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Abstract

Spike train distance measures serve two purposes: to measure neuronal firing reliability, and to provide a metric with which spike trains can be
classified. We introduce a novel spike train distance based on the Lempel-Ziv complexity that does not require the choice of arbitrary analysis
parameters, is easy to implement, and computationally cheap. We determine firing reliability in vivo by calculating the deviation of the mean
distance of spike trains obtained from multiple presentations of an identical stimulus from a Poisson reference. Using both the Lempel-Ziv-
distance (LZ-distance) and a distance focussing on coincident firing, the pattern and timing reliability of neuronal firing is determined for spike
data obtained along the visual information processing pathway of macaque monkey (LGN, simple and complex cells of V1, and area MT). In
combination with the sequential superparamagnetic clustering algorithm, we show that the LZ-distance groups together spike trains with similar
but not necessarily synchronized firing patterns. For both applications, we show how the LZ-distance gives additional insights, as it adds a new

perspective on the problem of firing reliability determination and allows neuron classifications in cases, where other distance measures fail.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Measuring the similarity of neuronal firing is required for
solving two problems of spike train analysis. First, the reliabil-
ity of neuronal firing can be measured by calculating the mean
distance among a set of spike trains obtained from multiple pre-
sentations of the same stimulus. The larger the mean distance,
the less reliable is the neuron’s firing. Second, in combination
with a clustering algorithm, neurons can be classified in terms of
firing similarity. This is critical for gaining information about the
functional connectivity of a probed neuronal network. A clas-
sic example is the discrimination between simple and complex
cells in the primary visual cortex based on response modulation
(Skottun et al., 1991). To solve these problems, a variety of dis-
tance measures has been proposed (see Fig. 1). Almost all these
measures introduce a bias by predefining analysis parameters.
Only the simplest measure, the spike count distance that mea-
sures similarity as the difference in the total number of spikes
evoked, is free from any bias—but this measure does not take the
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temporal structure of the spike train into account. Information
distances — e.g. those that rely on the Kolmogorov complexity
(Bennett et al., 1998; Li et al., 2001) or the Kullback—Leibler
distance (Johnson et al., 2001; Samonds et al., 2003) — require
that spike trains are transformed into bitstrings (see Section 2).
Binning introduces a bias that can only be neglected for a suf-
ficiently small binsize, such that spikes are well-separated (see
Section 2.1). Other distance metrics, however, introduce more
severe biases. The firing rate distance requires the predefinition
of a time interval T4 over which the local firing rate is calcu-
lated. Cost-function distances need a predefined cost-function to
determine the cost of transforming one spike train into another
by moving, deleting and inserting spikes (Victor and Purpura,
1997). Correlation distances measure coincident firing of spike
trains (Perkel et al., 1967), expressed for example by synchro-
nized activity measured by gravitational clustering (Gerstein et
al., 1985), or by calculating the dot product or the integral of
spike trains convolved with a Gaussian (Schreiber et al., 2004)
or exponential (Van Rossum, 2001) kernel. These distance mea-
sures depend on the choice of the specific functions involved,
such as the width of the Gaussian kernel, and may generate
results that are difficult to interpret when applied to cells with
very different firing rates, because coincidence may just appear
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Fig. 1. Spike train distance measures (z, T spike trains). (a) Spike count dis-
tance: d(t, t*) = % (L, L" are the numbers of spikes in egch train). (b)
Example of an information distance: d(t, )= Ck(1|f") (Ck(t|f") is the Kol-
mogorov complexity of train ¢ given train ¢). (c) Example of a rate distance:
d(t, t*) = Zi(ri — rlf‘)z{rl, ..., '} is the sequence of local firing rates of spike
train ¢ partitioned in n time intervals of length Tyae). (d) Cost-function dis-
tance: d(t, 1) = Cost(t — ). (e) Example of a correlation distance (C-distance):
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(f(?) is the spike train ¢ convolved with a Gaussian

due to chance and not due to structural or functional connectivity
(Meissen and Epping, 1987). For both firing rate measurement
and neuron classification, the biases discussed above may affect
the analysis.

The available distance measures give different insights into
the two basic problem types mentioned. Most common, however,
are those distances that focus on the precise timing of spikes and
consider spike trains as close with a large degree of synchronous
spikes. But other research questions, like the search for pre-
cisely replicating sequences in neuronal firing (Abeles and Gat,
2001), require alternative distance measures. We introduce a
novel distance based on the Lempel-Ziv-complexity (Lempel
and Ziv, 1976) that does not require the choice of arbitrary
analysis parameters, is easy to implement, and computationally
cheap, as it is based on well-known and widely used compres-
sion algorithms. Compared e.g. to the C-distance (see Fig. 1(e)),
the calculation of the Lempel-Ziv-distance (LZ-distance) is four
to six times faster, depending on the length of the spike train.
The measure is applied to spike trains that are transformed into
bitstrings. As the methodology used for defining the LZ-distance
is similar to the one applied in compression algorithms (Gersho
and Gray, 1992), the metric considers strings as similar if they
have similar compression properties. Due to this character of the
metric, we will show that the LZ-distance considers spike trains
with similar but possibly delayed firing patterns as close. This is
advantageous when firing reliability of single neurons under in
vivo conditions is considered, as the LZ-distance accounts for
delays of firing patterns that may appear in different responses
to multiple presentations of a single stimulus. Such differences
may result from influences to the neuron under investigation that
are, in the in vivo condition, beyond the experimenter’s control.

In this way, the LZ-distance allows one to address an alternative
aspect of firing reliability compared to distance measures that
focus on synchronous firing.

The classification of spike trains basically requires two ingre-
dients: a distance measure and a clustering algorithm. The for-
mer defines the type of similarity that is taken as the basis for
neuronal group identification, the latter defines how the clus-
ters are actually found. As it is a priori unknown how many
neurons form a single group and how many such groups are
present in the probed neuronal network, the algorithm should
not require information about the number or the size of clusters.
We have developed the sequential superparamagnetic clustering
algorithm that satisfies these requirements. The algorithm oper-
ates in analogy to a self-organizing Potts-spin system (Ott et al.,
2005). Essentially, it only requires the determination of a mini-
mal cluster size (which is two in our case) and a minimal cluster
stability Sp—Ilatter indicates the minimal density of a cluster
given a certain distance measure. In this way, no substantial
bias is set upon the clustering procedure. In the application of
the LZ-distance for neuron classification, we will show that the
measure groups together spike trains with similar but possibly
delayed firing patterns. This is important because, due to the
complex neuronal connectivity in cortex, similar firing patterns
may occur as delayed patterns in different neurons. Distance
measures that focus on synchronized firing would not classify
such cells as firing similarly. In this way, the LZ-distance sup-
plements the available methods for spike train classification.

2. Materials and methods
2.1. Definition of the LZ-distance

For our analysis, spike trains given as sequences of neuronal
spike-times t={1, . . ., t,} are translated into bitstrings. For this
translation, the measurement time interval [0, 77 is partitioned
into n bins of width At (nAt =T). If at least one spike falls into
the ith bin, the letter “1” (and otherwise the letter “0”) is written
to the ith position of the string. Usually, At is chosen so that
maximally one spike falls into one bin. This can be achieved by
setting At =1 ms, because of the neuronal refractory period. We
found that our analysis is not effected by the choice of At aslong
as this criterion is fulfilled. The resulting bitstring is denoted by
X,, a substring starting at position i and ending at position j
is denoted by X,,(i, j). Such a bitstring can be viewed as being
generated by an information source. For this source, we want
to find the optimal coding (Cover and Thomas, 1991; Steeb and
Stoop, 1997). This coding is based on a parsing that partitions the
string into non-overlapping substrings called phrases. The set of
phrases that results from a parsing of a bitstring X, is denoted
by Px,. To calculate the LZ-complexity, two distinct codings
have been introduced (Lempel and Ziv, 1976; Ziv and Lempel,
1978). We use the coding that sequentially parses the string such
that the new phrase is not yet contained in the set of phrases
generated so far (Ziv and Lempel, 1978). As an illustration, the
string 0011001010100111 is parsed as 0]01]1]00|10{101|001|11.
It can be shown that this procedure, hence called LZ-coding, is
the appropriate coding for calculating the LZ-distance of spike
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trains as it is noise robust (Christen et al., 2004). In addition, it
is computationally cheap. The Lempel-Ziv-complexity is then
defined as follows:

Definition 1. For a bitstring X,,, the Lempel-Ziv-complexity
K(X,) of X,, is

c(Xn)loge(Xy)
n

K(Xn) =

where c(X},) is the number of phrases that results from the LZ-
coding of X,.

If a bitstring X, is the result of a stationary, ergodic process
with entropy rate H, then the LZ-complexity is asymptotic opti-
mal, i.e. lim sup,— o K(X;) < H with probability 1 (Cover and
Thomas, 1991). Stationarity of neuronal firing, which is required
if the LZ-complexity is used for estimating the entropy rate of
a spike train (Amigo et al., 2004), is not critical for calculating
the LZ-distance.

To explain the LZ-distance, we assume two strings X, ¥,
of equal length n. From the perspective of LZ-complexity,
the amount of information Y, provides about X, is given as
K(X,) — K(X,|Y,,), where c(X,|Y,) is the size of the difference
set Py, \ Py, If Y,, provides no information about X,,, then the
sets Py, and Py, are disjoint, and K(X,,) — K(X,|Y,)=0. If Y,
provides complete information about X,, then Px, \Py, = ¢
and K(X;) — K(X,|Y,)=K(X,). The LZ-complexity approxi-
mates the Kolmogorov complexity Cg(X,) of a bitstring and
a theorem in the theory of Kolmogorov complexity states that
Cr(X,) — Cx(X,|Yy) = Ck(Y,) — Cx(Yy|X,) (Li and Vitanyi,
1997). In practical applications with bitstrings of finite length,
however, this symmetry does not hold when the LZ-complexity
is used. Therefore, we have to calculate K(X,,) — K(X,,|Y,)/K(X},)
as well as K(Y,,) — K(Y,,|X,)/K(Y,) and we take the minimum
in order to ensure d(X,, X;,)>0 for n# m. Theoretically, this
asymmetry may be used to gain further information on causal
relationships between neurons, although in our applications, the
difference is usually only small such that no specific infor-
mation can be gained from it. Furthermore, the expression
K(X,) — K(X,,|Yy) is normalized by K(X,,) (and by K(Y,), respec-
tively) such that the distance d(X,,, Y,) ranges between O and 1.
This leads to the following definition of the LZ-distance:

Definition 2. For two bitstrings X,, and Y,, of equal length, the
Lempel-Ziv-distance d(X;,, Y,) is:
d(Xn, Yn)

o [ K = KXY K(Y,) = KX
= _m‘{ KXy K(Y,) }

In summary, the LZ-distance compares the set of phrases
generated by a LZ-coding of two bitstrings originating from
corresponding spike trains. A large number of similar patterns
appearing in both spike trains should lead to a large overlap
of the sets of phrases. Thus distances between spike trains
with similar patterns are expected to be small, whereas dis-
tances between trains with different patterns are expected to be
large.

2.2. Firing reliability as deviation from a Poisson reference

The firing reliability is measured by determining the mean
of the pairwise distance between all spike trains obtained from
one neuron in response to multiple presentations under equal
stimulus conditions. We use both the C-distance (according to
Schreiber et al. (2004), see also Fig. 1) and the LZ-distance in
order to obtain complementary information about firing relia-
bility. The C-distance measures the degree of coincident firing
of two neurons. Therefore, a small mean C-distance indicates
high timing reliability, whereas a large mean C-distance indi-
cates low timing reliability and/or a large variability in firing
rate. The LZ-distance measures the degree of firing-similarity
in terms of spike patterns. A small mean LZ-distance indicates
the presence of similar (and possibly delayed) firing patterns,
whereas a large mean LZ-distance indicates the absence of sim-
ilar firing patterns within the different spike trains and/or a large
variability in the firing rate.

The main problem for both the C-distance and the LZ-
distance is the interdependence between mean distance and
firing rate, because a higher firing rate increases the chance
of coincident spikes and leads, for example, to smaller mean
C-distances. We therefore need a reference to calculate the reli-
ability of neuronal firing independently of the firing rate. This
reference is provided by a Poisson process, the most random
distribution of events in time (Cox and Lewis, 1966). Mean dis-
tances obtained by analyzing real data of a specific neuron can
then be compared with mean distances of a set of Poisson spike
trains with similar rate. The larger the deviation, the more reli-
able (in terms of the distance used) is the neuron’s firing.

To investigate the dependence of the C-distance and the LZ-
distance on firing rate in more detail, we generated by means
of a Poisson process 72 sets of 10 spike trains with similar
firing rate each (duration: 10s per train, sampled with a res-
olution of 1ms). The majority of the trains had (physiologi-
cally meaningful) firing rates of 1-100 spikes/s. To analyze the
limit behavior, higher firing rates up to 1000 spikes/s were also
used. For each set, we measured the mean C- and LZ-distance
(Fig. 2). For the C-distance we see that distance is basically
linearly related for small firing rates and that it asymptotically
approaches d(z, t*) ~ 0 for large firing rates. This is plausible, as
the probability that the convolved trains overlap scales linearly
with the increase in number of (randomly distributed) spikes for
small firing rates (i.e. when for the convolved trains f{#) = 0 holds
for most parts of the spike train) and saturates asymptotically for
large firing rates. By testing several fit-functions (polynomials,
exponential and power-law functions) we found that a fourth
order polynomial of the type p(x) = ax* + bx> + cx* + dx + e pro-
vided the best fit in terms of minimized mean-square errors (for
a firing rate of 0, the function has a point of discontinuity, as
the mean distance would be zero). This function is taken as the
Poisson reference for the C-distance.

The relation between the LZ-distance and the firing rate is
more complex. For small firing rates (up to —10 spikes/s) we
find a steady increase of the mean distances up to —0.2, which
is followed by a very slow further increase until the firing rate
reaches ~500 spikes/s. This is the point, where the bit-coded



M. Christen et al. / Journal of Neuroscience Methods 156 (2006) 342—-350 345

08 -
]
€ 06
@
=]
=
S 04 -
e o

02 -

0 5 10 15 20 25 30 35 40
(a) Firing rate [spikes/sec]
(]
Q
[ =
©
@
=]
[ =
(3]
(]
=
0 200 400 600 800 1000
(b) Firing rate [spikes/sec]
LZ-distance @ Cudistance

Fig. 2. Relation between the C/LZ-distances and the firing rate for Poisson spike
trains: (a) small firing rates, (b) asymptotic behavior for large firing rates. For
the C-distance, the width of the Gaussian kernel was let unchanged.

spike trains have an equal number of ‘0’ and ‘1’. For larger fir-
ing rates, we find a symmetry along the vertical axis x=500,
because in the bit-coded spike trains a switch between the let-
ters ‘0’ and ‘1’ is observed as the spike train predominately
consists of spikes. We obtained the best fit to this function by
a fourth-order polynomial for the interval [0, 20] spikes/s and a
quadratic function for the interval [20, 980] spikes/s. We use this
composed function as the Poisson reference for the LZ-distance.
The deviation of the neuronal data to these two Poisson reference
functions is our measure for the reliability of firing in terms of the
C/LZ-distances. It is calculated as follows: For a fixed stimulus
parameter, several spike trains are obtained in an experiment. We
calculate the mean distance of these spike trains and the mean fir-
ing rate. For this mean firing rate, the Poisson reference provides
us the mean distance from a set of Poisson spike trains. The abso-
lute value of the difference between these two mean distances
is the deviation. For different stimulus parameters, we obtain a

distribution of deviations, from which the mean deviation — the
reliability of the cell independent of the stimulus used to evoke
the response — is calculated. Note, that this measure of reliability
can be refined by distinguishing between deviations that exceed
the Poisson reference and those that are smaller than the ref-
erence. The former indicates that, in the C-distance paradigm,
systematic de-synchronization beyond Poisson firing appears in
the different trials, whereas latter indicates a higher degree of
synchronization compared to the Poisson reference. In our anal-
ysis (Section 3) we however forwent this further distinction, as
this would complicate the interpretation of the results.

2.3. Sequential superparamagnetic clustering

To group spike trains into classes, we use the sequential
superparamagnetic clustering algorithm, whose conceptual idea
can be outlined as follows: data points are interpreted as parti-
cles to which a Potts-spin is assigned. Each particle can interact
via its spin with the particles of a defined neighborhood (usually
k-nearest neighbors). The particles tend to align the direction of
their spins depending on the interaction strength, whereas ther-
mal fluctuation opposes this tendency. The interaction strength is
adecreasing function of the distance between the points. Groups
of particles with aligned spins form clusters, whose size diminish
with increasing temperature 7. Groups of particles with strong
interaction are able to resist this tendency of disintegration. Thus,
the size of this cluster is stable over a broad range of 7. Cluster-
ing is applied for a certain range of 7=0, ..., Tax in steps of
AT. Usually at T=0, one cluster is present, which breaks up into
smaller clusters for increasing 7. The sequential approach allows
one to take inhomogeneities in the data space into account: The
data points of the densest cluster are removed and the clustering
algorithm is reapplied to the remaining data set as well as to the
removed cluster. The application of superparamagnetic cluster-
ing algorithm requires the determination of several parameters.
The most important ones are minsize (the minimal size of clus-
ters) and Sy (the minimal required cluster stability), which define
the resolution of the clustering procedure. The other parameters
are only of minor interest and basically influence the efficiency
of the algorithm. In this way, the clustering algorithm comes
equipped with an intrinsic measure for cluster stability S, with
0 <8 < 1. It sequentially reveals clusters according to their sta-
bility, i.e. the most stable cluster is detected first. The result
of clustering is displayed in a dendrogram that indicates how
larger clusters break apart into smaller clusters. Furthermore,
the size of the cluster N, Tiax (the temperature, where all clus-
ters have disintegrated), the cluster stability S (the temperature
range over which the cluster remains stable relative to Tinax), Tc1
(the temperature range over which the cluster remains stable)
and Tterro (the temperature, where the cluster is still in the fer-
romagnetic phase, i.e. all spins are aligned) are displayed. For a
formal description of the algorithm, we refer to Ott et al. (2005).

2.4. Experimental procedure

Neural recordings were performed in anesthetized (with
sufentanil citrate at 4-8 pg/kg/h), paralyzed (with vecuronium
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bromide at 0.1 mg/kg/h) macaque monkeys. Vital signs (EEG,
EKG, end-tidal PCO,, lung pressure, and temperature) were
monitored continuously. All experimental procedures were
approved by the New York University Animal Welfare Com-
mittee. Recordings were made with tungsten-in-glass or plat-
inum/tungsten electrodes. Signals were amplified, band pass
filtered (typically 300Hz to 10kHz) and fed into a hardware
dual time-amplitude window discriminator. Spike times were
saved with a resolution of 0.25 ms. Analysis was performed on
previously published recordings in the lateral geniculate nucleus
(LGN; Movshon et al., 2005), primary visual cortex (V1; Kohn
and Smith, 2005), and in area MT (Kohn and Movshon, 2004).
Detailed methods for the recordings can be found in those ref-
erences.

3. Results
3.1. Distinguishing timing and pattern reliability

We investigated the performance of the LZ-distance for deter-
mining the reliability of neuronal firing under in vivo conditions
from measurements obtained at different stages of the visual
information processing pathway. We used recordings of nine
LGN neurons, ten complex neurons in V1 (V1C), six simple
neurons in V1 (V1S) and seven neurons in area M T stimulated by
drifting gratings of different orientation (V1, MT) or frequency
(LGN). For the LGN-cells, six to seven different temporal drift
frequencies of grating were presented. However, only two to
three trials per stimulus were recorded, which limits the signif-
icance of the results obtained for this class of cells. For the V1
cells, ten repetitions of each stimulus (five orientations) were
recorded in each cell. For the MT cells, six trials were mea-
sured (16 orientations). For each set of spike trains emerging
from trials performed on a specific cell and using a specific
stimulus, the mean C- and LZ-distance between the trains was
calculated (the standard deviation of the Gaussian kernel used
for convolving the spike train before applying the C-distance
was 1 ms).

The results of the analysis for the four cell types investi-
gated are displayed in Fig. 3. Each point in the graph reflects the
mean distance of all trials of a single stimulus parameter (drift
frequency or orientation) for a single neuron calculated using
the LZ-distance measure (light grey) or the C-distance measure
(dark grey). The curves shown are the Poisson reference func-
tions described in Section 2. We then determined the deviations
of the mean distances of each trial from the Poisson reference for
the C-distance (‘timing reliability’) and the LZ-distance (‘pat-
tern reliability’) and for each class of neurons. As the standard
deviations of the data sets obtained in this way (LGN, V1C, V18,
MT) were high, we pairwise tested the null-hypothesis that two
sets of deviations derive from the same distribution using the
non-parametric Wilcoxon-Mann—Whitney U-test with signifi-
cance levels p<0.05 and p <0.001 (two-sided). The results are
displayed in Fig. 4. For the C-distance, the data sets obtained
from the MT-cells and the V1 complex cells are not distinguish-
able at the p<0.05 and p<0.001 level, whereas the other sets
are recognized as distinct distributions. For the LZ-distance and
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Fig. 3. Relation between the C/LZ-distances and the firing rate for spike trains
obtained from neurons of areas LGN, V1 (complex: V1C and simple: V1S), and
MT in macaque monkey.

a significance level of p <0.05, the data sets V1C and V1S, as
well as V1S and LGN are not distinguished, but MT was clas-
sified as distinct. For the higher significance level p <0.001,
the data sets V1C, V1S, and LGN, as well as LGN and MT
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were not distinct. In summary, the results suggest the follow-
ing interpretation: in terms of the ‘timing deviation’ of the data
from the Poisson reference, the V1 simple cells have the high-
est value (i.e. have the highest ‘timing reliability’), followed
by the LGN cells and the MT/V1 complex cells. In terms of
the ‘pattern deviation’ of the data from the Poisson reference,
the MT neurons have the highest value (i.e. have the highest
‘pattern reliability’), followed by the LGN, V1 simple and com-
plex cells. Thus, the complex cells are closest to the Poisson
model in both respects, whereas the MT cells have a consider-
able ‘pattern reliability” and the V1 simple cells a considerable
‘timing reliability’. The LGN cells display both characteristics
up to some degree, although the number of trials per stimu-
lus conditions in this case is low and thus requires a careful
interpretation.

3.2. Classifying spike trains with non-synchronous patterns

To investigate the performance of the LZ-distance in spike
train classification, we proceed in two steps: we test whether the
LZ-distance sorts spike trains of physiological and simulated
data and we compare the performance of the LZ-distance with
the C-distance when clustering artificial spike trains with simi-
lar, but not synchronous patterns. For the first step, we generated
a set of spike trains consisting of in vivo and model data of com-
parable firing rate (80-90 spikes/s), as classes of spike trains that
differ substantially in firing rate are easily recognized using the
LZ-distance. Our multi-train data set contains the following five
classes, each represented by nine spike trains of length 2400 ms.
Class (A) spike trains of a complex cell (macaque monkey visual
cortex data, for further explanation see preceding section) driven
by gratings drifting at 6.25 Hz. Class (B) spike trains of a simple
cell driven by gratings drifting at 12.5 Hz. Class (C) spike trains
of a homogeneous Poisson process with refractory period that
models the firing of the recorded complex cells. The absolute
refractory period is 1 ms, the relative refractory period is tuned
such that the interspike interval histogram is similar to the one
of the original data. Class (D) spike trains of an inhomogeneous,
step function driven Poisson process with refractory period that
models the firing of the recorded simple cells. The frequency
of the modulation is 12.5 Hz, the base rate is O spikes/s and the
peak rate is tuned such that it is similar to the original data.
Class (E) Poisson spike trains containing weakly synchronized
burst patterns. The burst pattern is formed by sequences of three
bursts of five spikes per burst and interburst-distances of ~70
and ~100 ms. The corresponding spikes of each burst of the pat-
tern of each train are uniformly distributed within an interval of
42 ms and ~50% of the remaining spikes derive from a low-rate
Poisson process that has been tuned such that the overall firing
rate is similar to that of the other four classes. We randomized the
order of the spike trains in order to obtain a multi-train data set
(Fig. 5(a)). After calculating the LZ-distance between all trains
(for the resulting distance matrix and the distribution of dis-
tances see Fig. 5(b)), clustering led to the following result: The
classes B, D and E formed one cluster each, whereas the classes
A and C fell into a single cluster (Fig. 3(c)). When the algorithm
was applied to the latter cluster for a decreased minimal cluster
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Fig. 5. Clustering of multi-train data. (a) Raster plot of initial spike set. (b)
Distance matrix (white: d(X, Y) =0, black: d(X, Y) = 1) and histogram of distances
obtained after calculating the pairwise LZ-distance. (c) Dendrogram outlining
the result of clustering.

stability Sy, only an incomplete separation between spike trains
of the classes A and C occurred, as two smaller clusters of five
(spike trains of class C) and 13 elements each (spike trains of
classes A and C) emerge (not shown). Two main conclusions
can be drawn from this result. First, the metric is able to classify
correctly spike trains with comparable firing rate, but differing
temporal structures. Second, we are able to interpret classifica-
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tion failures as in the incomplete separation between spike trains
of the classes A and C. Here, the spike trains C derive from a
model of the firing of a complex cell and the incomplete separa-
tion from the spike trains of the complex cell indicates that the
firing behavior of the cell appears to be (in a first approximation)
properly modelled by a Poisson process with refractory period.
The sinusoidal firing of the simple cell, however, could be dis-
tinguished from the inhomogeneous Poisson process driven by
a step function, as the two classes B and D are separated by the
clustering algorithm.

In a second step, we clustered model spike trains of similar
firing rate that contain different types of repeating sequences of
interspike intervals (interval patterns). The repeating sequences
within spike trains of a single class characterized by one type of
interval pattern are not synchronized, but randomly distributed
within each train. This challenging task for spike train clus-
tering is performed using the LZ-distance and the C-distance,
the latter is a common distance measure for spike train cluster-
ing problems (Fellous et al., 2004). We generated five classes
of spike trains, characterized by the following interval pat-
terns. Class (A) (4, 4), Class (B) (13, 13, 13), Class (C) (5,
20, 3), Class (D) (3, 16, 3, 16), and Class (E) (1, 4, 7, 2, 6,
11). Each spike train (five per class) was generated such that
50% of the interspike intervals of the train originate from the
sequence and 50% from a homogeneous Poisson process. The
rate of the Poisson process was adapted for each class in order
to generate almost identical mean firing rates for all spike trains
(92-94 spikes/s). The order of the spike trains was again ran-
domized to generate a multi-train data set (Fig. 6(a)). To this
data set, sequential superparamagnetic clustering was applied,
using both the LZ- and the C-distance (the standard devia-
tion of the Gaussian kernel used for convolving the spike train
before applying the C-distance was 1 ms). We found a clear
difference in performance between the two distance measures:
Whereas the LZ-distance allowed a clear-cut separation of all
five classes (Fig. 6(c)), the use of the C-distance did not lead
to any classification. This noticeable difference in performance
becomes apparent if the distribution of the distances is com-
pared (Fig. 6(b)). For the LZ-distance, the range of distances
is ~0.4 with a multi-modal distribution (indicating the struc-
ture within the data set), whereas for the C-distance the range is
~0.1 with aunimodal distribution. The latter observation implies
that a re-scaling would not increase performance and that the
classification-failure is independent of the clustering algorithm
used. This demonstrates that the LZ-distance is a measure that
classifies spikes trains with delayed patterns. The C-distance,
which focuses on synchronized firing, fails in such situations. In
contrast, if synchronization were the desired criterion to classify
spike trains, the C-distance would be more appropriate than the
LZ-distance. Generally, two spike trains that are very close in
the C-distance paradigm for a sufficiently small gaussian kernel
(width: 1-2 ms) share many coincident spikes and thus consist
basically of the same spike patterns. Therefore, these trains are
also close in the LZ-paradigm, whereas two trains that are close
using the LZ-distance can be distant using the C-distance—e.g.
when a considerable phase-shift is present. In that sense, the
LZ-distance is more general.
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Fig. 6. Comparison of distance measures. (a) Test trains, (b) distributions of
LZ-distances (left) and correlation-based distance, and (c) Dendrogram of clus-
tering the spike train set using the LZ-distance: all five classes are clearly
recognized.

4. Discussion

We have introduced a novel spike train distance measure,
the LZ-distance. We find that this distance provides additional
insights into firing reliability determination and spike train clas-
sification, compared to the common spike train distance mea-
sures. For the first problem type, the LZ-distance determines a
complementary aspect of neuronal firing reliability compared
to spike timing. In combination with the C-distance, we are
able to distinguish between firing reliability in terms of spike
timing and firing reliability in terms of spike patterns. Our find-
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ings on spike timing agree with the results of earlier studies
that claim a high timing precision in LGN (Reinagel and Reid,
2002) and simple cells of V1 (Kara et al., 2000). The reli-
ability deviations in terms of patterns provides an additional
insight that needs a more careful interpretation, because the
mean distance of some spike trains obtained in multiple pre-
sentations of a single stimulus condition is higher than the
Poisson reference—especially in area MT. Thus, the neurons
may deviate from the reference function not in the sense that
certain specific firing patterns are replicated in the different
trials, but that different firing patterns are present in different
trials of a single stimulus condition. This interpretation may
be explained within our framework of neural coding and com-
putation within dynamical systems theory (Stoop and Stoop,
2004; Stoop et al., 2000a,b, 2002). This framework is based on
coupled, noise-driven neuronal limit cycle firing, where neu-
ronal computation shows up as distinct firing patterns that result
from locking of these limit cycles. In the in vitro condition,
the appearance of these firing patterns of periodicity one up
to five has been demonstrated (Stoop et al., 2000c), whereas
fast but coherently changing modulations of the driving of two
locked neurons in the in vivo condition hide the patterns in
the sense that the periodicity is not visible from eye, although
— as model studies using detailed compartment models and
Hodgkin—Huxley-neurons demonstrated (Stoop et al., 2004a,b)
— the locking between the two neurons is preserved. The LZ-
distance is expected to consider spike trains that emerge from
a neuron under in vivo conditions performing always the same
computation in different trials as close, because the firing pat-
terns — although the periodicity is hidden — should not differ
considerably. However, locked neurons in higher cortical areas
(as area MT), where different types of computation may take
place, display different types of patterns, whose actual presence
and weighting in different trials of a single stimulus condi-
tion may change in the in vivo condition. This type of firing
would, however, be well distinguished from Poisson firing. Our
findings are compatible with this prediction, although further
experimental work would be required to test our theoretical
framework.

For spike train classification, we have shown that the LZ-
distance, in combination with the sequential superparamagnetic
clustering algorithm, classifies spike trains with similar but
delayed firing patterns. Distance measures that focus the pre-
cise timing of spikes fail in such cases. This demonstrates, that
the application of the LZ-distance for the neuron clustering task
provides novel insights. This is also shown for an in vivo study
using data from electrodes array recordings in the olfactory
system of rats in vivo. In this analysis we have shown that clus-
ters of neurons under the LZ-distance-paradigm are more stable
when an olfactory stimulus is presented to the animal than dur-
ing spontaneous activity (Christen et al., in preparation). This
stabilization effect is much weaker when the neurons are clus-
tered under the synchronization paradigm. This result indicates,
that the presence of an odor increases the stability of firing pat-
terns beyond simple coincidence firing and demonstrates, how
additional insight is obtained by our novel measure in a neuron
classification task.
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