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Abstract. Sequential superparamagnetic clustering (SSC) is a substantial
extension of the superparamagnetic clustering approach (SC). We demonstrate
that the novel method is able to master the important problem of inhomogeneous
classes in the feature space. By fully exploiting the non-parametric properties of
SC, the method is able to find the natural clusters even if they are highly different
in shape and density. In such situations, concurrent methods normally fail. We
present the results from a fully automated implementation of SSC (applications
to chemical data and visual scene analysis) and provide analytical evidence of
why the method works.
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1. Introduction

Distinction, grouping and naming of observations are among the most basic cultural
activities [1]. In ancient times, the segmentation of the world provided a base for
communication and culture. More recently, notably in science, the focus has shifted from
the identification of single objects to the fusion of particular properties or objects towards
bigger units (objects and classes of objects, respectively). This task of grouping together
items that—in a situation-dependent sense—‘belong together’ is referred to as clustering.
Clustering has gained increased importance in all domains of data analysis and processing,
the most prominent examples of which are bioinformatics [2], chemoinformatics [3],
neuroscience [4], visual scene analysis [5, 6] and the design of autonomous systems [7].

The notion of a cluster is inherently diffuse. A set of geometric figures can be clustered
according to the shape or to the colour, to the combined features or to any other features.
Whether a clustering result will be useful thus depends on whether the clustering is
compatible with or suitable for the particular focus taken. In some cases, a data item is
therefore most naturally described by a likelihood-characterized membership to different
clusters (fuzzy clustering). Furthermore, clusters inherently emerge nested in hierarchies,
of which only a substructure may be of interest. Many decisions relying on clustering,
however, require a clear assignment of each item to one cluster or category. This is the
case that we shall be interested in in the following.

In the description of clustering, we shall thus distinguish between two processing
stages. In the first stage, the relevant features or attributes that characterize the items to
be clustered are identified, and the similarity measure that quantifies the pairwise affinities
of items, given the chosen features, is determined. This already introduces a priori
information into the clustering so that at this point the clustering solution is already
predetermined. Consequently, acquired or learnt prior information (e.g., via feedback)
is implemented in the form of modified attributes or an optimized similarity measure.

doi:10.1088/1742-5468/2005/11/P11014 2

http://dx.doi.org/10.1088/1742-5468/2005/11/P11014


J.S
tat.M

ech.
(2005)

P
11014

Sequential clustering: tracking down the most natural clusters

In the example given above, the weight may thus shift from shape to colour, or to a
new attribute, such as size. The clustering algorithm itself, which is the second stage of
processing, is supposed to work in a completely unbiased way, as in most situations no a
priori information about the number of clusters, their shapes and their internal structure
(as the most relevant aspects) is available. If a reliable clustering algorithm fails to detect
satisfactory solutions, our conclusion will be that the first stage of the processing needs
to be improved.

A clustering algorithm’s task is to bring out ‘the best in possibly ambiguous data’.
As the quality of a clustering result is an ill-defined concept and vague, most clustering
algorithms will yield optimized results when assessed by means of an appropriate
algorithm-specific measure, usually formulated in the form of an objective function.
Nonetheless, some basic requirements for a good (successful and as unbiased as possible)
clustering method can be listed as follows.

(a) The method should identify one unique clustering (hierarchy) containing the most
‘natural’ clusters. Preferably, some measure should specify how natural an obtained
cluster effectively is. According to our unbiased approach, the most practical notion
of a natural cluster is a group without any significant substructure (as quantified by
the measure).

(b) The method should not assume any a priori information about number, shape or
internal distribution of clusters.

(c) Preferably, the method should be based on the set of pairwise affinities. This allows
for optimizing the results by optimizing the similarity measure.

(d) The method should be able to deal with clusters of different shapes, densities and
largely unequal distances between clusters.

There exist a plethora of different clustering algorithms (for an overview
see [8, 2, 9, 10]) each of which has its own advantages for certain problems. Interestingly,
little attention has been paid to requirement (d). It thus comes as no surprise that
many, mainly standard, algorithms have to struggle to find natural clustering solutions
for inhomogeneous data distributions (see figure 1) [11]. However, inhomogeneous
distributions leading to highly varying intra- and inter-cluster distances are characteristic
for many real-world applications. Such inhomogeneities are often introduced when
insufficient care is applied during the choosing or scaling of the attributes. By choosing
even from the most sophisticated similarity measures, this neglect can often not be
compensated for.

Sequential superparamagnetic clustering [3] is our solution to these problems. In
addition to taking into account points (a), (b) and (c), it also offers a solution to
(d). The core of the algorithm is the superparamagnetic clustering approach (SC) [12],
which provides ‘natural’ clustering solutions on different resolution levels. The levels are
controlled by a ‘temperature’ parameter T that controls the number of clusters. The
approach, however, leaves open which resolution level provides the best clustering, in the
sense of a unique choice of the ‘most natural’ clusters. As already pointed out in [12], the
best clustering sometimes chooses clusters across different levels. The central question
thus remains: According to which criterion should levels and clusters be chosen? The
sequential procedure answers this question. Strictly speaking, it renders the question
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Figure 1. Toy system with three clusters of different densities.

meaningless, as the most natural clusters turn out not to be characterized by global
parameters T .

The paper is organized as follows. In section 2 the concept of SSC is outlined. The
advantages of SSC are demonstrated in section 3. A simple mean-field model is used
to elucidate the origin of the surprising performance of this method. As an additional
application, a visual scene analysis is discussed in section 4. Section 5 concludes the paper.

2. Sequential superparamagnetic clustering

2.1. Superparamagnetic clustering

Superparamagnetic clustering has been described from different viewpoints inherent to
different fields, such as graph theory [6] and stochastic neural networks [14]. Here, we
shall use the description via Potts spin models, as put forward in the original work by
E Domany’s group (see e.g. [12, 15]). We only briefly outline the algorithm; for more
details we refer the reader to the aforementioned references and those that will be given
below. For N items to be clustered with pairwise affinities dij , an inhomogeneous grid
of Potts spins is constructed in the following way: each item i is represented by one site
of the grid with Potts spin variable si, where si ∈ {1, . . . , q}. q is typically set to 10
or 20 [12, 3]. It is important to note that the choice of q is largely arbitrary and is not
related to the number of emerging clusters. Each spin is symmetrically coupled to its k
(not necessarily mutual) nearest neighbours. The choice of k will be discussed in section 3.
The coupling strength Jij is a decreasing function of dij, e.g.,

Jij = Jji =
1

K̂
exp

(−d2
ij

2a2

)

. (1)

K̂ is the average number of coupled neighbours per site (not necessarily equal to k). a
is a local length scale which is set by default to the average distance between coupled
spins. However, sometimes it may be advantageous to use differing length scales (see
section 4). Each spin configuration is characterized by an energy expressed by the Potts
spin Hamiltonian

H(s) =
∑

(ij)

Jij(1 − δsisj
), (2)
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where the sum runs over all connections (ij) and s denotes a spin configuration. The
system is considered in the canonical ensemble. The probability for a certain spin
configuration is thus given by the Boltzmann/Gibbs distribution

p(s) =
1

Z
e−H(s)/T , (3)

where the partition function Z = Z(T ) serves as a normalization factor. As the
temperature T is increased, inhomogeneous Potts systems typically undergo a number
of phase transitions. This is the source of inspiration for the SC clustering algorithm.

(I) For small T , the system is in the ferromagnetic phase, where spins like to be aligned.

(II) In an intermediary T -range, a superparamagnetic phase occurs: strongly coupled
spins tend to be aligned, whereas weakly coupled spins behave independently. Thus,
clusters of aligned spins occur, reflecting groups of similar data items. A further
increase of T generally leads to a continued breaking up of these clusters into smaller
clusters, so that a hierarchy of classes and subclasses is obtained.

(III) For high T , the system enters the paramagnetic phase where any order disappears
and only singleton clusters remain.

At a given temperature T , clusters are identified with the help of the pair correlation:
two points i and j belong to the same cluster if the pair correlation

Gij =
∑

s

p(s)δsisj
(4)

exceeds a given threshold Θ, i.e.,

Gij > Θ. (5)

Whole clusters are defined by areas of the grid whose sites are connected through (5).
Interestingly, the choice of Θ is not critical as long as 1/q < Θ < (1 − 2/q) for larger q
(e.g. q = 10) [15]. This is due to the fact that either Gij ≈ 1 or Gij ≈ 1/q ≈ 0 for most
pairs (ij), which reflects the robust self-organization at work in these systems.

For large data sets, the computation of (4) is not feasible. Therefore, the pair
correlation is usually approximated by an appropriate Monte Carlo simulation, such as the
Swendsen–Wang [16] or the Wolf algorithm [4]. For data sets with N � 10 000, Swendsen–
Wang turned out to be quite efficient, where we generally obtained reliable results for less
than 230 Monte Carlo steps [3]. As an alternative to Monte Carlo methods, loopy and
generalized belief propagation (BP) [13] have been proposed [6]. In [17], loopy BP has
been embedded into the sequential procedure.

2.2. The sequential procedure

Although SC has been successfully applied in different fields, it does not provide a direct
evidence about which clusters, among those emerging on different resolution levels T ,
should be selected as the natural ones. Clear clusters express themselves as regions of
order that are stable over an entire phase, i.e. over a substantial range of T . The idea
is thus to choose the clusters that have the largest T -range extensions (denoted by Tcl).
Consequently, we define the T-stability sT of a cluster as

sT = Tcl/Tmax, (6)

doi:10.1088/1742-5468/2005/11/P11014 5
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where Tmax is the temperature of the paramagnetic transition. In this way, sT expresses
the stability of the cluster in relation to the stability of the whole set. If the clusters
are selected according to the stability sT , the procedure will still be suboptimal, as the
most natural clusters need not always be the most stable ones. Differences in shape,
density and size of clusters lead to different temperature ranges of occurrence. Sparse
clusters only exist at small temperatures, whereas dense clusters are more stable and
decay later. As a consequence, often natural clusters emerge for short T -ranges only,
after the break-up of dense superclusters at higher temperatures. Inhomogeneities in
shape, density and size of clusters can thus render the recognition of the best clusters a
difficult task. To overcome these difficulties, we introduced a sequential procedure [3].
In this approach, the most stable cluster in terms of sT is extracted and it, as well as
the residual set, is reclustered with readjusted weights. That is, the most stable cluster
and the residual set are clustered in two new separate sessions, and the connectivity and
weights are independently redetermined for each set according to the criterion of k nearest
neighbours and (1). The procedure continues, resulting in a binary tree structure. The
branches of the tree form sequences of sets of increasing homogeneities. Consequently, the
detection of clusters becomes easier. The procedure stops in a branch if no more stable
substructures can be found, i.e. if the most stable cluster detected is less stable than a
threshold value sΘ. Typically, natural clusters themselves do not have any substructures.
They show a direct transition from the ferromagnetic phase to the paramagnetic phase.
Therefore the temperature that marks the end of the ferromagnetic phase Tferro is a good
indicator for how natural a cluster intrinsically is (in contrast, sT gives the information
of how natural the cluster is in relation to the clustered mother set). Tferro is also useful
for judging whether the last residual set should be considered an intrinsic (i.e., natural)
cluster or a set of unclustered (i.e., background) points. In the first case, Tferro is of the
same magnitude as for the other detected clusters, whereas in the second case, Tferro is
vanishingly small. In summary, the following program is executed:

(1) For the input set S, determine the weights according to the criterion of k nearest
neighbours and (1) and apply SC.

(2) Determine the most stable cluster C in terms of sT .
If sT > sΘ: Go back to (1) and start two new sessions with S1 = C and S2 = S\C.
Else: Determine Tferro.

(3a) If S = S1 in the last loop: Identify S as a natural cluster.

(3b) If S = S2 in the last loop or S = the initial set: Use Tferro to judge whether S is a
natural cluster or a set of unclustered points.

We emphasize that in this way, sΘ is the main control parameter that is set
from outside. The procedure does not require one to maximize the superparamagnetic
phase [18] and it also works on Potts spin graphs composed of several components. For sets
with clear cluster structures, the choice of sΘ is not critical, as we can expect that sT > 0
(and Tferro > 0) only holds for the actual clusters. For sets with less clear structures, the
user needs to choose an appropriate minimal stability sΘ. In this way, the user specifies
her/his notion of a ‘marginally natural’ cluster. Additionally, the user can specify the
required minimal size of clusters which gives the possibility to optimize the procedure if
additional information is available. How this is properly done is illustrated in more detail

doi:10.1088/1742-5468/2005/11/P11014 6
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Figure 2. Results for SC using the Euclidean distance. The size of clusters
occurring is drawn against the temperature T . The problems discussed in this
section are best highlighted using k ≈ 10.

in the examples discussed below. As a further benefit of the sequential procedure, the
choice of the number of nearest neighbours k becomes an uncritical issue. Changing k in
the range between 5 and 15 is usually without any effect on the final result. Thus, for
computational reasons, k = 5 has been chosen as the default value in this paper.

3. Examples

3.1. A toy system

In this section, a simple toy system is used to illustrate a basic advantage of SSC. In
figure 1, a 2D distribution consisting of three clusters is displayed. Whereas the clusters
have the same size and shape, they differ considerably in the density.

Figure 2 shows the results obtained by SC. Remarkably, no interval [Tmin, Tmax] can
be found for the sparse cluster 3. After going through a short phase in a joint cluster with
cluster 1, cluster 3 immediately decays into smaller units. Thus a detection of cluster
3 is intrinsically impossible. However, our automated SSC detects the three clusters
without problems (see figure 3). In this diagram, extracted clusters form left branches
and residual sets form right branches. In each box, the size of the set N , the length
of the ferromagnetic phase Tferro, the length of the T -range of the most stable cluster
Tcl (if any) and (optionally) the paramagnetic transition temperature Tmax are reported.
For the extracted clusters, the stability values sT are given as well. Since Tferro is of the
same magnitude for all three clusters, i.e. between 0.05 and 0.083, the residual set (the
rightmost one) should be considered a natural cluster. When clustering the mother set,
the last two clusters emerge as subclusters (with sT > 0), which is consistent with the
above-made cluster identification. The findings are very stable against variations of sΘ:
any value in sΘ ∈ [0.05, 0.58] reflects in the same stable and clear-cut cluster structure.
As a typical default value, sΘ = 0.2 can be taken.

3.2. Classifying chemical compounds

The rationale of clustering in chemistry is given by the assumption that structurally similar
compounds are likely to exhibit similar properties. The search for new drugs among

doi:10.1088/1742-5468/2005/11/P11014 7
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Figure 3. The binary tree structure resulting from SSC. The grey boxes indicate
the detected clusters. In the heading, details of the experiment performed
are given (e.g. connectivity (if different from 5), minimal size of clusters to be
detected: ms = 20, sm = sΘ = 7 ∗ (Tmax/50) etc).

thousands of different compounds in a chemical library can thus be greatly facilitated if
the library can be sectioned into natural classes of structurally similar chemicals. For
optimally chosen classes, efficient testing can be achieved. In [3] the potential of SSC
for chemoinformatics was investigated in detail; here we report on the results obtained
from our automated implementation of SSC. The test set comprised 153 compounds
from seven different chemical classes (figure 4). While the appropriate description of the
compound’s structure using chemical fingerprints, i.e. high-dimensional vectors, and the
choice of a good similarity measure are complex issues in themselves (for details see [3]),
we concentrate here on the very aspect of clustering. The results achieved by SSC were
compared to results by other methods, notably Ward clustering, which in the field of
chemoinformatics [19] is regarded as yielding the most reliable results. Yet, among the
tested methods, SSC was the only one able to reliably reconstruct the seven chemical
classes involved (up to about three misclassified compounds, depending on the chemical
fingerprint descriptors and the similarity measure used [3]).

From applying SC without the sequential procedure, the origins for the failure of
other algorithms become apparent. In figure 5, the clusters detected by SC are displayed.
While some of the classes are easily detectable by manifesting themselves as stable clusters
from the very beginning (e.g., the class of protone pump inhibitors), other classes hardly
ever appear as stable clusters. Most prominently, the classes of statins and corticosteroids
form a joint stable cluster (with size 45) that for large T -values quickly decays into smaller
units, not revealing the actual chemical class structures. The reason for this behaviour
can be found in the intra- and inter-cluster distances. For all similarity measures tested,
the classes statins and corticosteroids are much more compact than all other clusters.
Moreover, the distance between these two classes is found to be much smaller than the

doi:10.1088/1742-5468/2005/11/P11014 8

http://dx.doi.org/10.1088/1742-5468/2005/11/P11014


J.S
tat.M

ech.
(2005)

P
11014

Sequential clustering: tracking down the most natural clusters

Figure 4. Seven classes of chemical compounds that provide the clustering set.
For each class, the scaffold of the chemical structure is depicted and the class size
is given in brackets. More details about each class are given in [3].

distances between other pairs of classes. This distance is even smaller than the average
compound distance within some of the other classes. Thus, in a loose sense, from afar the
two classes look like one single compact cluster. Only after zooming in (which is what we
do with SSC) does the cluster reveal its actual substructure. In fact, figure 6 shows that
SSC successfully identifies the seven original chemical classes.

3.3. Understanding why it works

So far, SSC has been introduced as a heuristic concept whose justification is to a large
extent in its success in applications. In the following, we will provide some analytical
considerations applied to a simple mean-field-like model in order to reveal the origin of
this success.

In figure 7, three large clusters C1, C2 and C3 have N � 0 spins each. The internal
connectivity of each cluster Cl, l = 1, 2, 3, is as follows: Each spin is connected to
kl neighbours. The corresponding distances (or similarity values) are fixed values dl.
There is exactly one connection between the clusters. That is, no more than one of the

doi:10.1088/1742-5468/2005/11/P11014 9
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Figure 5. Clustering result achieved by SC.

spins from cluster l, ŝlm, is connected to one of the spins of cluster m, ŝml, where the
corresponding distances are denoted by b∗ = b12 and b := b13 = b23. We generally assume
that b ≥ b∗ ≥ d1, d2 and b ≥ d3 ≥ d1, d2. This situation sketches the situation encountered
in the preceding examples. For simplicity, the system is treated in the familiar Ising spin
formalism, i.e., the Hamiltonian is given by

H(s) = −



J b∗ ŝ12ŝ21 + J b(ŝ13ŝ31 + ŝ23ŝ32) +
∑

l=1,2,3

∑

(ij)∈C2
l

J lsisj



 , (7)

where si and sj can take on the values −1 and 1. J l is the coupling strength within
the cluster Cl corresponding to the distance dl. J b and J b∗ correspond to b and b∗.
The connection weights are determined according to (1). The sum (ij) is taken over all
connected pairs in each cluster. Each ŝlm reappears in this sum as one of the si ∈ Cl.

If we neglect the influences from the other clusters by means of two single connections
(ŝlm1 , ŝlm2), each cluster Cl is independent. For each cluster, we can thus discriminate a
ferromagnetic and a paramagnetic phase whose transition can be estimated for not too
small kl from the mean-field self-consistency equation for Ising spin models

〈sl〉 = tanh(T l
c〈sl〉/T ) with T l

c = J lkl. (8)

For a first estimate, we can use the critical temperature T l
c = J lkl as the indicator for

the decay of Cl. (We assume a short decay phase of Gij from 1 to 1/2. The effective T l
c

is slightly lower, depending on Θ. Θ = 0.7 is a typical threshold value for q = 2 [17].)
Furthermore, we can estimate the length of the global ferromagnetic phase from the
temperature

T b
c =

−2J b

ln(1/Θ − 1)
= kΘJ b. (9)

At this temperature the configuration ŝ13 = ŝ31 (and ŝ23 = ŝ32 respectively) loses stability,
i.e.,

p(ŝ13 = ŝ31) =
exp(J b/T )

(exp(J b/T ) + exp(−J b/T ))
≤ Θ for T ≥ T b

c . (10)

doi:10.1088/1742-5468/2005/11/P11014 10
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Figure 6. Our automated standard SSC successfully reveals the seven chemical
classes from which the test set is composed. The only error is the assigning of
three compounds to the class of statins instead of corticosteroids, yielding class
sizes 24 and 21 instead of 27 and 18. A relatively small value of sT = 0.07
indicates that this subdivision is less evident than other divisions in the set. For
the set, ISIS binary keys with Euclidean distance were used. The results can
be improved by using ISIS count keys with our extended Tanimoto similarity
measure [3]. The present situation has been chosen for didactical reasons.

This estimation is justified since for these low temperatures the clusters are still fully
ordered (si = ŝlm ∀si ∈ Cl). Similarly, the conglomerate of the clusters C1 and C2 decays
into its components at T b∗

c = kΘJ b∗ . In figure 8, the typical phase diagram is displayed.
We now have a simple model to hand that allows us to understand some of the

advantages of sequential clustering.

(a) It is clear that if b∗ 
 d3 then J3 
 J b∗ , and thus T 3
c < T b∗

c . In this case, C3 decays
long before C1 and C2 emerge as single independent clusters. In other words, a single

doi:10.1088/1742-5468/2005/11/P11014 11
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C1 C2

C3

Figure 7. Model system with three clusters that are connected pairwise through
one bond.

0
T

cluster
size

N

2N

3N

c
b Tc

b*
Tc

3 Tc
1 = Tc

2
T

Figure 8. Typical situation for Jb < Jb∗ < J3 < J1 = J2. At T b
c the

system enters the superparamagnetic phase and T 1
c marks the transition to the

paramagnetic phase. For convenience, Θ can be chosen such that kl = kΘ.

level T that would contain all three clusters does not exist. Sequential clustering,
however, does not rely on the specification of one (or several) resolution level(s) T .

(b) If b ≈ d3 > b∗ > d2 � d1, then 0 ≈ T b
c � T 3

c < T b∗
c < T 2

c 
 T 1
c . In this situation,

C1 dominates the picture and the stability of C3, s3
T = (T 3

c − T b
c )/T 1

c , is marginal
compared to the stability of C1, s1

T = (T 1
c − T b∗

c )/T 1
c . However, the stability s3

T is
greatly enhanced to s3

T = (T 3
c − T b

c )/T 2
c (where T 2

c 
 T 1
c ) if C1 is removed, allowing

a clear detection of C3. This explains why SSC could successfully detect the sparse
cluster in the toy system of the first example above.

doi:10.1088/1742-5468/2005/11/P11014 12
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(c) The last argument in (b) holds as long as a change of the weights J , which is mainly
a consequence of a changed local parameter a in (1), can be neglected. This change,
however, can be crucial in other cases. Consider a situation with d1 = d2 ≈ b∗ 
 d3.
Then a � d1 is to a large extent dominated by d3. If, however, C3 is removed and
only the set containing C1 and C2 is clustered, we observe a ≈ d1. Due to (1), J1

and thus T 1
c is larger in the first case. However, in the second case the difference

∆J = J1 − J b∗ is larger as ∆J(a) is a decreasing function in a > d1. The collective
effects cause the stability

s1,2
T =

T 1
c − T b∗

c

T 1
c

=
k1J

1 − kΘJ b∗

k1J1
= 1 − k

J b∗

J l
= 1 − k exp

(
d2

1 − b2
∗

2a2

)

(11)

to decrease, as a function of a. In other words, removing C3 enhances the stability
of the clusters C1 and C2. These structures can therefore be found by clustering the
subset containing C1 and C2 which has a large stability and is thus easy to detect.
In contrast, we might not be able to extract C1 and C2 when clustering a superset
including also some less dense clusters. In this case, due to a small degree of stability,
the C1 and C2 structures may remain unrevealed. This explains why SSC could
successfully uncover all the chemical classes in the example given above, whereas SC
failed. In conclusion, inhomogeneities decrease the stability of single clusters. SSC
counteracts this problem by successively producing sets of increased homogeneity.

4. Visual scene analysis application

Here we touch on another field of application of clustering techniques of current interest:
visual scene analysis. The overall goal of visual scene analysis is to identify and classify
the (relevant) objects present in the visual field (of a visual sensor, such as a biological
or artificial retina or a camera). A reliable scene analysis system also plays an important
role in the realization of autonomous robots. Obviously, autonomously interacting robots
require some degree of visual scene understanding. Usually, the visual information is
provided in the form of digital images, i.e., a two-dimensional matrix f(x, y), where (x, y)
denotes the spatial coordinates and f(x, y) is the according feature value(s). In our simple
studies, f(x, y) codes for the pixel intensities of a greyscaled picture.

Clustering has been proposed as a unifying principle for all levels of image
understanding [5]. Low-level analysis is associated with scene segmentation by means
of pixel clustering, whereas clustering of edge elements for perceptual grouping is referred
to as mid-level analysis. High-level analysis is associated with clustering of whole objects
of the visual scene, in order to find object categories.

In the following, we concentrate on a simple low-level task, the separation of objects
(i.e., homogeneous regions) from a noisy background. Our working example is shown in
figure 9, where two black objects of sizes 65 and 25 pixels and three small white objects
of sizes 12, 8 and 8 pixels are embedded. For clustering, to each pixel i a Potts spin si is
assigned. The connectivity graph is obtained by connecting each pixel to its four adjoined
neighbours. The weight of a connection is again given by (1). The distance between two
connected pixels i and j is determined by the pixel values difference, i.e.,

dij = |f(i) − f(j)|, (12)
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Figure 9. Different objects on a noisy background.

where f(i) = f(xi, yi) and the pixels are numbered in some way. The task posed by
figure 9 might appear factitious, but it has a pedagogic intention. We now deal with a
crucial difference from the examples discussed above: the connectivity of the Potts spin
system does not just reflect an actual neighbourhood relation in terms of similarity of
the quantities that are expressed by the spin (i.e., the pixel values). Instead, it is forced
from outside by the pixel arrangement. As a consequence, the original choice of the local
parameter a (equation (1)) turns out to be problematic. However, convincing results
(figure 10) are achieved over a large range of constant, but relatively small values of a.
For the displayed results, a = 0.01 was chosen (alternatively, the spatial distance could
be included in dij and a can be chosen as usual). The residual set (782 pixels) has a
clearly shortened ferromagnetic phase Tferro compared to the ferromagnetic phase of the
extracted clusters. It is thus clearly classified as background.

5. Conclusions

Sequential superparamagnetic clustering provides a unique natural clustering solution,
where the algorithm can be implemented in an automated way. Unlike other algorithms,
the approach is introduced as a heuristic concept, and is not directly based on the
optimization of a chosen objective function. The approach takes advantage of the
robustness of self-organization processes in Potts spin systems in two respects. On the
one hand, superparamagnetic clustering uses the statistical robustness properties of the
Boltzmann distribution to evaluate an averaged, balanced and thus natural clustering for
different resolution levels T . On the other hand, the sequential procedure reaches across
the clusterings obtained for different T s, in order to compare the stability (sT ) of all
clusters found within the clustered set.

However, the sequential clustering concept does more than just search for the
most stable clusters in the original set. By extracting the most stable sets and
reclustering, the algorithm overcomes the problem that natural entities or classes that
are inhomogeneously represented in the feature space have to be selected against their
respective background. Some classes therefore are not found in the original set, but
only in a subset of adequate homogeneity. This also expresses itself in the fact that,
for some clusters, a global resolution level T can no longer be specified. Instead
the adequate resolutions for a best unique choice of clusters become dependent on a

doi:10.1088/1742-5468/2005/11/P11014 14

http://dx.doi.org/10.1088/1742-5468/2005/11/P11014


J.S
tat.M

ech.(2005)
P

11014

Sequential clustering: tracking down the most natural clusters

Figure 10. Clusters recognized in figure 9. The residual set (782 pixels) must be
interpreted as background since Tferro ≈ 0.

‘local’ clustering context. As a consequence of the sequential procedure, the clusters
identified by the algorithm tend to be homogeneous themselves. This is consistent
with the strictly non-parametric approach of our two-stage clustering paradigm that
prohibits the assumption of any particular consistency or internal distribution of
clusters.

The ultimate rationale behind this paradigm is the notion that clusters are not actual
entities by themselves, but a fragmentary representation of some kind of real class entities
out there. Clustering therefore should not just be considered a simple data or information
compression. Rather, clustering is a means for accessing hidden information about object
relations. Eventually, this allows for unexpected predictions based on the similar-property
principle, i.e., the experience that (structurally) similar objects tend to behave similarly
in many situations.
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