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2 International School of Scientific Computing, Johannesburg, South Africa
E-mail: ruedi@ini.phys.ethz.ch, norbert@ini.phys.ethz.ch,
albert@ini.phys.ethz.ch and whs@na.rau.ac.za
URL: www.stoop.net/group

Received 9 May 2005
Accepted 6 October 2005
Published 30 November 2005

Online at stacks.iop.org/JSTAT/2005/P11009
doi:10.1088/1742-5468/2005/11/P11009

Abstract. Shiner, Davison and Landsberg have recently proposed a measure
of complexity that has become the subject of an intense debate. We show
that using the framework of the thermodynamic formalism, the properties and
shortcomings of this measure—over-universality and a trivial implementation of
the temperature dependence—can be interpreted and elucidated in a coherent
way. Moreover, we show how the SDL approach can be refined to nullify these
critiques. Results of the logistic parabola family demonstrate the improved
behaviour of the modified SDL measure of complexity. For the tent map family,
an interesting linear dependence of the modified measure as a function of the
asymmetry is observed.
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1. Introduction

A simple and natural approach to measuring complexity put forward by Shiner et al [1]
has recently fuelled a widespread debate on the subject in general, and on their new
complexity measure in particular (henceforth abbreviated as the SDL measure).

The notion of complexity in dynamical systems is common and widely used. However,
many different approaches are used to measure this quantity; references [1]–[22] cover
but a subset of direct contextual relevance. This expresses the many different facets
that complexity has, and raises the question of whether frameworks of complexity could
be found within which at least some of the more important extant notions could be
systematically embedded. In a recent paper [2], we put forward such an approach that
allows a free choice of the observable whose complexity of predictability is to be assessed.
In simple terms, the complexity of predictability is defined as the averaged difficulty of
inferring future observations from past ones. In this contribution, we use the underlying
framework [2, 12] to clarify the properties of the SDL measure. We show that the main
shortcoming of the SDL measure is in its trivial implementation of the temperature
dependence. In a first extension of the results obtained in [1], we evaluate the SDL
measure for the tent and the logistic map families for the case of a dynamical partition
of the support. This allows a direct estimation of how much a freely chosen partition
influences the results, and how much the SDL concept differs from our definition of the
complexity of prediction [2]. We then propose a refinement of the SDL approach, in order
to nullify the main point of criticism. Results of this modification are presented for the
tent map and the logistic parabola families. They demonstrate that the refinement has a
strong effect on the measure. For the tent map family, an interesting linearity property
of the measure depending on the family parameter emerges.

Over the last decade, the quest for ‘natural’ complexity measures has continu-
ally attracted interest, from both theoretical and experimental points of view [1]–[20].
Among the different concepts proposed for the characterization of complexity, the Kol-
mogorov/Solomonoff algorithmic complexity [4, 5, 18] has possibly been the most influ-
ential concept. The algorithmic complexity A of an object s is defined as the length
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of the shortest program P (in bits) that produces (prints) the object s:

A(s) := min
C,P :C(P )=s

log(length(P )), (1)

where C is a computer. As there exists a universal computer, called the Turing machine,
which is able to simulate any other computer, A(s) is a well-defined quantity. In this way,
the algorithmic complexity has been devised as a measure of the complexity of objects
generated by computers, or computer programs.

By assigning maximal complexity to random sequences, this measure, however,
violates a very basic concept of complexity. From the point of view of an intrinsic
notion of complexity, truly random sequences appear no more complex than pseudo-
random sequences, even though the latter have a much shorter description length. In
fact, computer-generated random sequences are the result of simple random generators,
that have finite algorithmic complexities. In the physical world, the distinction between
random and pseudo-random sequences is largely irrelevant. As a consequence of Gödel’s
theorem [23], the values of small digits in measurements are unpredictable per se, due to
the coupling to the rest of the world. The description of any biological or physical system
is thus naturally based upon cylinders of real numbers, even though the measurements
may be given in terms of rational numbers. Sequences contained in the same cylinder,
however, will have divergent shortest descriptions. This, in few words, is the deeper
reason why for natural and physical systems, the algorithmic complexity fails to provide
a suitable measure of complexity.

2. The SDL complexity measure and its relation to the fluctuation spectrum

For a measure of complexity one should require that it be zero for truly random, as well as
completely ordered, objects. To be useful, it should be easy to evaluate; in particular, it
should not require a hierarchical decomposition of the system. Starting from this position,
Shiner, Davison and Landsberg [1] defined their complexity measure as

Γα,β := ∆α(1 − ∆)β, α, β ∈ R, (2)

where the ‘disorder’ ∆ was defined as ∆ := S/Smax, with S being the Boltzmann–Gibbs–
Shannon entropy and Smax the maximal entropy. Consistently, (1−∆) was defined as the
order in the system. The rescaling by Smax maps measured order or disorder into the unit
interval. Upon variation of the disorder strength α and the order strength β, the authors
hoped to be able to smoothly connect all relevant classes of complexity.

As has been pointed out by several authors [21, 22], this measure of complexity,
however, has some important shortcomings. Elucidating the origin of these and pointing
out ways to correct them constitute the main content of our contribution. In order to
achieve this goal, we reinterpret SDL’s work in terms of the fluctuation spectrum [2]. For
an observer-chosen variable ε, the associated fluctuation entropy spectrum S(ε) is derived,
using the thermodynamic formalism of dynamical systems [12]. This is achieved by a
Legendre transformation, applied to the free energy associated with the natural partition
sum induced by the temporal evolution of the system. Formally, the thermodynamic
formalism departs from a partition function Z(n, β, ε), where n is the level or depth of the
partition and β can be viewed as an inverse temperature. With Z(n, β, ε), a free energy

F (β) := lim
n→∞

(1

n

)
log(Z(n, β, ε)) (3)
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Figure 1. Fluctuation spectra of different maps and specific entropy measures SI

and Smax. Solid lines, filled dots: convex entropy functions S(ε) obtained for two
asymmetric tent maps of varying asymmetry. Dashed line, open dot: numerical
approximation of S(ε) obtained for the fully developed parabola (partition level
n = 12), which slowly converges towards the triangular function (thin solid lines,
open dot). In this case, SI and Smax coincide. In the presence of first-order phase
transitions, piecewise linear parts of the graph emerge, as is demonstrated by the
parabola.

is associated, where in F (β) we suppressed the dependence on the observable. β can
be interpreted as an artificial temperature (that has no absolute zero, though). In the
absence of phase transitions, a large deviation (or fluctuation) entropy is obtained by
means of the Legendre transform

S(ε) := εβ − F (β). (4)

The requirement that applies to entropy functions is strict convexity with infinite
derivatives at the two end-points of the curve (in the absence of phase transition effects).
The fluctuation spectrum generally has the convex form shown in figure 1. There, entropy
functions for different one-dimensional maps are displayed, for the logarithmic length scale
ε(x) := log(|f ′

(x)|) [2] as the chosen observable. In the presence of first-order phase
transitions, straight-line parts emerge, as is shown by the example of the fully developed
parabola (the thin line in figure 1).

In the context of the fluctuation entropy S(ε), Γα,β has a simple interpretation: S in
the SDL formula corresponds to the observable measure SI in the fluctuation spectrum,
defined by SI(ε) = ε, whereas Smax corresponds to the topological entropy (the maximum
of S(ε)). The basic ingredient of SDL’s work is therefore proportional to the product
SI(Smax − SI). Geometrically, this quantity amounts to the grey area of figure 2.
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Figure 2. Geometric meaning of the SDL measure: the shaded area has the size
SI(Smax − SI). For the fully developed parabola (see figure 1), zero area would
be obtained.

3. Properties of the SDL measure

By construction, the SDL measure only depends on two particularly significant points
of the fluctuation spectrum: the natural measure SI and the topological measure Smax

(the latter is sometimes also referred to as the balanced measure). As a consequence, the
remaining shape of the fluctuation spectrum S(ε) does not influence the measure. This
leads to the undesirable situation that very different dynamical systems are characterized
by identical complexities Γα,β, for all values of the exponents α, β. This is illustrated by
hyperbolic maps versus maps displaying phase transition phenomena. To most hyperbolic
maps, intermittent maps can be found that have identical values of SI and of Smax,
and hence identical SDL complexity. Obviously, however, the intermittent maps are
much more difficult to predict than hyperbolic ones. An extreme case is obtained for
SI = Smax. This property is characteristic for maps with vanishing fluctuation spectrum
(e.g., symmetric tent maps); however, some intermittent maps also satisfy this condition.

As a minor point, SDL’s work did not specify on what partition their approach should
be based. In the main application of their measure, they used a uniform partition.
In principle, the choice of a partition corresponds to a selection of the observable and
could, therefore, be considered a matter of personal choice. However, as a measure
of complexity should be tied to a hierarchical process (in our case to the refinement
of the resolution in space or in time), some choices are better suited than others, in
particular from the viewpoint of convergence. For the definition of the topological
entropy, the ε-spanning minimality requirement is in most cases equivalent to saying
that Smax = log(number of monotone branches of f). With this view, using a binning

doi:10.1088/1742-5468/2005/11/P11009 5

http://dx.doi.org/10.1088/1742-5468/2005/11/P11009


J.S
tat.M

ech.
(2005)

P
11009

Shiner–Davison–Landsberg complexity revisited

0
0

0.2

1
a

0

Γ11

Γ11

(b)

(a)

0.4

3.5 4
a

Figure 3. SDL complexity Γ1,1 based on dynamical partitions for (a) the tent
map family, as a function of the asymmetry a, and (b) the logistic map, as a
function of the order parameter a.

into 210 = 1024 bins is in principle not bad. For the ‘natural’ measure SI , however, the
choice of the binning procedure is of more importance. To provide an illustration, take a
uniform binning and consider that half minus one points of a period 211 fall into one bin
each, whereas the rest go into the remaining bin. The entropy obtained for this setting
then vastly differs from the asymptotic one. Using natural dynamic partitions for the tent
map and the parabola family, we obtain SDL complexities as shown in figure 3. These
results differ substantially from those obtained using the uniform partition and from those
obtained with our Cs(1, 1) measure [2], although common trends are observed. To verify
this, compare figure 3(b) with figure 3 of [1], and figure 3(a) with figure 2(a) of [2].

4. Modification of the SDL measure

To obtain improved measures based on the order–disorder approach, at least the trivial
temperature dependence of the SDL measure should be replaced by a dependence
that is better able to reflect differences among systems. This is achieved by the
following construction. Recall that the basic SDL measure is proportional to the product
SI(Smax − SI). Instead of using for the characterization of the system two entropy points
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only, we propose to perform an integration over the entropy contributions from all length
scales ε. For each invariant, though, with the exception of the natural measure defined
by S(ε) = ε, the unobservable measure, the length scale ε assumes the role of its maximal
entropy, and S(ε) the role of its natural entropy. The appropriate integrand then has the
form

(1 − S(ε)/ε)α(S(ε)/ε)β, (5)

which can be calculated from the large deviation entropy S(ε). The results of this
calculation for the tent map and the logistic map family are shown in figure 4 for
α = β = 1. We see that the SDL measure is closely related to the complexity measures
based on the integrand

(S(ε)/ε)γ, (6)

for which a simple interpretation in terms of a complexity of predictability has been
given [2]. Unfortunately, for the modified integrand, a corresponding straightforward
interpretation seems hardly possible, since in the SDL approach, the weights of
intermittent length scales, which characterize the difficulty of prediction [2], are
counterbalanced by the first factor of (5). For γ = 1, the integrand (6) can be interpreted
as the fractal dimension of the set of (generically) unobservable measures characterized
by the scaling index ε. It is, however, not obvious that this fact could be used for a
straightforward interpretation of the SDL complexity.

5. Results and conclusions

Our modification removes the insensitivity of SDL’s work to system differences. A
comparison with the original SDL complexity reveals that the modification generates
notable differences even for fixed weighting exponents. To see this, compare the results
obtained for the tent map family (figures 4(a) and 3(a)). Remarkable in the result obtained
for the tent map family is that an almost linear dependence of the modified complexity on
the asymmetry is obtained, with a very strong decay close to the completely asymmetric
situation. Whereas SDL’s work displays an overall monotonically decreasing function
for the logistic parabola family, this no longer holds for the modified version (compare
figure 4(b) with figure 3(b), and with figure 3 of [1]). The original as well as our results
based on the dynamic partition exhibit high complexities for completely ordered systems
(period-doubling cascade cases or period-3 windows). As an expression of complexity, this
appears difficult to accept, as it misses one condition for measures of complexity that we
would like to see fulfilled: that the complexity should be zero when the system is either
completely ordered or random. For our modified measure, this shortcoming is removed.
As Crutchfield et al [21] pointed out, any measure of complexity must be tied intrinsically
to a process. By putting the measure on the basis of the thermodynamic formalism, a
coherent interpretation of the SDL measure could be given, and the importance of the
chosen partition was demonstrated. Starting from the ansatz (2) of complexity being
placed between order and disorder, we have arrived at a measure that is no longer open to
the most pertinent criticisms, and whose construction is entirely transparent. Binder and
Perry’s requirement [22], that at least some classes of systems known from hierarchical
analysis should be discernible, is satisfied to a somewhat weaker extent: whereas different
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Figure 4. (a) Modified SDL complexity CSh (for α = β = 1) of (a) the tent map
family, as a function of the asymmetry a, and (b) for the logistic map family, as
a function of the order parameter a (together with the Lyapunov exponent λ).

dynamical systems will indeed yield distinct complexity measure families, it is not obvious
how this could be extended to properties of whole classes of systems. Using the simpler
integrand (6), this was possible, in the sense that the highest measures for positive
exponents were obtained for intermittent systems.

Whether a similar deeper significance can be attributed to the integrand (5), and
how useful the measure could be for practical applications, remain to be seen. The linear
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dependence of the modified SDL complexity on the asymmetry, as observed for the tent
map family, provides at least an interesting starting point. To become a convincing
concept, also a class of systems should be identified that comprehensibly deserves a
maximal SDL measure of complexity.

Although our analysis mainly refers to one-dimensional systems, the results obtained
extend to more general cases. Entropy functions emerge also for higher dimensional
systems (e.g., even from time series [2]), and the dependence of our complexity measure on
non-hyperbolicities has been shown to be minimal. Composed systems may be represented
as mixtures in the thermodynamical sense, or as multidimensional entropy functions,
possibly reducible to product form. Therefore, we expect the higher dimensional situation,
and the spatially extended case to a lesser extent, to not differ substantially from the one
described here.
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