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Abstract—Boolean networks are considered generic
models for a large class of asymmetric networks, such as
neural networks or gene regulatory networks. Previous
work has shown that such networks undergo a phase transi-
tion from an ordered to a ’chaotic’ phase as various network
parameters (e.g., the connectivity) are changed. Several
contributions have established the idea that the network’s
computational abilities are best near this order-chaos tran-
sition. Here, we investigate the stability of the order-chaos
transition in the presence of noise and give an upper bound
noise level for critically tuned networks that may support
an optimal computation. Our studies, however, also reveal
shortcomings of the used approaches concerning questions
of natural computation.

1. Introduction

The mathematical study of asymmetric networks has been
motivated over decades by the interest in biological net-
works, such as gene regulatory networks [1] or neural net-
works [2]. For a first approximative description of natural
systems, discrete dynamical networks, that are discrete in
state and time, are often used. Yet, the analytical treat-
ment of asymmetric discrete networks is challenging due
to their non-Hamiltonian character which is a main dif-
ference to the symmetric Hopfield networks. A specially
simple and generic class of asymmetric networks is de-
fined by Boolean networks which, in a broad sense, are
defined by confining the states of the network’s elements to
the Boolean values {0, 1} (or {−1, 1}). Accordingly, these
networks model the interaction of variables that can be ei-
ther active or inactive. The connectivity of such networks
is often chosen as random and sparse. It was argued that
this situation likely captures the situation in biological sys-
tems [1]. However, recently scale free network structures
have been favoured in this respect. As a particular sub-
class, Random Threshold Networks (RTN) have been in-
vestigated in the late eighties as models of diluted asym-
metric spin glasses [3]. RTNs show a dynamical phase
transition from an ordered to a unordered phase in c, where
c is the average connectivity (average number of incoming
connections). Typically two discriminating characteristics
are used to define the two phases: a) Slightly different ini-
tial configurations converge in the ordered phase and di-
verge in the unordered phase (hence the term ’chaotic’ is
often used). b) The average length of ’limit cycles’ , or
also termed: closed orbits (as inevitably reached for sys-

tems with a finite configuration space), grows much faster
with the system size in the chaotic phase.
In connection with the phase transition from an ordered to
a chaotic dynamics the notion of computation at the edge
of chaos has been developed (e.g., by C. Langton or S.A.
Kauffman). According to this idea, extensive computa-
tional capabilities are achieved by systems with a dynamics
between order and chaos, i.e., at the critical point. Conse-
quently, the idea has been linked more tightly to biology
by exploiting real-time computational networks [4] and by
addressing questions of self-organised criticality [5]. Most
research has been concentrated on studying the role of the
c-dependent criticality.A few contributions, on the other
hand, addressed the role of noise [6]. While noise-free
networks cannot drop out from a once reached limit cy-
cle, noisy networks have the capability to move between
different cycles. One limit cycle is typically identified with
one possible system behaviour, Thus, according to some
ideas (’stochastic resonance’), noise can also enhance the
computational abilities of a natural system by facilitating
the access to different system behaviours. Here, we first
determine the critical connectivity of a rather simple net-
work by means of an annealed approximation. We then
address the question whether we can analytically estimate
an upper bound of a useful noise level that could support an
optimal computation by facilitating change-overs between
limit cycles. The notion of computation, however, is rather
diffuse or incoherent across the field. E.g., how is optimal
computation characterised and what do change-overs mean
within the traditional notion of computation? We thus con-
clude with a general critique and recognise that the further
work must inevitably address this issue.

2. Random Threshold Network

We consider networks of randomly interconnected binary
elements with states σi = ±1, i = 1, ...,N. c � N is the
average connectivity. Furthermore, we restrict ourselves to
the simple case of (randomly drawn) binary connection val-
ues, i.e., ci j = ±1, and ci j = 0 for no connection. The time
evolution is given by the stochastic law (parallel update)

Prob (σi(t + 1) = 1) = gβ(hi(t)),
Prob (σi(t + 1) = −1) = 1 − gβ(hi(t)), (1)

with
hi(t) =

∑

j

ci jσ j(t) + b (2)



and
gβ(hi(t)) =

1
1 + e−2βhi(t)

, (3)

where β = 1/T controls the (thermal) noise influence and b
is a constant bias or threshold.

Thermal noise can also be interpreted as threshold noise.
Eq. (1) reduces to a step function for b→ 0+ and β→ ∞:
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∑
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= 1 if hi(t) ≥ 0, (4)

and s(hi(t)) = −1 else.
We now assume a noisy threshold bi(t) for each node drawn
from the distribution td(bi) = 2βe−2βbi/(1+e−2βbi)2, where β
controls the width of the distribution. Thus, the probability
thatσi(t+1) = 1 is equal to the probability that hi(t)+bi(t) >
0. This probability is

∫ hi(t)

−∞

td(bi)dbi = gβ(hi(t)). (5)

2.1. Simulation

To gain a first insight into the phases of the network and
their stability in the presence of noise, simulations with net-
works of size N = 256 were performed. As an order param-
eter, the frozen component F(c, β) was found to be useful
[5]. F(c, β) denotes the fraction of nodes that do not change
their state along a limit cycle. If F ≈ 1, the limit cycles
(strictly obtained for β → ∞) must be rather short (but not
necessarily vice versa), indicating the ordered phase. The
results for b = 0.01 are shown in Fig. 1. Obviously, F(c, β)
is decreasing with increasing connectivity c and increasing
noise (decreasing β). The transition from the F ≈ 1 to the
F ≈ 0 phase is, as expected, not sharp for a finite system.

Figure 1: Frozen component F as a function of c and β.

The transition can be accented by considering an ana-
logue to the magnetic susceptibility defined by

µ(c, β) = 〈F(c, β)2〉 − 〈F(c, β)〉2 (6)

Fig. 2 reveals a relatively clear transition line (defined by
the peaks of (6)) that turns towards smaller connectivities
c for higher noise levels (T = 1/β). However, for high
noise levels (β < 30), the transition line disintegrates and
no longer allows to define clear phase boundaries.
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Figure 2: Susceptibility as defined in Eq.(6).

2.2. Annealed Approximation: Damage Spreading

The annealed approximation estimates the damage or per-
turbation spreading in a network under the assumption that
the interactions between nodes can be redrawn at each up-
date step. Thus it neglects the fact that the interactions are
actually quenched, i.e., constant over time. The approxi-
mation finally yields an expression for the time evolution of
the normalised Hamming distance D(t) between two con-
figurations σ and σ′. In the noise-free situation (T = 0),
small perturbations vanish and D(t) = 0 is a stable fixed
point if the system is in the ordered regime, whereas in
the chaotic regime, D(t) = 0 becomes unstable and per-
turbations do not vanish. In the limit N → ∞, D evolves
according to

D(t + 1) =
∞
∑

k=1

Pk

k
∑

p=0

Pp(D(t)) · f (k, p). (7)

Pk is the probability that a node has k incoming connections
and is given by a Poisson distribution

Pk =
cke−c

k!
. (8)

Pp is the probability that p out of these k inputs are differ-
ent for the configurationsσ and σ′ with Hamming distance
D(t). If we interpret D(t) as the probability that the input of
a single node is different for σ and σ′, we can write

Pp(D(t)) =
(

k
p

)

D(t)p (1 − D(t))k−p. (9)

Finally, f (k, p) is the probability that the output of a node
differs for σ and σ′ given p of k inputs are different. In or-
der to give an expression for f (k, p) for our network (Eq.(1-
3)), we write the input fields hi as

hi(t) =
∑

j

ci jσ j(t) + b = x + y + b

h′i(t) =
∑

j

ci jσ j(t)′ + b = x − y + b, (10)

where x is the sum over the inputs that are identical and
y is the sum over the inputs that are different for σ and



σ′. As x and y are sums of binary variables −1, 1 with a
priori equal probabilities, the probabilities for x and y are
binomial series and f (k, p) evaluates as

f (k, p) =
k−p
∑

x=−k+p
∆x=2

p
∑

y=−p
∆y=2

(

k − p
(x+k−p)

2

)(

p
(y+p)

2

) (

1
2

)k

pβ(x, y), (11)

where pβ(x, y) is the probability that the output of a node
differs for hi and h′i given x and y, i.e.,

pβ =
1

1 + e−2β(x+y+b)

1
1 + e2β(x−y+b)

+
1

1 + e2β(x+y+b)

1
1 + e−2β(x−y+b) . (12)

2.3. Annealed Approximation: Phase Transition

If T = 0, D = 0 is a fixed point and the stability analysis

d(b) :=
∂D(t + 1)
∂D(t)

|D(t)=0 = 1 (13)

leads to the critical value ccrit = 1.849 for b → 0. I.e., for
c > ccrit the fixed point D = 0 is instable. The solution of
this equation for arbitrary b, using

d(b) =
∑

k>0

e−cck

(k − 1)!

(

1
2

)k k−1
∑

x=−k+1
∆x=2

(

k − 1
(x+k−1)

2

)

(

pβ(x, 1) + pβ(x,−1)
)

,

(14)
leads to a step-like function of criticality with increasing
ccrit for larger |b|. The steps are due to the integer character
of x and y.

For T > 0, pβ does not vanish if hi = h′i (Eq.12) and
thus D(t + 1) > 0 even if D(t) = 0. This reflects the fact
that noise can always lead to a separation of configurations.
In fact, for T → ∞, we have D(t + 1) = 0.5 irrespective
of c, reflecting the randomising effect of T (white area in
Fig. 3). This leads to a conceptual difficulty of charac-
terising the phase transition in terms of (13) as D = 0 is
not a fixed point for any choice of c. Nevertheless, qual-
itatively the phase transition line as found in Fig. 2 is
well reflected by a contour plot showing the levels of D(∞)
(Fig. 3). Such a plot suggests a quasi-critical line start-
ing from c = 1.849 for T = 0 and going down to c = 0
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Figure 3: Contour plot for D(∞).

for increasing noise levels T > 0. Our characterisation
of the critical line is opposed to the results obtained with
pβ = (1+exp(−β(x+ |y|+h)))−1−(1+exp(−β(x−|y|+h)))−1

(as used in [3]). Inherently, this approach desists from sep-
arations that are purely noise driven (i.e., D = 0 is al-
ways a fixed point). It thus allows to determine ccrit also
for T > 0 and yields increasing ccrit for higher T . This,
however, seems counterintuitive and does not go with our
simulations that suggest that ccrit rather decreases with T .
Yet, the question of an optimal noise level remains open in
any case. Inherently, the annealed approach hardly reflects
appropriately the complicated landscape of state space re-
gions (here also termed: basins of attractions) whose states
lead to the same limit cycles. Ultimately, we have to target
the question how c and T influence this landscape. We thus
have to slightly shift the focus in the following.

2.4. Antagonistic Role of c and T

In the ordered phase c < ccrit, limit cycles tend to be longer
and perturbations vanish less likely with increasing c. As-
suming that the number of limit cycles also grows with c
(as found in [1]), the following picture might appropriately
sketch the influence of c and T on the landscape structure:
Increasing c leads to a more complex attractor landscape.
’Complex’ means the occurrence of more (and longer) limit
cycles, accompanied by a consecutive segregation of the
state space into more basins of attraction. The consequence
is twofold. On the one hand, the basins become smaller and
the convergence of two different initial states becomes less
likely. On the other hand, the average period of a limit
cycles grows. Noise, i.e., increasing T in contrary facili-
tates jumps between different basins of attractions. Con-
sequently, long limit cycles or such with a small basin of
attraction hardly show up (completely) during the dynam-
ics as their basin of attraction is left too quickly. Therefore,
shorter limit cycles tend to resist the noise whereas longer
limit cycles appear to be smoothed out. In summary, c and
T play to some extend the role of antagonists: c leads to
a more complex attractor landscape, whereas T acts in a
smoothing way opposed to an increased complexity. The
picture might not be appropriate in the chaotic phase, where
the dynamics seems to be dominated by transients.

In the following, we study an equation that shows both,
a similar antagonistic role of c and T and a critical connec-
tivity ccrit = 1.849. It may thus allow to combine the two
aspects. The equation describes the probability pσi that the
output of a node i is σi = 1, having the probability p j that
any input product ci jσ j = 1:

pσi (p j) =
∞
∑

k=0

e−cck

k!

k
∑

x=−k
∆x=2

(

k
x+k
2

)

p
k+x

2
j (1 − p j)

k−x
2

1
1 + e−2β(x+b) .

(15)
As ci j is randomly chosen from {−1, 1}, p j = 0.5 is the
natural input value. A short calculation confirms that p j =

0.5 is a fixed point of pσi (p j) for any β in the case b → 0.



Regarding the function pσi (p j), the stability of p j = 0.5 is
given by

∂pσi

∂p j
|p j=

1
2
=

∞
∑

k=0

e−cck

k!

k
∑

x=−k
∆x=2

(

k
x+k
2

) (

1
2

)k−1 x
1 + e−2β(x+b) .

(16)
An analysis shows: a) Increasing c destabilises the fixed
point. For T = 1/β→ 0, the critical value ( ∂pσi

∂p j
|p j=

1
2
= 1) is

just ccrit = 1.849, i.e., for c > ccrit the fixed point is instable
and for c < ccrit the fixed point is stable. b) Increasing
T = 1/β leads to a stabilisation. This is clear as T → ∞
inevitably leads to a complete randomisation.

2.5. Virtual Connectivity and Critical Noise Level

The stability analysis of Eq.(15), on the one hand, yields
the same critical point as Eq.(13). This can be understood
as a small perturbation from pa

j = 0.5 can be modelled by
pb

j = pa
j + ∆p j. Obviously, such a perturbation tends to

vanish only if c < ccrit.
On the other hand, the analysis reflects a similar antago-

nistic role of c and T as in the landscape sketch developed
above. As regards (16) an increase in T is as good as a
decrease in c. This could inspire the following characteri-
sation of the critical connection for T > 0:

cT
crit = ccrit − ∆cT , (17)

where ccrit = 1.849 and∆cT is the correction term that com-
pensates for the noise T . In order to estimate ∆cT we can
directly use that (16) does not distinguish between a de-
crease in c or an increase in T . Conversely, for each T > 0
we can find a cT > ccrit for which ∂pσi

∂p j
|p j=

1
2
= 1. Thus, for a

given noise level T , ∆cT = cT − ccrit gives us an estimation
of the ’cost’ in c in order to compensate for the noise.
cT

crit can also be read as the virtual connectivity of a network
with c = ccrit at noise level T . Consequently, there exists
an absolute critical noise level Tcrit above which no useful
computation can be performed anymore (as the networks
gets virtually disconnected, i.e., cT

crit = 0). A short calcula-
tion and Fig. 4 show Tcrit = 2.594. Conversely, for Tcrit the
network can be viewed as being balanced between facili-
tating change-overs between limit cycles and structure de-
stroying randomness. Tcrit may thus be proposed as an esti-
mate for a critical or upper bound noise level of a network
with connectivity ccrit. Yet, more systematic simulations
have to prove this hypothesis and the underlying concept.

3. Conclusions

Various authors have established the notion of optimal
computation at the edge of chaos. Following this idea,
random threshold networks (RTN) would best perform
near the order-chaos transition triggered by the average
network connectivity. At this point, the structure of the
network’s limit cycle (or closed orbit) attractor landscape
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Figure 4: Virtual connectivity: a) cT
crit , b) ccit, c) cT .

seems to be most interesting for computational variety or
performance. In accordance with the idea that a closed
orbit characterises one typical network behaviour, we sug-
gest that noise may play an important role by facilitating
change-overs between different behaviours. This raises
the question of the best noise level. In this contribution,
we gave an estimation for an upper bound or critical noise
level for a simple RTN with critical connectivity. The
estimation is based on the notion of the antagonistic role
of connectivity and noise. The theoretical treatment of
RTNs and the related concept of computation, however,
remains rudimentary and unsatisfactory. In the future,
rigid simulations and a bunch of (novel) concepts might
be necessary for our studies, starting with a fundamental
review of the notion of ’computation’. Finally, the notions
of ’limit cycle’ and ’chaos’ might also be questioned in
order to clarify to what extend concepts of dynamical
system theory can be adapted for finite Boolean networks.
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