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Abstract. Conventional building automation is preprogrammed
with nominally-optimal behavior. Machine learning offers the pos-
sibility of learning behavior that is better matched to individual oc-
cupant desires and that further reduces energy consumption. How-
ever, traditional machine learning is difficult to apply due to 1) the
extremely sparse training input–typically 2-3 effector uses/day and
2) to the extreme necessity to avoid occupant rejection by annoy-
ing incorrect behavior. Our building1 is equipped with a LonWorks
building automation network that provides sensor (light, presence,
temperature, etc) and effector (light and blind switches) information.
Previous work using our automation installation [9] and [12], have
explored machine learning of user preferences, with the aim of in-
creasing comfort while reducing energy consumption. All the prior
systems were rejected by normal occupants. In the work described
here we demonstrate for the first time a system for lighting control
that has been accepted by normal building occupants. It has been
running continuously for the past 70 days in three normal offices oc-
cupied by 9 people. It is based on a new multiagent OSGI-based in-
frastructure and uses Weighted-Majority mixture of experts, to learn
user preferences for lighting starting from a tabula rasa state.

1 INTRODUCTION

A major obstacle for autonomously learning dynamic space behav-
iors and configurations is that sensors perceive and react very dif-
ferently from the human brain. For instance, we perceive fog with
a different luminance intensity than measured by sensors. Further-
more, ambient light levels change dramatically even with small at-
mospheric changes such as a momentary scattering of particles over
the sun. Hence, different skylight levels can be found even under the
same sunlight condition [8]. Consequently, intelligent buildings (IBs)
need to be flexible enough to quickly react and to respond to such
environmental changes. Additional difficulties are created by sparse
and sometimes inconsistent user instructions. These make learning
behaviour problematic.

2 RELATED WORK

In [9], [10] and [12], a hierarchical fuzzy system approach has been
introduced where the inputs to the learning process are real valued
variables acquired from sensors. The output of the proposed learning
algorithm is a model consisting of a number of a fuzzy rules which
are continuously generalized or amplified into a definitive fuzzy rule
set using the inductive fuzzy learning algorithm of Castroet al. [1]
in order to overcome the curse of dimensionality. These fuzzy rules
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are then used by a fuzzy logic controller (FLC) to take decisions.
Feedback acquired from the environment is continuously used by the
learning process to adapt the fuzzy logic rules.
Questionnaires answered by previous users have shown that the sys-
tem was rejected by the occupants and attempts had been made
to circumvent it. We believe that the applied approach is not suit-
able enough to control non-stationary spaces due to the dependence
on predefined membership functions. Correspondingly, every space
which is unique in its own kind, i.e. west facing window, would need
its own set of membership functions to be defined a priori and there-
fore does not differ from manually calibrating sensors. Membership
functions should change over time and thus makes this approach not
sufficiently adaptive.
There is a variety of related projects being conducted at other places.
For example [5] describe a system where different sensors of a room
are connected via a sensor network (LonWorks) to a single embed-
ded agent that is located physically in a room. This agent uses the
information acquired to learn fuzzy logic rules with a genetic algo-
rithm learning paradigm. There learning procedure requires explicit
feedback of the user. Our work is different because we use a learning
algorithm which doesn’t require any explicit feedback by the users at
all and is also not based on fuzzy logic.

3 OUR APPROACH

Our measurements have shown that some rooms (labs and regular of-
fices) have simple predictable regularity in them which can be learnt
by providing a few significant input variables (i.e. interior daylight or
daytime) only. However, not all spaces are of such simple structure
and ambient needs and thus need to be learnt and controlled using
more sophisticated learning algorithms and also more sensory infor-
mation. However, it is quite difficult to determine and to evaluate the
goodness of a learning approach without having the ability to com-
pare them against others. Additionally, not every approach turned
out to succeed all of the time [7]. For instance they might only be ac-
curate under specific sensor conditions, determined by the dynamic
source of lighting, temperature, humidity, etc. Furthermore, an en-
vironment with frequently changing occupants yields an additional
difficulty that must be overcome; the ability to adapt to new occu-
pant preferences that ultimately demands that an algorithm must be
capable to discard previously learnt knowledge. Our approach [7] in
setting up a suitable learning infrastructure introduces a novel Intel-
ligent Building Framework that composes a set of independent light
controller agents (LCs). Each LC deals with multiple input dimen-
sions and controls an individual light on a local basis rather then
global (i.e. room or even building).
The core of each LC is a Weighted-Majority based algorithm that
incorporates a mixture of experts, which we demonstrate succeeds
in learning and controlling different spaces. The major benefit by
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applying this approach is that each algorithm within each LC will
contribute its individual decision, which is weighted by a function of
user interactions and the deviation to the target output. For instance,
when occupants frequently change, a different algorithm may score
better results then an algorithm that is more reliable in steady spaces
where the learning and the control can be improved by remembering
occupant behaviors that have happened in past, infrequent situations
i.e. in foggy days.
The rest of the paper is organized as follows. Section: 3.1 describes
the basic LC algorithm, section: 3.2 motivates the need for short and
long term memory and section: 3.3 describes the base learners used
in the LC algorithm. The test environment is described in section: 4,
and results of preliminary experiments are summarized in section: 5.

3.1 The LC algorithm

Our LC algorithm considers the changing strengths and weaknesses
of different base learners. The algorithm makes a decision by taking
a weighted vote among a pool of base learners and learns by altering
the weight associated with each of them. Accordingly, learners that
perform better will be rewarded and others punished. In the follow-
ing, we present a basic version of the LC algorithm. At each time step
t (typically 10 minutes) the overall LC decisionLCt is calculated:

LCt =

∑n

i=1
oit wit∑n

i=1
wit

(1)

where oit denotes the output of a base learner andwit the as-
sociated weight.LCt is a value between zero and one which is
commonly thresholded i.e.LCt ≤ 0.4=̂LIGHT OFF ; LCt ≥
0.6=̂LIGHT ON . The resulting error is then computed using:

errorit =
∣∣Ot − oit−1

∣∣ (2)

whereOt corresponds to the current light status (LIGHT ON=̂1;
LIGHT OFF =̂0). Reinforcement signals observed by the system
within a reasonable time period∆tuser (typically 20 minutes) are
forwarded to a decaying function that extracts a learning rateαt that
is used to adapt the weights of the base learners:

αt = αMaxe−c∆tuser (3)

wit ← wit−1 (1 + αt − 2 αt errorit) (4)

Also, to prevent ”successful” algorithms from indirectly punishing
one another due to small target error values, a suppressing, sigmoidal
function is applied. Hence, if the true error is small the function ar-
tificially even lowers the true error value produced by the learner.
Reciprocally the function artificially increases the errors for learners
that have been off base. Correspondingly, the function either ampli-
fies or damps the extent how strong the weight are being changed.

errorit ←
1

1 + e−c (errorit
−0.5)

(5)

A basic version of the LC algorithm is given in Alg. 1

3.2 STM (Short Term Memory) vs. LTM (Long
Term Memory)

A common problem with online learning which has also been ad-
dressed in [12] is to decide when to discard old and when to in-
corporate new data for the learning (STM vs. LTM). Also,finding
a suitable training-set sizefor any learner of an arbitrary space is
cumbersome but ultimately essential. Collecting a bunch of data isn’t
very practical either due to often dealing with animbalanced class
problemand above all, building occupants may frequently change.

repeat

Fetch input vector~xt (Sensor values from humidity,
temperature, daylight, blinds, etc.)

foreachbase learnerdo
oit = getDecision(~xt)

end

// Set the status of the light

LCt =

∑n

i=1
oit

wit∑n

i=1
wit

t← t + 1

foreachbase learnerdo
errorit ←

∣∣Ot − oit−1

∣∣
errorit ← 1

1+e
−c (errorit

−0.5)

αt ← αMaxe−c∆tuser

wit ← wit−1 (1 + αt − 2 αt errorit)

end

// Normalize weights

foreachbase learnerdo
wit ←

wit
arg maxi wit

end

// Clamp weights

foreachbase learnerdo
if wit < wmin then

wit ← wmin

end
end

until Stop condition reached;

Algorithm 1 : LC Algorithm

3.3 Base learners

Applying a mixture of experts for controlling arbitrary spaces there-
fore seems to be a reasonable solution for our task, since it dynam-
ically tries to discover and adapt to constantly changing needs by
consulting a voted expert decision. In the following we will focus
on some of the applied base learners. We first examined a variety of
learning algorithms and tested them using our own developed real-
time simulation software. This software simulates custom spaces as
well as fictional occupants with varying preferences. Generally we
were interested in the strengths and weaknesses of the algorithms as
well as under which conditions they succeed in learning space and
changing occupant behaviors.
The core approach that we propose here, addresses some of the issues
stated in the previous section: 1)discover a suitable training-set size
and 2)the class imbalance problem. The basis underlies a foregoing
data pre-processing step, clustering, that has been used by two (out
of five) base learners.
The aim with clustering is to improve any conventional learning al-
gorithm such as ANNs or other regression techniques by preceding
additional ambient noise filtering. In other words we use clustering
to preserve collected data into categories and thus provide a solution
against losing infrequent knowledge.
However, most clustering algorithms such as thek-meansrequire a



priori knowledge on the number of clusters and therefore a suitable
number of clusters must dynamically be discovered. One of the two
base learners applies the g-means algorithm [4], that discovers an
appropriate number of clusters using a statistical test for deciding
whether or not to split a k-means center into two new cluster cen-
ters. Thereby the split is conducted on the centroids whose ”member
data” appear not to come from a Gaussian distribution. The other
base learner also employs a cluster algorithm, GNG [2], [3] that dy-
namically discovers a suitable number of clusters by producing a set
of growing gases (neurons). Hereby the neurons try to best fit our
non-stationary model.
Having clustered the data, each of the data points provided by each
of the gained clusters can be used by a supervised learning technique
such as regular ANNs. The regression is conducted on a local or
global basis.

• Local refers to the procedure where the new data is first classified
to the most probable cluster. Only the data of this cluster is then
used as the sample training-set.

• Global does’t classify the new data to a cluster but instead takes
all of the clusters as the training-set (See next paragraph).

Both the problems: the class imbalance problem and the problem
of discovering a suitable training-set size is further addressed by

• Limitting the size of clusters (ring-buffering) to prevent the
training-set from constantly growing and also to avoid the
training-set to become largely imbalanced.

• The training-set should be re-clustered before any conventional
supervised learning technique is employed. Hereby, each the re-
clustering step should be launched with an initial set of clusters
(Depending on the number of clusters of the previous step). Thus,
we allow candidate clusters to be merged with other similar clus-
ters to prevent a form of over-clustering. Also, clusters which only
contain a few data members should be deleted completely (out-
liers).

Our simulations have shown that a global regression is better
matched in our building intelligence system since it reduces over-
fitting. In summary, we perform clustering to enhance the decision
making on distinct spots where conventional algorithms would
fail to provide a fast reliable but necessary prediction since most
algorithms are quite often not agile enough to react to such changes
within a reasonable time.

The other three applied base learners shown in [7] have been
realized with conventional techniques. The basic idea of the
approaches are given below:

• A simple statistical approach that has shown to succeed in so
called Simple Environments. Such an environment signifies that
learning can be performed by only using the interior daylight and
the daytime as the major measure.

• Conventional multi-layered ANNs.
• A form of dual layer networks that simply involves two multi-

layered ANNs, each of which working with different training-set
sizes. One for representing a short term memory which is affected
by the output network of the long term memory (Fig: 3.3). This
approach was inspired by the fact that LTM in human brains have
a strong influence on the perception through top-down processing.
In [7], other similar network variants have also been discussed.

4 TEST ENVIRONMENT

Our novel adaptive building intelligence (ABI) system presented in
[7] and [6] is required to run 24/7 and thus some measures have been
taken to improve the reliability by applying self-healing upon any
software component or networking failure. Further, providing reli-
able presence in a space that is only equipped with regular PIR sen-
sors is according to [7] very hard to achieve due to the required line
of sight with the subjects and thus make energy savings and learning
occupant behaviour cumbersome. Hence, PC Presence detectors [11]
have been incorporated which helped us to improve the presence de-
tection within our test environments. The building structure here at
the INI1 is a non-stationary environment where not only individual
desires are constantly changing but also the physical structure (e.g.
seasonal weather, mobile walls in multi-office environments).

5 PRELIMINARY RESULTS

The following real experiment was used to evaluate the success of the
learning. Three rooms, each of which comprises 2 LCs, were tested
for a period of 70 days. Two rooms are illustrated in Fig. 1. The gap
between week four and five in room 55.G.84 is due to Xmas and
New Year’s eve, where nobody was working. The collected data in-

Figure 1. The left plots show the received occupant-, and the right plots the
conducted LC decisions, versus weeks.

dicate that user interactions which are normally taken by occupants
had been taken over by the system. Thus, the system was assisting its
inhabitants in their ordinary daily tasks. In the first week four user in-
teractions were received which decreased to only 1-2 or mostly even
zero. The learning was conducted every 10 minutes under the condi-
tion that someone was present. Additionally, in order not to end up in
opposing interactions a delay of one hour was being enforced upon
receiving any system or user interaction. Fig. 2 illustrates how the
contribution of the base learners have varied during that 70 period.



Figure 2. The plots illustrate the varying contribution (weight [0-1]) of the
base learners.

Each associated weight reflects how strong its opinion was consid-
ered by the overall decision. When comparing Fig. 2 with Fig. 1 we
can observe that around day 42 most weight alterations have been
conducted due to newly received user instructions. Five learners were
incorporated and their weights recorded; Fig. 2, shows that not all
base learners performed equally well in our two test rooms, but at
the same time, we can observe that the Weighted-Majority mixture
of experts succeeded to control the two rooms even though we had
been running the same base learners in both rooms.

6 SUMMARY

We have proposed and studied a new approach that succeeded to con-
trol the lights in three different rooms for a period of 70 days. Each
light controller hereby dynamically considered a mixture of expert
decisions. The evaluation of the collected data has shown that the
collective decisions updated to individual space functions without a
priori knowledge. Also, a stable OSGi-based infrastructure was de-
veloped that incorporates the presented IB framework that provides a
common generic architecture that facilitates further development. In
the future, such a generic setup will be beneficial to be even adapted
to other controllers such as blinds. Also, as illustrated, we believe
that foregoing clustering can help to improve future decisions where
conventional approaches are not agile enough to react to sudden envi-
ronmental changes within a reasonable time. Although these prelim-
inary results are encouraging, they need to be studied over a longer
period of time with a greater variety of rooms, occupants and weather
conditions, and controlled rooms need to be quantitatively compared
with uncontrolled rooms. This work is ongoing.

ACKNOWLEDGEMENTS

The authors like to thank Rodney Douglas and Kevin Martin for let-
ting us utilize this wonderful infrastructure. We would also like to
thank Simone Schuhmacher, Kathrin Aguilar Ruiz-Hofacker, Steven
Fry and Giacomo Indiveri for letting us control their room. Finally
we would like to thank the referees for their comments which helped
improve this paper.

REFERENCES
[1] J. L. Castro, J. J. Castro-Schez, and J. M. Zurita, ‘Learning maximal

structure rules in fuzzy logic for knowledge acquisition in expert sys-
tems’,Fuzzy Sets and Systems, 101, 331–342, (1999/2/1).

[2] Bernd Fritzke, ‘Supervised learning with growing cell structures’, in
Advances in Neural Information Processing Systems 6, eds., J. Cowan,
G. Tesauro, and J. Alspector, 255–262, Morgan Kaufmann Publishers,
San Mateo, CA, (1994).

[3] Bernd Fritzke, ‘A growing neural gas network learns topologies’, inAd-
vances in Neural Information Processing Systems 7, eds., G. Tesauro,
D. S. Touretzky, and T. K. Leen, 625–632, MIT Press, Cambridge MA,
(1995).

[4] Greg Hamerly and Charles Elkan, ‘Learning the k in k-means’, in
Advances in Neural Information Processing Systems 16, eds., Sebas-
tian Thrun, Lawrence Saul, and Bernhard Schölkopf, MIT Press, Cam-
bridge, MA, (2004).

[5] Martin Colley Hani Hagras, Victor Callaghan and Graham Clarke., ‘A
hierarchical fuzzy-genetic multi-agent architecture for intelligent build-
ings online learning, adaptation and control’,Information Sciences -
Informatics and Computer Science, 150, 33–57, (2003).

[6] Stephan K. Nufer and Mathias Buehlmann, ‘Intelligent, learning sys-
tem. - a new ABI system built on the open services gateway initiative’,
Technical report, University of Applied Sciences Rapperswil, Switzer-
land and Institute of Neuroinformatics, Swiss Federal Institute of Tech-
nology, Zurich, Switzerland. www: http://abi.ini.unizh.ch, (2005).

[7] Stephan K. Nufer and Mathias Buehlmann, ‘Intelligent, learning sys-
tems ABI mark II. - a novel approach for learning dynamic space be-
haviors in a non-stationary environment’, Technical report, University
of Applied Sciences Rapperswil, Switzerland and Institute of Neuroin-
formatics, Swiss Federal Institute of Technology, Zurich, Switzerland,
(2005).

[8] N. et al. Ruck,Daylight in Buildings - A source book on daylighting sys-
tems and components, Lawrence Berkeley National Laboratory, Berke-
ley (USA), 2000 [LESO-PB-BOOK-2000-004], 2000.

[9] Ueli Rutishauser, J. Joller, and R. Douglas, ‘Control and learning of
ambience by an intelligent building.’,IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 35(1), 121–132, (2005).

[10] Ueli Rutishauser and Alain Schaefer, ‘Adaptive home automation –
a multi-agent approach’, Technical report, University of Applied Sci-
ences Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss
Federal Institute of Technology, Zurich, Switzerland, (2002).

[11] A. Fenkart T. Delbruck and R. Zwiker. Using personal computers for
enchanced presence detection in building automation, HCI, 2005.

[12] Jonas Trindler and Raphael Zwiker, ‘Adaptive building intelligence –
parallel fuzzy controlling and learning architecture based on a tempo-
rary and long-term memory’, Technical report, University of Applied
Sciences Rapperswil, Switzerland and Institute of Neuroinformatics,
Swiss Federal Institute of Technology, Zurich, Switzerland, (2003).

http://abi.ini.unizh.ch

	INTRODUCTION
	RELATED WORK
	OUR APPROACH
	The LC algorithm
	STM (Short Term Memory) vs. LTM (Long Term Memory)
	Base learners

	TEST ENVIRONMENT
	PRELIMINARY RESULTS
	SUMMARY

