giving the conditional firing rate for each value of
the 2 filtered signals k�1 � w� (x-axis) and k�2 � w� (y-axis). Color axis indicates the
firing rate (in Hz) conditional on these 2 variables. Contours of firing rate
appear to be curved toward the right-hand side of the plot, suggesting that
conditional firing rate depends on both filtered signals. Masking is applied to
the regions where insufficient data are observed for accurate estimation of the
firing rate. B: black points show values of the EMG signal w� filtered by 2
corresponding filters of the cell k�1 � w� and k�2 � w� plotted against each other.
Gray points show values of these filtered signals that were conditional on
spikes fired by the cell. Note that although the form of f [k�1 � w� (t), k�2 � w� (t)]
shows modulation of firing rate in 2 dimensions, these gray points are restricted
to a region toward the left of the 2D encoding function in A where contours of
firing rate are approximately linear, showing that spiking activity of the cell is
mainly modulated by k�2 � w� . Thus a single filter k� is sufficient to describe the
encoding of muscle activity by this neuron.
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Next, we analyzed the shapes of these temporal tuning
curves in more detail. All cells from monkey M36 were
included. In monkey M38 less-accurate task performance may
have resulted in greater trial-to-trial variability of cell firing
rates and EMG, reducing the strength of correlation between
cell discharge and muscle activity (mean nonlinear prediction
accuracy at 40-ms lag for M1 cells from M38 was 0.38,
compared with 0.48 for neurons sampled in M36). To reduce
the effect of noise on the shapes of temporal tuning curves we
therefore selected the most accurate 50% of the cells in each
group from M38.

Dividing cells into three groups—PTNs, UIDs, and den-
tate—revealed that there were no significant differences either
in the peak lag distributions between the three groups (two-
tailed Kolmogorov–Smirnov test between each distribution
pair, P � 0.05) or in the mean peak lag (two-tailed t-test, P �
0.05). Figure 6B plots the mean change in prediction accuracy
with lag for the population. PTNs and dentate units reached
maximum prediction accuracy at 10-ms lag, whereas the peak

lag for UIDs was 30 ms. The peak lag for PTNs corresponds to
values obtained from previous regression analyses (Morrow
and Miller 2003) and spike-triggered averaging work (Fetz and
Cheney 1980). At all values of �, PTNs were on average more
strongly correlated with EMG than with UIDs, which showed
stronger correlations than dentate units.

Finally, we looked at temporal tuning curves for 16 PTNs
from M36 identified as CM cells, once again using the con-
catenated activity of all seven EMGs recorded from this mon-
key. Here also, the shapes of temporal tuning curves for single
cells were broadly curved. Optimal lags were measured from
these curves, which again were heterogeneous in their distri-
bution. The level of heterogeneity for CM cells was not
significantly different from that for other cells. For a fair
comparison against cells showing no CM connections, we
compared the variance in optimal lags measured for CM cells
with those for the top 50% of dentate cells in M38, using
Levene’s test for homogeneity of variance—this was not sig-
nificant (P � 0.05). Thus CM cells showed temporal profiles of
tuning for muscle activity similar to those for the other cell
types in our model.

Multiple filter delays

Prediction accuracies were compared for different lengths of
the linear filter k� using 40-ms increments from 40 to 360 ms
after each spike. Again, there was some heterogeneity in the
optimal filter length (Fig. 7A). Figure 7B shows the mean
change in prediction accuracy with increasing filter length for
all cells, once again taking all cells from M36 and the top 50%
of each subpopulation of neurons from M38. For all three cell
types, the mean correlation coefficient increased smoothly with
increasing length but the range of this increase was small.
PTNs showed a larger range of increase in correlation coeffi-
cient values than that in dentate units. Looking at the total
population (without selecting the most accurate cells), at all
filter lengths the highest prediction accuracies were achieved
using PTNs, followed by UIDs, and then by dentate units. At
the maximum filter length, M1 neurons together were nearly
twice as accurate as dentate cells.

The analysis was repeated using nine lag increments of 10
ms to test whether much of the growth in accuracy occurred
over a narrower region closer to the spike, which resulted in
more linear increases in accuracy over a smaller range. Thus
the accuracy of our model continued to grow even when fitting
EMG data at long delays of 200–300 ms after each spike.
Therefore the maximum filter length was used for subsequent
analyses, with the exception of the spike history analysis
described above.

Kinematic information

LN models were fitted to neurons from M36 and M38 using
finger position and velocity information recorded during task
performance, for the same single lag and multiple lag incre-
ments described above. We compared these fits to correlations
of cell discharge with muscle activity. Before making this
comparison of fits to different movement parameters, trials
were selected for analysis using the criteria described in METH-
ODS to ensure that trial performance was as homogeneous as
possible. In monkey M38, three PTNs were subsequently

FIG. 6. Temporal tuning functions for the encoding of muscle activity. A:
tuning curves for single cells. Each curve corresponds to the nonlinear
prediction accuracy as a function of � for a single cell. Asterisk indicates
optimal lag. Only a randomly chosen subsample of the population is shown to
avoid overcrowding. B: average temporal tuning functions for the population,
divided into 3 cell types (see legend). Each trace represents the mean change
in nonlinear prediction accuracy as a function of � for each cell group. Error
bars indicate SE.
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excluded from analysis because they fired mainly during trials
that were rejected.

Correlation coefficients for nonlinear versus linear predic-
tions were compared (Fig. 8A). In contrast to the analysis
conducted with EMG data, cascade models using finger posi-
tion and velocity information showed an increase in the
strength of the nonlinearity: more cells were above unity (M38:
76% for kinematic fit, compared with 69% for EMG fit; M36:
95% for kinematic fit compared with 70% for EMG). The
mean difference in prediction accuracy between nonlinear and
linear predictions was greater for fits to kinematic data: in M38
it was 0.03 for kinematic fits compared with 0.003 for EMG; in
M36 it was 0.03 for kinematic fits compared with 0.01 for
EMG. However, in both monkeys this difference did not reach
significance (one-tailed t-test, P � 0.05). The increased effect
of the nonlinearity for fits to kinematic variables is consistent
with a previous study of M1 neurons during an arm-reaching
task, where kinematic encoding was found to be significantly

FIG. 8. Comparing the encoding of muscle activity vs. kinematic informa-
tion. A: scatterplot of nonlinear vs. linear prediction accuracies using finger
position and velocity information. Conventions are the same as for Fig. 3: note
that points fall further above the diagonal in the current figure, suggesting a
greater increase in prediction accuracy for encoding of kinematic information
when incorporating the nonlinearity f. B: scatterplot comparing prediction
accuracies for muscle activity (y-axis) vs. kinematic information (x-axis). Each
dot represents the correlation coefficient for a single cell between the observed
and predicted IFR, obtained using the 2 types of information. Diagonal line
indicates unity. Correlation coefficients do not fall significantly either side of
diagonal, indicating equal accuracy of the model when fitted to muscle activity
or kinematic information. C: scatterplot of prediction accuracies for a combi-
nation of muscle activity and kinematic information (y-axis) vs. muscle activity
alone (x-axis). Correlation coefficients fall significantly above diagonal, indi-
cating greatest accuracy of the model when fitted to both types of information.
All plots show data from M36 and M38.

FIG. 7. Prediction accuracy as a function of number of delay samples. A:
modulation for single cells. Each trace corresponds to the nonlinear prediction
accuracy vs. number of delays for a single cell, where the delay increment is
40 ms. Asterisk indicates optimal number of delays. A random subsample of
cells is shown to avoid overcrowding. B: population mean prediction accuracy
as a function of number of delay samples, divided into 3 cell types (see
legend). Each trace represents the mean change in nonlinear prediction accu-
racy vs. number of delays. Error bars indicate SE.
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nonlinear, although the effect of this nonlinearity was also
small (Paninski et al. 2004c).

Prediction accuracy was compared for M1 and dentate
neurons fitted using kinematic data in M38. Because no cere-
bellar recordings were included from M36, data from a third
monkey (M41) were incorporated here to make a comparison
across two animals. In both cases, mean prediction accuracy
for M1 neurons was nearly twice as accurate as that for dentate
cells. This difference was significant (paired one-tailed t-test,
P � 0.001).

Finally, fits made using kinematic and EMG information in
M36 and M38 were compared across all neurons. There was no
significant difference in mean prediction accuracy between
kinematic and EMG information (paired t-test, P � 0.05) (Fig.
8B). Combining both kinematic and EMG information in-
creased prediction accuracy above what was observed with
either EMG or kinematic data alone (Fig. 8C). In all of these
instances, PTNs were always modeled with greater accuracy
compared with UIDs and dentate neurons.

Predictions of spiking activity

We compared the ability of the Poisson and spike history
(SH) models described above to predict novel spike trains, in
the population of cells from monkey M38. Fitting k� and f to
training data that incorporated the spiking history of the neuron
improved the dynamic range of the encoding function (Fig.
9A). For all 94 cells, both the absolute and percentage modu-
lation of firing rate measured from the function were signifi-
cantly higher when cells were fitted with the SH terms com-
pared with EMG alone (one-tailed t-test, P � 0.05). However,
despite this apparent improvement, cross-validated predictions
of the observed IFR made by mapping the filtered signal k� � w�
through the encoding function f were significantly less accurate
for the SH model, compared with when cells were fitted with
the EMG alone (one-tailed t-test, P � 0.05). The increase in
dynamic range captured by incorporating the SH terms failed
to improve fit quality, resulting from the fact that, as with the
basic LN model, the rising part of the curve still corresponded
to the tail of the distribution of the filtered signal, where there
were few data (Fig. 9B). In turn, fits made using SH terms did
not lead to improved performance of the model when predict-
ing the spike count in a novel, cross-validated section of the
data (Fig. 10). Because the iterative spike generation process
was fairly time consuming, a subset made up of the 10 cells
that gave the most accurate nonlinear predictions of the IFR
was tested. For each cell, the cross-validated average firing rate
computed from 20 repeats of the spike generation process was
compared with the observed IFR by means of the correlation
coefficient, for the LN and the SH models. The SH model was
not significantly more accurate at predicting the spike count
(one-tailed t-test, P � 0.05).

D I S C U S S I O N

This paper describes the application of a linear–nonlinear
(LN) analysis to the encoding of muscle activity by neurons in
primary motor cortex (M1) and cerebellar dentate nucleus of
the macaque. The cross-correlation of single-unit activity with
a combination of EMGs was a fundamental and novel feature
of the analysis. Cell discharge was not simply described by

fitting to a single EMG (see METHODS). This is in agreement
with the output and intrinsic connectivity of M1 and the role of
dentate nucleus in the coordination of muscle activity, partic-
ularly during finger movements, where it is unlikely that single
cells or groups of cells within these structures control the
activity of single muscles (Lemon 1988; Thach et al. 1992).
Instead, the complexity of the musculature acting on the hand
and digits may require a distributed command signal weighted
differently for the different motoneuron pools (Bennett and
Lemon 1996). Consistent with this, the discharge properties of
single neurons within M1 have been described within a “mus-
cle space” coordinate system in which cell firing can be related
to the activity of a set of muscles, such as by cross-correlating
cell activity with each EMG one at a time (Holdefer and Miller
2002). The aim of the current study was to extend this previous
work by investigating how single cells encode the full time-

FIG. 9. Incorporating spike history (SH) effects. A: effect of including SH
terms on dynamic range of cell encoding function. Black trace: example
encoding function f, for a PTN from M1, for LN model fitted to muscle activity
as in Fig. 4. Gray trace: encoding function for same cell fitted to both muscle
activity and the previous response history of the cell �10 ms previously. Note
that although the dynamic range of modulation increases, the curve shifts right
to higher values of the filtered signal k� � w� . Error bars indicate SE. B: effect of
SH on filtered signal. Black histogram shows distribution of filtered signal
values for fit to muscle activity as in Fig. 4. Gray histogram shows distribution
of filtered signal values for fit incorporating SH, which shifts to the right. Thus
for both fits, much of the change in the firing rate of the cell takes place at the
tail of the corresponding distribution, where there are few data. Filtered signal
values have been scaled to �1 and �1 as described in METHODS.
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varying concurrent activity of multiple muscles. The key result
we have demonstrated is that the control of movements by
these neurons within a muscle parameter space is linear in
nature. The results of two important comparisons are de-
scribed: neurons in M1 are on average two times more strongly
correlated with movement parameters than those in dentate,
and a combination of EMG signals from multiple muscles
provides predictions of neural discharge that are as accurate as
predictions made using kinematic information.

Linearity of encoding

The linear nature of muscle encoding reported here contrasts
with the encoding of kinematic parameters in the same task and
during an arm-reaching task where encoding was significantly
nonlinear in about one third of the cells analyzed (Paninski et
al. 2004c). However, it was suggested in the latter study that
the full strength of the nonlinearity in kinematic encoding was
masked and that the inclusion of other behaviorally relevant
parameters in the analysis (such as EMG) could expose addi-
tional, and possibly stronger, nonlinearity. We have demon-
strated that the inclusion of muscle activity does not have this
effect, at least under these task conditions.

Our work complements previous spike-triggered averaging
studies (Cheney and Fetz 1980; Jackson et al. 2003; Morrow
and Miller 2003). It is also consistent with results from a recent
intracortical microstimulation study that found linear summa-
tion of corticospinal outputs in cat M1 measured using a
combination of eight forelimb EMG signals (Ethier et al.
2006). Furthermore, it is interesting to compare our findings
with certain features of a model proposed by Todorov (2000):
assuming that M1 PTNs contribute additively toward the acti-
vation of muscles, apparent encoding of kinematic parameters
then emerges as the result of compensations made by the M1
output for each muscle’s state dependency. Linear encoding of
muscle activity by single neurons represents the inverse of this
model: neuronal discharge rates are a linear sum of the activity
in multiple muscles. Of the three cell types (PTNs, UIDs, and
dentate neurons) the activity of PTNs was predicted with
greatest accuracy by the LN analysis. Because most M1 hand
area PTNs have axons that terminate within the spinal cord
segments controlling arm and hand muscles—and therefore
directly influence activity in these muscles—this finding is not
unexpected. However, Todorov’s framework considers only
corticomotoneuronal neurons (which make direct connections
with motoneurons). In monkey M36 a total of 16/22 PTNs
sampled were also identified by spike-triggered averaging to be
CM cells, although it is difficult to incorporate the unidentified
M1 cortical neurons (UIDs) and cerebellar dentate cells that we
analyzed within this scheme.

Furthermore, there was no nonlinearity in the encoding
surfaces f (k�1 � w� , k�2 � w� ) computed from two orthogonal filters
k�1 and k�2 (Fig. 5), indicating that a single filter was sufficient
to capture firing rate modulation with muscle activity in these
neurons and further validating the linear model. This is in
agreement with neurons sensitive to hand position and velocity
in M1, which are also sufficiently described by a single filter
(Paninski et al. 2004c). However, it is possible that additional
nonlinearity might be exposed after including information
about other movement parameters (such as joint angles and
torques) that were not analyzed here.

Temporal dynamics of encoding

The temporal (that is, �- or lag-dependent) properties of
muscle encoding were previously addressed using correlative
methods, in M1 and red nucleus. Initial studies addressed
single neuron–muscle pairs (Miller et al. 1993); more recently,
the correlation of ensembles of neurons with individual mus-
cles was investigated (Morrow and Miller 2003). Our study
complements this work by looking at the encoding of activity
in multiple muscles by single neurons.

The resulting “temporal tuning curves” were heterogeneous
(Fig. 6). There was no consistent optimum � for all neurons and
the shapes of the tuning curves varied considerably from cell to
cell. Similar heterogeneity was observed for the tuning of M1
neurons to hand position and velocity in a pursuit-tracking task
(Paninski et al. 2004a). Tuning curves also tended to be broad,
for both single cells and population means, with no sharp
tuning to a particular �, and cells remained relatively well
correlated with muscles even at long positive and negative
lags. Interestingly, our analysis uncovered the same broad
tuning functions for identified CM cells from monkey M36.

FIG. 10. Predicting spikes from muscle activity. Figure shows same cell as
Fig. 9. A: raster display showing 20 iterations of predictions of spiking activity
for an M1 neuron using the basic linear–nonlinear (LN) model. B: equivalent
raster display for predictions made using the spike history model described in
Analysis. C: averages of the above rasters (green and red traces, respectively)
compared with observed IFR. Both types of predictions do about as well as
each other at predicting the periods of spiking activity. D: observed spikes
shown for comparison. Predictions are illustrated for a small, randomly chosen
portion (3 s long) of the total data recorded from this neuron.
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This broad range of tuning properties is consistent with
previous descriptions of the diversity of the correlation strength
between neural activity and various behavioral parameters
(Kakei et al. 1999; Porter and Lemon 1993). However, it
conflicts with rapid latencies of 5–10 ms for the onset of
postspike facilitation (PSF) estimated in previous spike-trig-
gered averaging studies (Fetz and Cheney 1980; McKiernan et
al. 1998, 2000). There was also a disparity between the pattern
of muscle weighting given by k� and the pattern of postspike
effects in some CM cells. Why might these discrepancies
exist?

As detailed above, these findings did not simply arise from
the nature of the filtering we applied, nor are they a result of
combining activity from multiple muscles: firing rate was
correlated with single EMGs in a similar fashion. Broad
temporal tuning was previously observed for neurons in the
magnocellular red nucleus (Miller and Sinkjaer 1998) and
interpositus (Soechting et al. 1978) and it has been argued that
it represents a nonspecific modulation of �-motoneuron activ-
ity by these cells; this could certainly be the case for the broad
lag functions we observed among dentate neurons and UIDs.

But why did PTNs, some of which were CM cells directly
controlling �-motoneuron activity, behave in the same way?
PSF effects for CM cells represent an increased probability of
motoneuron discharge that is time locked to CM cell spiking,
at latencies close to the conduction delay between cell and
muscle (Porter and Lemon 1993). However, the synaptic input
to a motoneuron from a single CM cell is very small compared
with the total synaptic drive to the motoneuron; and as a result
the probability that the discharge of a single CM cell will cause
a motoneuron to fire is very low (Baker and Lemon 1998;
Porter and Lemon 1993). Thus only a few percent of a CM
cell’s total spike activity are exactly time locked to discharges
of motoneurons in the cell’s target muscle and therefore to its
EMG activity. Of course, the vast majority of spikes that do not
cause motoneurons to discharge are nevertheless still contrib-
uting to the overall excitatory synaptic drive to the same
motoneurons; this is reflected in a broader coactivation of cell
and muscle activity. This in turn accounts for the more general
correlation between the envelopes of cell and muscle activity
that can often be observed over longer time scales of several
hundred milliseconds. These broad correlations are more com-
mon because cells and muscles tend to covary during the task
for the reasons given above. However, both sources of corre-
lation are thought to be of importance in understanding the
encoding of movements in terms of muscles. For example,
the interaction between the pattern of postspike effects and the
pattern of CM cell–muscle coactivation might enhance the
fractionation of hand muscle activity during precision grip
(Bennett and Lemon 1996). The overall strength of correlations
between CM cell spike trains and target muscle EMG will be
enhanced by the fact that CM cells with common target
muscles are synchronized together at the cortical level (Jackson
et al. 2003).

Our findings bear a noticeable similarity to results presented
by Morrow and Miller (2003; see their Fig. 3A) who fitted
EMG in single muscles to activity in ensembles of �15 M1
neurons—essentially the converse of our analysis—during
reach-to-grasp movements. Importantly, the task studied dif-
fered from ours in that arm movements were unrestrained and
grip was exerted against a static rather than compliant load.

Nonetheless, good fits (R2 � 0.6) could be obtained for long
negative and positive delays (�400 and �500 ms, respec-
tively). Their observation of similarly broad neuron–muscle
correlations during a different task would tend to suggest that
the tuning curves shown above are not just a by-product of
task-related coactivation.

Furthermore, we examined how best to combine the EMG
information at multiple lags in addition to computing single lag
tuning curves. The ability of our model to predict novel cell
discharge improved as more of the EMG waveform was
included even at very long positive lags (�360 ms) (Fig. 7),
consistent with broad temporal tuning. The improvement was
only slight, however, suggesting that much of the modulation
in cell firing could be explained by incorporating muscle
activity at only a single time point relative to each spike.

Kinematics

In this study we were able to make a direct comparison by
LN analysis between the encoding of time varying muscle
activity and the encoding of basic kinematic parameters (finger
position and velocity), in the same population of neurons. Such
a comparison was aimed at assessing the relative importance of
these two signals in describing M1 and cerebellar activity and
was of interest, given the long-standing debate about the
precise nature of the neural “code” for movement (Scott 2000).
The finding that neural discharge in both structures was cor-
related with muscle activity and kinematic information to a
similar extent is consistent with previous reports suggesting an
intermixing of neurons encoding both types of parameters in
M1 (Kakei et al. 1999; Thach 1978). It also adds to work from
several studies that have addressed kinematic encoding in M1
and cerebellum during arm-reaching movements (Fu et al.
1995, 1997; Paninski et al. 2004a,c; Serruya et al. 2002) by
studying this encoding during execution of precision grip.
These two types of task involve fundamentally different con-
trol strategies (Porter and Lemon 1993; Scott and Kalaska
1997). Interestingly, the encoding of digit position and velocity
by these cells was more nonlinear in nature compared with the
encoding of EMG (Fig. 8A), supporting the results of previous
work on the representation of kinematics in M1 (Paninski et al.
2004c).

Spike history model

We evaluated the effects of incorporating neuronal response
history in our model. Including spike history (SH) increased
the apparent dynamic range of the encoding function (Fig. 9A).
This result would seem to be consistent with previous studies
measuring likelihood and tuning curve modulation (Berry and
Meister 1998; Paninski et al. 2004b). However, despite this
increase in dynamic range, the SH model actually resulted in
significantly decreased accuracy of predictions of observed
IFR. The reason for this decrease is that much of the dynamic
behavior of the cell captured by the SH terms took place at the
tail of the distribution of the filtered signal k� � w� , where there
were few data (Fig. 9B). This effect is similar to the weak
influence of the nonlinearity described above (Fig. 4), where
much of the filtered signal distribution was confined to the
linear portion of the curve. Consequently, fits made using SH
terms did not lead to improved predictive performance: our
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spike history model failed to give more accurate predictions of
the neuron’s spiking activity on novel, cross-validated data
(Fig. 10). This conflicts with findings from the aforementioned
studies, but is consistent with the overall picture we present
here, of linear encoding of muscle activity. The activity of the
cells was sufficiently described by a linear combination of the
EMG signals from multiple hand muscles, without needing to
incorporate the response history of the cell �10 ms previously.
In turn, this could be interpreted as support for weakly time
locked spike generation in models of muscle encoding by these
neurons, under these particular task conditions.

Comparison of different cell types

Finally, another important finding of this study was the
consistent trend of greater correlation strengths with movement
parameters for PTNs than for UIDs, which were on average
twofold greater than dentate neurons. This result is in agree-
ment with the extent to which these different cell types control
the intrinsic hand and forearm muscles. Dentate neurons
should be expected to show the weakest relationships to spe-
cific movement parameters, given that this structure lacks any
direct projections to the cervical levels of the spinal cord
(Brooks and Thach 1981). Because the major projections from
the dentate nucleus involve the motor thalamus and motor
cortex, it is likely that this is the main pathway that mediates
cerebellar influence over muscle activity. In line with this
theory, functionally related regions of M1 and dentate are
interconnected (Dum and Strick 2003; Holdefer and Miller
2000) and dysfunction of the cerebellar hemispheres and den-
tate nucleus disrupts skilled finger movements in monkeys and
humans (Glickstein et al. 2005; Thach et al. 1992), indicating
that these two structures work in close cooperation during
precision grip. This may explain why, despite differences in the
relative strength of their correlations with EMG and kinematic
parameters, neurons from both structures showed the same
basic features of movement encoding.
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