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Abstract The antennal hearing organs of the fruit fly
Drosophila melanogaster boost their sensitivity by an
active mechanical process that, analogous to the cochl-
ear amplifier of vertebrates, resides in the motility
of mechanosensory cells. This process nonlinearly im-
proves the sensitivity of hearing and occasionally gives
rise to self-sustained oscillations in the absence of sound.
Time series analysis of self-sustained oscillations now
unveils that the underlying dynamical system is well
described by a generalization of the van-der-Pol oscil-
lator. From the dynamic equations, the underlying
amplification dynamics can explicitly be derived.
According to the model, oscillations emerge from a
combination of negative damping, which reflects active
amplification, and a nonlinear restoring force that dic-
tates the amplitude of the oscillations. Hence, active
amplification in fly hearing seems to rely on the negative
damping mechanism initially proposed for the cochlear
amplifier of vertebrates.

The cochlear amplifier is a fundamental, generally ac-
cepted concept in cochlear mechanics, having a large
impact on our understanding of how hearing works.
This concept, first brought forward by Gold (1948),

posits that an active mechanical process improves the
mechanical performance of the ear (Robles and Ruggero
2001). Active components consume power other than
the signal itself, to provide amplification. Until recently,
the study of this amplificatory process has been re-
stricted to the ears of vertebrates, where the high com-
plexity and the limited accessibility of the auditory
system complicate the in situ investigation of the
mechanisms involved. This limitation has hampered the
validation of cochlear models that have been devised
(e.g., de Boer 1996; Kern and Stoop 2003). The hearing
organs of certain insects have recently been shown
to exhibit signal processing characteristics similar to
the mammalian cochlea by using active amplification:
the ears of these insects are able to actively amplify
incoming stimuli, display a pronounced compressive
nonlinearity, exhibit power gain, and are able to gener-
ate self-sustained oscillations in the absence of sound
(Göpfert and Robert 2001, 2003; Göpfert et al. 2005). In
both vertebrates and insects, the mechanism that pro-
motes this amplification resides in the motility of audi-
tory mechanosensory cells, i.e. vertebrate hair cells and
insect chordotonal neurons. Both types of cells are
developmentally derived by homologous genes and
share similar transduction machineries, pointing to a
common evolutionary origin (Boekhoff-Falk 2005). In
line with such an evolutionary scenario, it seems possible
that also the fundamental mechanism of active amplifi-
cation in the ears of insects and vertebrates is evolu-
tionary conserved (Robert and Göpfert 2002).

Since insect hearing organs are located on the body
surface (head, thorax, legs etc.), they are accessible
to non-invasive examination. Moreover, because the
external sound receiver is often directly coupled to the
auditory sense cells, insect auditory systems can be ex-
pected to provide profound experimental and theoretical
insights into the in situ mechanics of motile sense cells
and their impact on the mechanical performance of the
ear. Such information is technically relevant: providing
natural examples of refined active sensors, the minuscule
ears of insects promise inspiration for the design of
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nanoscale artificial analogues. In this contribution, we
model self-sustained oscillations of the antennal ear of
the fruit fly Drosophila melanogaster. By using time-
series analysis methods, we reconstruct the generating
differential equation and we show that the amplificatory
process is well described by a generalization of the
van-der-Pol equation. The fly’s auditory system is shown
to be driven by a regenerative amplifier, as was initially
proposed by Gold (1948) for the cochlear amplifier of
vertebrates.

The basic acoustic stimulus to which Drosophila re-
sponds is the courtship song, produced by the courting
male, which is a sinusoidal sound wave having an average
frequency of 160 Hz, with considerable variation be-
tween males. From the antenna’s distal part that forms
the external sound receiver, hearing is mediated by di-
rectly connected mechanosensory neurons (Göpfert and
Robert 2003). These neurons actively modulate the re-
ceiver’s mechanics and, occasionally, give rise to self-
sustained receiver oscillations (SO). In Drosophila, SO
occasionally occur spontaneously, i.e. when the physio-
logical condition of the animal deteriorates, and upon
thoracic injection of dimethylsulphoxide (DMSO)
(Göpfert and Robert 2001). For both the cases, the
physiological mechanism that drives the fly’s auditory
system into the oscillatory regime remains unclear. Yet,
because spontaneously occurring and DMSO-induced
oscillations are both physiologically vulnerable and dis-
play similar waveforms, they can be used to probe active
amplification in the fly’s antennal ear (Göpfert and
Robert 2001). As DMSO reliably induces oscillations in
the ear of the wild-type Drosophila (Oregon R strain), we
have focused our analysis on the DMSO-induced SO,
where our measuring device consisted of a computer-
controlled Ploytec PSV-400 scanning laser Doppler
vibrometer with a OFV-5000 scanning head, and a con-
troller. All measurements were taken on the distal part of
the receiver, i.e. the tip of the antenna’s arista [for a
detailed technical description, see (Göpfert et al. 2005)].

Self-sustained receiver oscillations (SO) emerge some
10 min after the administration of DMSO, beginning at a
frequency around 130 Hz. During the following pro-
cesses, this frequency continually decreases. Already a few
minutes later (at about 100 Hz), the SO attain their fully
developed relaxation–oscillation like waveform (Fig. 1b;
Göpfert and Robert 2003). For a longer period, this
waveform is maintained. From there, the SO abruptly
change into a temporally extended state with reduced
amplitudes (Fig. 1c), from where, again rather abruptly,
the final sinusoidal shape is attained (Fig. 1d). DMSO
evoked SO can last up to 1–1.5 h until they disappear with
the animal’s death (Göpfert and Robert 2003). Their
typical shapes (see Fig. 1) are reminiscent of limit-cycle
oscillations generated by a van-der-Pol type oscillator,

€x� lð1� x2Þ _xþ x ¼ 0; ð1Þ

where x is identified with the receiver’s vibrational po-
sition and where the control parameter l>0 is slowly
decreased in order to account for the changes of SO

shapes during time. It is well known that at l=0, the
van-der-Pol oscillator undergoes a Hopf bifurcation:
for l>0, stable limit cycles emerge that can be inter-
preted as negative damping (i.e. amplification). A de-
tailed examination, by comparing the onsets and extents
of the upward and downward excursions within one
period of the experimental data, reveals a pronounced
asymmetry (see Fig. 1b), which requires a more general
model for SO generation than the standard van-der-Pol
system.

In order to capture this asymmetry, we used a
generalization

€xþ PnðxÞ _xþ PmðxÞ ¼ 0; ð2Þ

of the van-der-Pol oscillator, where Pn(x) and Pm(x)
describe polynomials of yet unknown orders n and m,
respectively. From the point of Physics, Pn(x) describes a
nonlinear, and possibly negative, damping, whereas
Pm(x) accounts for a nonlinear restoring force. Our
objective is to determine the orders n, m and the poly-
nomial coefficients that yield the optimal reproduction
of the experimental data. We expect that for a proper
model, the polynomial orders n and m are unambigu-
ously determined, and only the variation of the coeffi-
cients will account for the observed changes in the SO
shapes over time.

From the measurements, we are provided with the
receiver’s vibration velocities time series. Our reported
results are based upon a typical, reproducible, time
series of 160,000 data points, obtained from one indi-
vidual fly. Stationarity requires to dissect the time series
into subfiles of 4,000 data points. In Fig. 1, the charac-
teristic subfiles from the temporal evolution are shown.
In order to determine the optimal model, the receiver’s
displacements and accelerations are required. This is
obtained by numerical integration and differentiation of
the data, respectively. For both the cases, characteristic
difficulties must be overcome. In the case of the receiver
position, slow changes in the mean velocity induce a
noticeable drift in the computed locations. This drift can
be eliminated by approximating the computed locations
by a polynomial in the least-squares sense and sub-
tracting the polynomial values from the location values.
Using a polynomial of 20th order, the nonlinear trends
are annihilated, including the linear and the quadratic
contributions. Unfortunately, high-order polynomials
induce strong oscillations in the vicinity of the beginning
and end of the time series. For the further analysis, these
parts of the time series must therefore be excluded. In
the case of the numerical differentiation, the measured
time series must be smoothed in order to reduce the
effects of noise. By applying a first-order Savitsky–
Golay filter (Savitsky and Golay 1964), this can be
achieved in an efficient way.

As the basis for our fit to the data, we consider
polynomials of the form

f ðx; _xÞ ¼ �PnðxÞ _x� PmðxÞ: ð3Þ
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In this notation, the differential equation takes the form
€x ¼ f ðx; _xÞ: In order to determine the optimal polyno-
mial orders, for each (n, m) order model the polynomial
coefficients that minimize the squared error

�2n;m ¼
XN

i¼1
€xðtiÞ � f ðxðtiÞ; _xðtiÞÞð Þ2; ð4Þ

are determined, whereby the time series f€xðtiÞg are nor-
malized to have unit variance. Since the time series are
non-stationary, the time steps ti at which _xðtiÞ is mea-
sured should be restricted to a quasistationary subset of
the entire time series. The lengths N of these subsets
(�4,000 data points) were found to be sufficiently large
for polynomial fitting being reliably performed.

It is observed that the error e2n, m saturates for n=2
and m=5 (Fig. 2). A further increase of {n, m} does not
reduce e2n, m. The emergence of such a conspicuous
saturation point is exceptional: it indicates that the

model structure (2) faithfully reproduces the data. It
could be argued that the relatively high noise level pre-
vents the error e2n, m from decreasing any further. In
the absence of noise, the errors might thus gradually
decrease with increasing {n, m}. Fortunately, the rapid
decay of e2n, m before saturation provides strong evi-
dence against this view, indicating that our modeling is
realistic indeed. Moreover, noise-cleaned (Kern et al.
2000) experimental data reveal a basically unchanged
decay behavior, corroborating the validity of the
obtained optimal polynomial orders.

A comparison between the realizations of time series
by the model and the measurements supports the
validity of our approach. For the fully developed SO
(after 20 min, see Fig. 3), the comparison reveals that
the measured velocities are faithfully reproduced. This is
further illustrated in Fig. 4, where the modeled and the
measured data are compared in the phase plane ðx; _xÞ;
whereby the positions x were obtained by numerical
integration from the measured velocities. Similar
observations emerge for time series recorded at 10, 30,
and 34 min, respectively, after DMSO injection.

The shapes of the polynomials Pn(x) and Pm(x) reflect
the asymmetry of the observed receiver oscillations,
specifically when SO are fully developed (cf. Fig. 1b).
The asymmetry of Pn(x) and, in particular, Pm(x) (see
Fig. 5b) becomes effective at large displacements and
may have its origin in structural–mechanical properties
of the antenna. An enlightening interpretation of the
amplification dynamics can be given for the behavior
around zero displacement position x @ 0, where Pn(x)
attains negative values for small displacements x
(Fig. 5a). Since Pn(x) represents a nonlinear damping,
Pn(x)<0 implies that energy is injected into the system.
This is a characteristic feature of an active amplification
process. Around x=0, the nonlinear restoring force
Pm(x), together with its first and second derivatives, are
relatively small. This implies that for small receiver
displacements, virtually no restoring force is present. By
means of the negative damping term, the system is thus
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Fig. 1 Self-sustained
oscillations (mm/s) of the
Drosophila hearing sensor
(velocity measurements),
a 10 min, b 20 min, c 30 min,
d 34 min after
dimethylsulphoxide (DMSO)
injection
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Fig. 2 Root-mean-squared error en, m of the model fitting Eq. 4,
showing a precipitous decay and saturation of the error around the
orders n=2 and m=5 of the polynomial approximation
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easily driven out to relatively large amplitudes. Thirty
minutes after administration of DMSO (Fig. 1c, d), the
nonlinear contributions to damping and restoring force
have decayed. In particular, the range where the
damping is negative has decreased (Fig. 1c) and finally
vanished (Fig. 1d), in agreement with the observed
reduction in SO amplitude (see Fig. 1). In the absence of
pronounced SO (Fig. 1a, c, d), the restoring force

function Pm(x) obtains an approximately linear charac-
teristic with a very small slope. At the same time, the
damping term remains small. As a consequence, weak
stimuli will still be sufficient to elicit considerable
antennal vibrations. Hence, even when the amplifier is in
a stable state, where limit cycles do not occur, the sensor
can be very sensitive. Small parameter changes are suf-
ficient to render the damping term negative and to lead
to an amplification of incoming vibrations. The evalu-
ation of the temporal evolution of the polynomials
Pm(x), Pn(x) from subfile to subfile yields that the
polynomial orders are preserved, whereas the coefficients
change in time. This is remarkable in particular in the
case of Pm(x), as it indicates that this term comprises
more than just mechanical antenna properties. A more
than formal interpretation of the process in terms of
mechanical quantities would therefore require particular
care. During the evolution, the general tendency of the
coefficients moduli is to decrease, in an approximately
linear fashion. In spite of this fact, the fully developed
oscillatory state is maintained for a long time. In the
present example, the oscillatory amplitudes and the
shapes of the polynomials quite abruptly flatten out
after 28 min, where the stiffness term seems to slightly
precede the damping term. The decrease appears to
conserve the fine balance between the stiffness and
damping term that has been discussed for the fully
developed case.

Our results may be compared to measurements of
active hair-bundle oscillations of vertebrate hair cells,
pointing to a slight difference in the mechanisms
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Fig. 3 a Receiver’s vibration velocity (mm/s), 20 min after DMSO
injection [fully developed self-sustained receiver oscillations (SO)].
b Approximating time series generated by the model (2), using n=2

and m=5. Approximating polynomials are Pn (x)=�8.602 · 102�
9.481 · 105 x+4.811 · 1010 x2, Pm (x)=31.98+2.023 · 106 x �
7.85 · 108 x2 � 7.474 · 1013 x3+1.501 · 1015 x4+7.488 · 1020 x5
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Fig. 4 Phase-space representation of measured (dots) and modeled
(solid line) receiver vibrations (at fully developed SO). Units: x:
(102 mm), y: (10�1 mm/s)

(a) (b)

Fig. 5 Fully developed SO 20 min after DMSO injection, approx-
imated by polynomials of degrees n =2 and m=5. a Nonlinear
damping term Pn(x), showing negative damping around the origin
(Pn(x)<0). b Nonlinear restoring force Pm(x), displaying a

noticeable asymmetry. Its derivative P¢m(x) indicates areas of
negative stiffness (P¢m(x)<0). Units: x: (102 {mm), y: (s�1),
({mm s�2), respectively
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involved. Active hair bundle oscillations promote active
amplification in nonmammalian and, possibly, mam-
malian vertebrates (Chan and Hudspeth 2005; Kennedy
et al. 2005; Martin et al. 2000). Mechanical stimulation
experiments performed on isolated hair bundles have
shown that the bundle stiffness may become negative
for small bundle displacements (Kennedy et al. 2005;
Martin et al. 2000). In this case, bundle stiffness has its
origin in amplification-promoting ion–channel dynam-
ics. For the Drosophila ear, our model suggests that
amplification emerges from negative damping; only at
intermediate displacements, regions of negative stiffness
(i.e., where the restoring force decreases with displace-
ment) are found (see Fig. 5b).

Recently, it was proposed that active amplification
in the mammalian hearing system is governed by the
(nonlinear) Stuart–Landau equation (Kuramoto 2003)
valid around a Hopf bifurcation point (Choe et al. 1998;
Camalet et al. 2000; Eguı́luz et al. 2000). By fixing the
Hopf parameter to (Duke and Jülicher 2003; Magnasco
2003) or below (Kern and Stoop 2003; Stoop and Kern
2004) the bifurcation point, salient characteristics of
cochlear mechanics such as responses to single and
multi-frequency tones could be reproduced (Kern and
Stoop 2003; Camalet et al. 2000; Eguı́luz et al. 2000;
Duke and Jülicher 2003; Magnasco 2003; Stoop and
Kern 2004; Jülicher et al. 2001). Because the van-der-Pol
system (Eq. 1), as well as our generalized higher-order
nonlinear oscillator, exhibit a Hopf bifurcation at l=0,
they show compatible amplification properties. Active
amplification using Hopf nonlinearities thus appears to
be a general mechanism in hearing.

Finally, a comparison with approaches of modeling
spontaneous otoacoustic emissions (SOAE) of verte-
brate ears by means of active nonlinear oscillators can be
made. It was recently shown that in order to generate the
correct exponential relaxation part behavior of SOAE,
the simplest van-der-Pol oscillator variant (1) is insuffi-
cient (Sisto and Moleti 1999). For a correction, the
damping coefficient term (1�x2) was changed into the

form c
hx2ið Þm � b

� �
; where c, b, m are positive numbers

and ÆÆæ denotes the average over many cycles of the
inherent oscillations of the system. The fractional term
has the effect that the nonlinear active amplification
term (negative damping) grows significantly in the
neighborhood of x=0, whereas linear damping domi-
nates for larger amplitudes. This yields the experimen-
tally observed exponential relaxation behavior at
intermediate relaxation time. For the implementation of
the also observed initial saturation regime, an additional
(negative quadratic) term is required. Figure 5 and a
numerical check show that these experimental features
are already contained in our model.

Active amplification in the ear of D. melanogaster
may generate self-sustained oscillations in the absence
of sound. The shape and temporal pattern of these
oscillations are faithfully described by a generalization
of the van-der-Pol equation, where the validity of the

model derived is supported by the saturation of the
model fit to the experimental data. From our model-
ing, it emerges that the observed active amplification
results from the combination of negative damping,
which is quadratic in the displacement, and a strongly
nonlinear restoring force that has two positions of
minimal absolute size at nonzero displacement. Within
the area of negative damping, the restoring force is
almost linear. In this region, negative damping will
amplify the receiver’s vibrations, even if the resulting
displacement is too small to cross the local absolute
size extrema of the restoring force. If the latter can
be crossed, an oscillation displaying a characteristic
displacement (at a frequency that depends on the
mechanical properties of the antenna) is maintained.
This seems to be an efficient way of combining high
sensitivity with robustness to noise. Antenna geometry
finally may be responsible for the observed asymmetry
of the restoring force (visible upon close inspection of
Fig. 5b).

The model described here captures several charac-
teristics of vertebrate SOAEs, indicating that our ap-
proach may be useful for analyzing the Physics of the
cochlear amplifier as well. InDrosophila, insights into the
Physics of auditory amplification are important: because
the antennal ear of the fly is a preferred model system to
genetically dissect the processes that bring about hearing,
our work provides a theoretical framework that may
help to explore the integrated function of an ear.
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