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bstract

Spike train distance measures serve two purposes: to measure neuronal firing reliability, and to provide a metric with which spike trains can be
lassified. We introduce a novel spike train distance based on the Lempel–Ziv complexity that does not require the choice of arbitrary analysis
arameters, is easy to implement, and computationally cheap. We determine firing reliability in vivo by calculating the deviation of the mean
istance of spike trains obtained from multiple presentations of an identical stimulus from a Poisson reference. Using both the Lempel–Ziv-
istance (LZ-distance) and a distance focussing on coincident firing, the pattern and timing reliability of neuronal firing is determined for spike
ata obtained along the visual information processing pathway of macaque monkey (LGN, simple and complex cells of V1, and area MT). In
ombination with the sequential superparamagnetic clustering algorithm, we show that the LZ-distance groups together spike trains with similar

ut not necessarily synchronized firing patterns. For both applications, we show how the LZ-distance gives additional insights, as it adds a new
erspective on the problem of firing reliability determination and allows neuron classifications in cases, where other distance measures fail.

2006 Elsevier B.V. All rights reserved.

eywords: Spike train distance measure; Spike pattern; Lempel–Ziv-complexity; Clustering; Neuron classification; Firing reliability; Visual system; Macaque
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. Introduction

Measuring the similarity of neuronal firing is required for
olving two problems of spike train analysis. First, the reliabil-
ty of neuronal firing can be measured by calculating the mean
istance among a set of spike trains obtained from multiple pre-
entations of the same stimulus. The larger the mean distance,
he less reliable is the neuron’s firing. Second, in combination
ith a clustering algorithm, neurons can be classified in terms of
ring similarity. This is critical for gaining information about the
unctional connectivity of a probed neuronal network. A clas-
ic example is the discrimination between simple and complex
ells in the primary visual cortex based on response modulation
Skottun et al., 1991). To solve these problems, a variety of dis-
ance measures has been proposed (see Fig. 1). Almost all these

easures introduce a bias by predefining analysis parameters.

nly the simplest measure, the spike count distance that mea-

ures similarity as the difference in the total number of spikes
voked, is free from any bias—but this measure does not take the

∗ Corresponding author. Tel.: +41 44 635 3062; fax: +41 44 635 3053.
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emporal structure of the spike train into account. Information
istances – e.g. those that rely on the Kolmogorov complexity
Bennett et al., 1998; Li et al., 2001) or the Kullback–Leibler
istance (Johnson et al., 2001; Samonds et al., 2003) – require
hat spike trains are transformed into bitstrings (see Section 2).
inning introduces a bias that can only be neglected for a suf-
ciently small binsize, such that spikes are well-separated (see
ection 2.1). Other distance metrics, however, introduce more
evere biases. The firing rate distance requires the predefinition
f a time interval Trate over which the local firing rate is calcu-
ated. Cost-function distances need a predefined cost-function to
etermine the cost of transforming one spike train into another
y moving, deleting and inserting spikes (Victor and Purpura,
997). Correlation distances measure coincident firing of spike
rains (Perkel et al., 1967), expressed for example by synchro-
ized activity measured by gravitational clustering (Gerstein et
l., 1985), or by calculating the dot product or the integral of
pike trains convolved with a Gaussian (Schreiber et al., 2004)
r exponential (Van Rossum, 2001) kernel. These distance mea-

ures depend on the choice of the specific functions involved,
uch as the width of the Gaussian kernel, and may generate
esults that are difficult to interpret when applied to cells with
ery different firing rates, because coincidence may just appear

mailto:markus@ini.phys.ethz.ch
dx.doi.org/10.1016/j.jneumeth.2006.02.023
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Fig. 1. Spike train distance measures (t, t*: spike trains). (a) Spike count dis-
tance: d(t, t∗) = |L−L∗|

max{L,L∗} (L, L* are the numbers of spikes in each train). (b)

Example of an information distance: d(t, t*) = CK(t|t*) (CK(t|t*) is the Kol-
mogorov complexity of train t given train t*). (c) Example of a rate distance:
d(t, t∗) =

∑
i
(ri − r∗

i )2{r1, . . . , rn} is the sequence of local firing rates of spike
train t partitioned in n time intervals of length Trate). (d) Cost-function dis-
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ance: d(t, t*) = Cost(t → t*). (e) Example of a correlation distance (C-distance):
(t, t∗) = 1 − f (t)f (t∗)

||f (t)||||f (t∗)|| (f(t) is the spike train t convolved with a Gaussian
ernel function f(·)).

ue to chance and not due to structural or functional connectivity
Meissen and Epping, 1987). For both firing rate measurement
nd neuron classification, the biases discussed above may affect
he analysis.

The available distance measures give different insights into
he two basic problem types mentioned. Most common, however,
re those distances that focus on the precise timing of spikes and
onsider spike trains as close with a large degree of synchronous
pikes. But other research questions, like the search for pre-
isely replicating sequences in neuronal firing (Abeles and Gat,
001), require alternative distance measures. We introduce a
ovel distance based on the Lempel–Ziv-complexity (Lempel
nd Ziv, 1976) that does not require the choice of arbitrary
nalysis parameters, is easy to implement, and computationally
heap, as it is based on well-known and widely used compres-
ion algorithms. Compared e.g. to the C-distance (see Fig. 1(e)),
he calculation of the Lempel–Ziv-distance (LZ-distance) is four
o six times faster, depending on the length of the spike train.
he measure is applied to spike trains that are transformed into
itstrings. As the methodology used for defining the LZ-distance
s similar to the one applied in compression algorithms (Gersho
nd Gray, 1992), the metric considers strings as similar if they
ave similar compression properties. Due to this character of the
etric, we will show that the LZ-distance considers spike trains
ith similar but possibly delayed firing patterns as close. This is

dvantageous when firing reliability of single neurons under in
ivo conditions is considered, as the LZ-distance accounts for

elays of firing patterns that may appear in different responses
o multiple presentations of a single stimulus. Such differences
ay result from influences to the neuron under investigation that

re, in the in vivo condition, beyond the experimenter’s control.
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n this way, the LZ-distance allows one to address an alternative
spect of firing reliability compared to distance measures that
ocus on synchronous firing.

The classification of spike trains basically requires two ingre-
ients: a distance measure and a clustering algorithm. The for-
er defines the type of similarity that is taken as the basis for

euronal group identification, the latter defines how the clus-
ers are actually found. As it is a priori unknown how many
eurons form a single group and how many such groups are
resent in the probed neuronal network, the algorithm should
ot require information about the number or the size of clusters.
e have developed the sequential superparamagnetic clustering

lgorithm that satisfies these requirements. The algorithm oper-
tes in analogy to a self-organizing Potts-spin system (Ott et al.,
005). Essentially, it only requires the determination of a mini-
al cluster size (which is two in our case) and a minimal cluster

tability Sθ—latter indicates the minimal density of a cluster
iven a certain distance measure. In this way, no substantial
ias is set upon the clustering procedure. In the application of
he LZ-distance for neuron classification, we will show that the

easure groups together spike trains with similar but possibly
elayed firing patterns. This is important because, due to the
omplex neuronal connectivity in cortex, similar firing patterns
ay occur as delayed patterns in different neurons. Distance
easures that focus on synchronized firing would not classify

uch cells as firing similarly. In this way, the LZ-distance sup-
lements the available methods for spike train classification.

. Materials and methods

.1. Definition of the LZ-distance

For our analysis, spike trains given as sequences of neuronal
pike-times t = {t, . . ., tn} are translated into bitstrings. For this
ranslation, the measurement time interval [0, T] is partitioned
nto n bins of width �τ (n�τ = T). If at least one spike falls into
he ith bin, the letter “1” (and otherwise the letter “0”) is written
o the ith position of the string. Usually, �τ is chosen so that

aximally one spike falls into one bin. This can be achieved by
etting �τ = 1 ms, because of the neuronal refractory period. We
ound that our analysis is not effected by the choice of �τ as long
s this criterion is fulfilled. The resulting bitstring is denoted by
n, a substring starting at position i and ending at position j

s denoted by Xn(i, j). Such a bitstring can be viewed as being
enerated by an information source. For this source, we want
o find the optimal coding (Cover and Thomas, 1991; Steeb and
toop, 1997). This coding is based on a parsing that partitions the
tring into non-overlapping substrings called phrases. The set of
hrases that results from a parsing of a bitstring Xn is denoted
y PXn . To calculate the LZ-complexity, two distinct codings
ave been introduced (Lempel and Ziv, 1976; Ziv and Lempel,
978). We use the coding that sequentially parses the string such
hat the new phrase is not yet contained in the set of phrases

enerated so far (Ziv and Lempel, 1978). As an illustration, the
tring 0011001010100111 is parsed as 0|01|l|00|10|101|001|11.
t can be shown that this procedure, hence called LZ-coding, is
he appropriate coding for calculating the LZ-distance of spike
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rains as it is noise robust (Christen et al., 2004). In addition, it
s computationally cheap. The Lempel–Ziv-complexity is then
efined as follows:

efinition 1. For a bitstring Xn, the Lempel–Ziv-complexity
(Xn) of Xn is

(Xn) = c(Xn) log c(Xn)

n

here c(Xn) is the number of phrases that results from the LZ-
oding of Xn.

If a bitstring Xn is the result of a stationary, ergodic process
ith entropy rate H, then the LZ-complexity is asymptotic opti-
al, i.e. lim supn→∞ K(Xn) ≤ H with probability 1 (Cover and
homas, 1991). Stationarity of neuronal firing, which is required

f the LZ-complexity is used for estimating the entropy rate of
spike train (Amigö et al., 2004), is not critical for calculating

he LZ-distance.
To explain the LZ-distance, we assume two strings Xn, Yn

f equal length n. From the perspective of LZ-complexity,
he amount of information Yn provides about Xn is given as
(Xn) − K(Xn|Yn), where c(Xn|Yn) is the size of the difference

et PXn\PYn If Yn provides no information about Xn, then the
ets PXn and PYn are disjoint, and K(Xn) − K(Xn|Yn) = 0. If Yn

rovides complete information about Xn, then PXn\PYn = φ

nd K(Xn) − K(Xn|Yn) = K(Xn). The LZ-complexity approxi-
ates the Kolmogorov complexity CK(Xn) of a bitstring and
theorem in the theory of Kolmogorov complexity states that
K(Xn) − CK(Xn|Yn) ≈ CK(Yn) − CK(Yn|Xn) (Li and Vitányi,
997). In practical applications with bitstrings of finite length,
owever, this symmetry does not hold when the LZ-complexity
s used. Therefore, we have to calculate K(Xn) − K(Xn|Yn)/K(Xn)
s well as K(Yn) − K(Yn|Xn)/K(Yn) and we take the minimum
n order to ensure d(Xn, Xm) > 0 for n �= m. Theoretically, this
symmetry may be used to gain further information on causal
elationships between neurons, although in our applications, the
ifference is usually only small such that no specific infor-
ation can be gained from it. Furthermore, the expression
(Xn) − K(Xn|Yn) is normalized by K(Xn) (and by K(Yn), respec-

ively) such that the distance d(Xn, Yn) ranges between 0 and 1.
his leads to the following definition of the LZ-distance:

efinition 2. For two bitstrings Xn and Yn of equal length, the
empel–Ziv-distance d(Xn, Yn) is:

d(Xn, Yn)

= 1 − min

{
K(Xn) − K(Xn|Yn)

K(Xn)
,
K(Yn) − K(Yn|Xn)

K(Yn)

}

In summary, the LZ-distance compares the set of phrases
enerated by a LZ-coding of two bitstrings originating from
orresponding spike trains. A large number of similar patterns
ppearing in both spike trains should lead to a large overlap

f the sets of phrases. Thus distances between spike trains
ith similar patterns are expected to be small, whereas dis-

ances between trains with different patterns are expected to be
arge.
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.2. Firing reliability as deviation from a Poisson reference

The firing reliability is measured by determining the mean
f the pairwise distance between all spike trains obtained from
ne neuron in response to multiple presentations under equal
timulus conditions. We use both the C-distance (according to
chreiber et al. (2004), see also Fig. 1) and the LZ-distance in
rder to obtain complementary information about firing relia-
ility. The C-distance measures the degree of coincident firing
f two neurons. Therefore, a small mean C-distance indicates
igh timing reliability, whereas a large mean C-distance indi-
ates low timing reliability and/or a large variability in firing
ate. The LZ-distance measures the degree of firing-similarity
n terms of spike patterns. A small mean LZ-distance indicates
he presence of similar (and possibly delayed) firing patterns,
hereas a large mean LZ-distance indicates the absence of sim-

lar firing patterns within the different spike trains and/or a large
ariability in the firing rate.

The main problem for both the C-distance and the LZ-
istance is the interdependence between mean distance and
ring rate, because a higher firing rate increases the chance
f coincident spikes and leads, for example, to smaller mean
-distances. We therefore need a reference to calculate the reli-
bility of neuronal firing independently of the firing rate. This
eference is provided by a Poisson process, the most random
istribution of events in time (Cox and Lewis, 1966). Mean dis-
ances obtained by analyzing real data of a specific neuron can
hen be compared with mean distances of a set of Poisson spike
rains with similar rate. The larger the deviation, the more reli-
ble (in terms of the distance used) is the neuron’s firing.

To investigate the dependence of the C-distance and the LZ-
istance on firing rate in more detail, we generated by means
f a Poisson process 72 sets of 10 spike trains with similar
ring rate each (duration: 10 s per train, sampled with a res-
lution of 1 ms). The majority of the trains had (physiologi-
ally meaningful) firing rates of 1–100 spikes/s. To analyze the
imit behavior, higher firing rates up to 1000 spikes/s were also
sed. For each set, we measured the mean C- and LZ-distance
Fig. 2). For the C-distance we see that distance is basically
inearly related for small firing rates and that it asymptotically
pproaches d(t, t∗) � 0 for large firing rates. This is plausible, as
he probability that the convolved trains overlap scales linearly
ith the increase in number of (randomly distributed) spikes for

mall firing rates (i.e. when for the convolved trains f(t) = 0 holds
or most parts of the spike train) and saturates asymptotically for
arge firing rates. By testing several fit-functions (polynomials,
xponential and power-law functions) we found that a fourth
rder polynomial of the type p(x) = ax4 + bx3 + cx2 + dx + e pro-
ided the best fit in terms of minimized mean-square errors (for
firing rate of 0, the function has a point of discontinuity, as

he mean distance would be zero). This function is taken as the
oisson reference for the C-distance.

The relation between the LZ-distance and the firing rate is

ore complex. For small firing rates (up to −10 spikes/s) we
nd a steady increase of the mean distances up to −0.2, which

s followed by a very slow further increase until the firing rate
eaches ∼500 spikes/s. This is the point, where the bit-coded
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ig. 2. Relation between the C/LZ-distances and the firing rate for Poisson spike
rains: (a) small firing rates, (b) asymptotic behavior for large firing rates. For
he C-distance, the width of the Gaussian kernel was let unchanged.

pike trains have an equal number of ‘0’ and ‘1’. For larger fir-
ng rates, we find a symmetry along the vertical axis x = 500,
ecause in the bit-coded spike trains a switch between the let-
ers ‘0’ and ‘1’ is observed as the spike train predominately
onsists of spikes. We obtained the best fit to this function by
fourth-order polynomial for the interval [0, 20] spikes/s and a
uadratic function for the interval [20, 980] spikes/s. We use this
omposed function as the Poisson reference for the LZ-distance.
he deviation of the neuronal data to these two Poisson reference

unctions is our measure for the reliability of firing in terms of the
/LZ-distances. It is calculated as follows: For a fixed stimulus
arameter, several spike trains are obtained in an experiment. We
alculate the mean distance of these spike trains and the mean fir-

ng rate. For this mean firing rate, the Poisson reference provides
s the mean distance from a set of Poisson spike trains. The abso-
ute value of the difference between these two mean distances
s the deviation. For different stimulus parameters, we obtain a

2

s

nce Methods 156 (2006) 342–350 345

istribution of deviations, from which the mean deviation – the
eliability of the cell independent of the stimulus used to evoke
he response – is calculated. Note, that this measure of reliability
an be refined by distinguishing between deviations that exceed
he Poisson reference and those that are smaller than the ref-
rence. The former indicates that, in the C-distance paradigm,
ystematic de-synchronization beyond Poisson firing appears in
he different trials, whereas latter indicates a higher degree of
ynchronization compared to the Poisson reference. In our anal-
sis (Section 3) we however forwent this further distinction, as
his would complicate the interpretation of the results.

.3. Sequential superparamagnetic clustering

To group spike trains into classes, we use the sequential
uperparamagnetic clustering algorithm, whose conceptual idea
an be outlined as follows: data points are interpreted as parti-
les to which a Potts-spin is assigned. Each particle can interact
ia its spin with the particles of a defined neighborhood (usually
-nearest neighbors). The particles tend to align the direction of
heir spins depending on the interaction strength, whereas ther-

al fluctuation opposes this tendency. The interaction strength is
decreasing function of the distance between the points. Groups
f particles with aligned spins form clusters, whose size diminish
ith increasing temperature T. Groups of particles with strong

nteraction are able to resist this tendency of disintegration. Thus,
he size of this cluster is stable over a broad range of T. Cluster-
ng is applied for a certain range of T = 0, . . ., Tmax in steps of

T. Usually at T = 0, one cluster is present, which breaks up into
maller clusters for increasing T. The sequential approach allows
ne to take inhomogeneities in the data space into account: The
ata points of the densest cluster are removed and the clustering
lgorithm is reapplied to the remaining data set as well as to the
emoved cluster. The application of superparamagnetic cluster-
ng algorithm requires the determination of several parameters.
he most important ones are minsize (the minimal size of clus-

ers) and Sθ (the minimal required cluster stability), which define
he resolution of the clustering procedure. The other parameters
re only of minor interest and basically influence the efficiency
f the algorithm. In this way, the clustering algorithm comes
quipped with an intrinsic measure for cluster stability S, with
≤ S ≤ 1. It sequentially reveals clusters according to their sta-
ility, i.e. the most stable cluster is detected first. The result
f clustering is displayed in a dendrogram that indicates how
arger clusters break apart into smaller clusters. Furthermore,
he size of the cluster N, Tmax (the temperature, where all clus-
ers have disintegrated), the cluster stability S (the temperature
ange over which the cluster remains stable relative to Tmax), Tcl
the temperature range over which the cluster remains stable)
nd Tferro (the temperature, where the cluster is still in the fer-
omagnetic phase, i.e. all spins are aligned) are displayed. For a
ormal description of the algorithm, we refer to Ott et al. (2005).
.4. Experimental procedure

Neural recordings were performed in anesthetized (with
ufentanil citrate at 4–8 �g/kg/h), paralyzed (with vecuronium
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Fig. 3. Relation between the C/LZ-distances and the firing rate for spike trains
o
M

a
well as V1S and LGN are not distinguished, but MT was clas-
sified as distinct. For the higher significance level p < 0.001,
the data sets V1C, V1S, and LGN, as well as LGN and MT
46 M. Christen et al. / Journal of Neu

romide at 0.1 mg/kg/h) macaque monkeys. Vital signs (EEG,
KG, end-tidal PCO2, lung pressure, and temperature) were
onitored continuously. All experimental procedures were

pproved by the New York University Animal Welfare Com-
ittee. Recordings were made with tungsten-in-glass or plat-

num/tungsten electrodes. Signals were amplified, band pass
ltered (typically 300 Hz to 10kHz) and fed into a hardware
ual time-amplitude window discriminator. Spike times were
aved with a resolution of 0.25 ms. Analysis was performed on
reviously published recordings in the lateral geniculate nucleus
LGN; Movshon et al., 2005), primary visual cortex (V1; Kohn
nd Smith, 2005), and in area MT (Kohn and Movshon, 2004).
etailed methods for the recordings can be found in those ref-

rences.

. Results

.1. Distinguishing timing and pattern reliability

We investigated the performance of the LZ-distance for deter-
ining the reliability of neuronal firing under in vivo conditions

rom measurements obtained at different stages of the visual
nformation processing pathway. We used recordings of nine
GN neurons, ten complex neurons in V1 (V1C), six simple
eurons in V1 (V1S) and seven neurons in area MT stimulated by
rifting gratings of different orientation (V1, MT) or frequency
LGN). For the LGN-cells, six to seven different temporal drift
requencies of grating were presented. However, only two to
hree trials per stimulus were recorded, which limits the signif-
cance of the results obtained for this class of cells. For the V1
ells, ten repetitions of each stimulus (five orientations) were
ecorded in each cell. For the MT cells, six trials were mea-
ured (16 orientations). For each set of spike trains emerging
rom trials performed on a specific cell and using a specific
timulus, the mean C- and LZ-distance between the trains was
alculated (the standard deviation of the Gaussian kernel used
or convolving the spike train before applying the C-distance
as 1 ms).
The results of the analysis for the four cell types investi-

ated are displayed in Fig. 3. Each point in the graph reflects the
ean distance of all trials of a single stimulus parameter (drift

requency or orientation) for a single neuron calculated using
he LZ-distance measure (light grey) or the C-distance measure
dark grey). The curves shown are the Poisson reference func-
ions described in Section 2. We then determined the deviations
f the mean distances of each trial from the Poisson reference for
he C-distance (‘timing reliability’) and the LZ-distance (‘pat-
ern reliability’) and for each class of neurons. As the standard
eviations of the data sets obtained in this way (LGN, V1C, V1S,
T) were high, we pairwise tested the null-hypothesis that two

ets of deviations derive from the same distribution using the
on-parametric Wilcoxon–Mann–Whitney U-test with signifi-
ance levels p < 0.05 and p < 0.001 (two-sided). The results are

isplayed in Fig. 4. For the C-distance, the data sets obtained
rom the MT-cells and the V1 complex cells are not distinguish-
ble at the p < 0.05 and p < 0.001 level, whereas the other sets
re recognized as distinct distributions. For the LZ-distance and

F
o
p

btained from neurons of areas LGN, V1 (complex: V1C and simple: V1S), and
T in macaque monkey.

significance level of p < 0.05, the data sets V1C and V1S, as
ig. 4. Mean deviation from the Poisson reference of the LZ- and C-distance
f spike trains originating from neurons measured in areas LGN, V1 (com-
lex/simple cells) and MT.
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Fig. 5. Clustering of multi-train data. (a) Raster plot of initial spike set. (b)
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ere not distinct. In summary, the results suggest the follow-
ng interpretation: in terms of the ‘timing deviation’ of the data
rom the Poisson reference, the V1 simple cells have the high-
st value (i.e. have the highest ‘timing reliability’), followed
y the LGN cells and the MT/V1 complex cells. In terms of
he ‘pattern deviation’ of the data from the Poisson reference,
he MT neurons have the highest value (i.e. have the highest
pattern reliability’), followed by the LGN, V1 simple and com-
lex cells. Thus, the complex cells are closest to the Poisson
odel in both respects, whereas the MT cells have a consider-

ble ‘pattern reliability’ and the V1 simple cells a considerable
timing reliability’. The LGN cells display both characteristics
p to some degree, although the number of trials per stimu-
us conditions in this case is low and thus requires a careful
nterpretation.

.2. Classifying spike trains with non-synchronous patterns

To investigate the performance of the LZ-distance in spike
rain classification, we proceed in two steps: we test whether the
Z-distance sorts spike trains of physiological and simulated
ata and we compare the performance of the LZ-distance with
he C-distance when clustering artificial spike trains with simi-
ar, but not synchronous patterns. For the first step, we generated
set of spike trains consisting of in vivo and model data of com-
arable firing rate (80–90 spikes/s), as classes of spike trains that
iffer substantially in firing rate are easily recognized using the
Z-distance. Our multi-train data set contains the following five
lasses, each represented by nine spike trains of length 2400 ms.
lass (A) spike trains of a complex cell (macaque monkey visual
ortex data, for further explanation see preceding section) driven
y gratings drifting at 6.25 Hz. Class (B) spike trains of a simple
ell driven by gratings drifting at 12.5 Hz. Class (C) spike trains
f a homogeneous Poisson process with refractory period that
odels the firing of the recorded complex cells. The absolute

efractory period is 1 ms, the relative refractory period is tuned
uch that the interspike interval histogram is similar to the one
f the original data. Class (D) spike trains of an inhomogeneous,
tep function driven Poisson process with refractory period that
odels the firing of the recorded simple cells. The frequency

f the modulation is 12.5 Hz, the base rate is 0 spikes/s and the
eak rate is tuned such that it is similar to the original data.
lass (E) Poisson spike trains containing weakly synchronized
urst patterns. The burst pattern is formed by sequences of three
ursts of five spikes per burst and interburst-distances of ∼70
nd ∼100 ms. The corresponding spikes of each burst of the pat-
ern of each train are uniformly distributed within an interval of

2 ms and ∼50% of the remaining spikes derive from a low-rate
oisson process that has been tuned such that the overall firing
ate is similar to that of the other four classes. We randomized the
rder of the spike trains in order to obtain a multi-train data set
Fig. 5(a)). After calculating the LZ-distance between all trains
for the resulting distance matrix and the distribution of dis-

ances see Fig. 5(b)), clustering led to the following result: The
lasses B, D and E formed one cluster each, whereas the classes
and C fell into a single cluster (Fig. 3(c)). When the algorithm
as applied to the latter cluster for a decreased minimal cluster

c
c
c
t

istance matrix (white: d(X, Y) = 0, black: d(X, Y) = 1) and histogram of distances
btained after calculating the pairwise LZ-distance. (c) Dendrogram outlining
he result of clustering.

tability Sθ , only an incomplete separation between spike trains
f the classes A and C occurred, as two smaller clusters of five
spike trains of class C) and 13 elements each (spike trains of

lasses A and C) emerge (not shown). Two main conclusions
an be drawn from this result. First, the metric is able to classify
orrectly spike trains with comparable firing rate, but differing
emporal structures. Second, we are able to interpret classifica-
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t
r

4

t
i
s
s

48 M. Christen et al. / Journal of Neu

ion failures as in the incomplete separation between spike trains
f the classes A and C. Here, the spike trains C derive from a
odel of the firing of a complex cell and the incomplete separa-

ion from the spike trains of the complex cell indicates that the
ring behavior of the cell appears to be (in a first approximation)
roperly modelled by a Poisson process with refractory period.
he sinusoidal firing of the simple cell, however, could be dis-

inguished from the inhomogeneous Poisson process driven by
step function, as the two classes B and D are separated by the
lustering algorithm.

In a second step, we clustered model spike trains of similar
ring rate that contain different types of repeating sequences of

nterspike intervals (interval patterns). The repeating sequences
ithin spike trains of a single class characterized by one type of

nterval pattern are not synchronized, but randomly distributed
ithin each train. This challenging task for spike train clus-

ering is performed using the LZ-distance and the C-distance,
he latter is a common distance measure for spike train cluster-
ng problems (Fellous et al., 2004). We generated five classes
f spike trains, characterized by the following interval pat-
erns. Class (A) (4, 4), Class (B) (13, 13, 13), Class (C) (5,
0, 3), Class (D) (3, 16, 3, 16), and Class (E) (1, 4, 7, 2, 6,
1). Each spike train (five per class) was generated such that
0% of the interspike intervals of the train originate from the
equence and 50% from a homogeneous Poisson process. The
ate of the Poisson process was adapted for each class in order
o generate almost identical mean firing rates for all spike trains
92–94 spikes/s). The order of the spike trains was again ran-
omized to generate a multi-train data set (Fig. 6(a)). To this
ata set, sequential superparamagnetic clustering was applied,
sing both the LZ- and the C-distance (the standard devia-
ion of the Gaussian kernel used for convolving the spike train
efore applying the C-distance was 1 ms). We found a clear
ifference in performance between the two distance measures:
hereas the LZ-distance allowed a clear-cut separation of all

ve classes (Fig. 6(c)), the use of the C-distance did not lead
o any classification. This noticeable difference in performance
ecomes apparent if the distribution of the distances is com-
ared (Fig. 6(b)). For the LZ-distance, the range of distances
s ∼0.4 with a multi-modal distribution (indicating the struc-
ure within the data set), whereas for the C-distance the range is

0.1 with a unimodal distribution. The latter observation implies
hat a re-scaling would not increase performance and that the
lassification-failure is independent of the clustering algorithm
sed. This demonstrates that the LZ-distance is a measure that
lassifies spikes trains with delayed patterns. The C-distance,
hich focuses on synchronized firing, fails in such situations. In

ontrast, if synchronization were the desired criterion to classify
pike trains, the C-distance would be more appropriate than the
Z-distance. Generally, two spike trains that are very close in

he C-distance paradigm for a sufficiently small gaussian kernel
width: 1–2 ms) share many coincident spikes and thus consist
asically of the same spike patterns. Therefore, these trains are

lso close in the LZ-paradigm, whereas two trains that are close
sing the LZ-distance can be distant using the C-distance—e.g.
hen a considerable phase-shift is present. In that sense, the
Z-distance is more general.

c
t
a
t

ering the spike train set using the LZ-distance: all five classes are clearly
ecognized.

. Discussion

We have introduced a novel spike train distance measure,
he LZ-distance. We find that this distance provides additional
nsights into firing reliability determination and spike train clas-
ification, compared to the common spike train distance mea-
ures. For the first problem type, the LZ-distance determines a
omplementary aspect of neuronal firing reliability compared

o spike timing. In combination with the C-distance, we are
ble to distinguish between firing reliability in terms of spike
iming and firing reliability in terms of spike patterns. Our find-
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ngs on spike timing agree with the results of earlier studies
hat claim a high timing precision in LGN (Reinagel and Reid,
002) and simple cells of V1 (Kara et al., 2000). The reli-
bility deviations in terms of patterns provides an additional
nsight that needs a more careful interpretation, because the

ean distance of some spike trains obtained in multiple pre-
entations of a single stimulus condition is higher than the
oisson reference—especially in area MT. Thus, the neurons
ay deviate from the reference function not in the sense that

ertain specific firing patterns are replicated in the different
rials, but that different firing patterns are present in different
rials of a single stimulus condition. This interpretation may
e explained within our framework of neural coding and com-
utation within dynamical systems theory (Stoop and Stoop,
004; Stoop et al., 2000a,b, 2002). This framework is based on
oupled, noise-driven neuronal limit cycle firing, where neu-
onal computation shows up as distinct firing patterns that result
rom locking of these limit cycles. In the in vitro condition,
he appearance of these firing patterns of periodicity one up
o five has been demonstrated (Stoop et al., 2000c), whereas
ast but coherently changing modulations of the driving of two
ocked neurons in the in vivo condition hide the patterns in
he sense that the periodicity is not visible from eye, although

as model studies using detailed compartment models and
odgkin–Huxley-neurons demonstrated (Stoop et al., 2004a,b)
the locking between the two neurons is preserved. The LZ-

istance is expected to consider spike trains that emerge from
neuron under in vivo conditions performing always the same

omputation in different trials as close, because the firing pat-
erns – although the periodicity is hidden – should not differ
onsiderably. However, locked neurons in higher cortical areas
as area MT), where different types of computation may take
lace, display different types of patterns, whose actual presence
nd weighting in different trials of a single stimulus condi-
ion may change in the in vivo condition. This type of firing
ould, however, be well distinguished from Poisson firing. Our
ndings are compatible with this prediction, although further
xperimental work would be required to test our theoretical
ramework.

For spike train classification, we have shown that the LZ-
istance, in combination with the sequential superparamagnetic
lustering algorithm, classifies spike trains with similar but
elayed firing patterns. Distance measures that focus the pre-
ise timing of spikes fail in such cases. This demonstrates, that
he application of the LZ-distance for the neuron clustering task
rovides novel insights. This is also shown for an in vivo study
sing data from electrodes array recordings in the olfactory
ystem of rats in vivo. In this analysis we have shown that clus-
ers of neurons under the LZ-distance-paradigm are more stable
hen an olfactory stimulus is presented to the animal than dur-

ng spontaneous activity (Christen et al., in preparation). This
tabilization effect is much weaker when the neurons are clus-
ered under the synchronization paradigm. This result indicates,

hat the presence of an odor increases the stability of firing pat-
erns beyond simple coincidence firing and demonstrates, how
dditional insight is obtained by our novel measure in a neuron
lassification task.
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