Sequential Clustering by Loopy Belief Propagation
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Abstract — In this contribution we exploit the po-
tential of belief propagation in connection with se-
quential superparamagnetic clustering. We first give
a short overview of the methods and concepts used
and show how to combine them. We finally discuss
some implementation issues, problems and possible
advantages in comparison with Markov chain Monte
Carlo methods by means of a toy system.

1 Introduction

Clustering methods are valuable tools for the data
analysis in many different scientific fields. Data
structuring by clustering, i.e., the identification
of ’natural’ groups of similar data items, leads
to a compact data representation in the form of
macrostates. In many situations, no a priori infor-
mation, e.g., about the number of these macrostate-
clusters, is available. In these cases, we rely on
non-parametric methods that are able to determine
characteristics, such as the number and shape of
the most natural clusters, independently. In this
respect, superparamagnetic clustering (SC) [1] is a
proven approach that provides 'natural’ clustering
solutions on different resolution levels. The lev-
els are controlled by a 'temperature’ parameter T’
which indirectly determines the number of clusters.
The computational key task within SC is to calcu-
late pair marginals. In the standard approach, this
calculation was based on computationally expen-
sive Markov Chain Monte Carlo methods (MCMC).
However, Shental et al. [2] paved the way towards
an implementation with a possibly smaller compu-
tational cost - an important issue for large data sets.
They reformulated SC as a graph partitioning prob-
lem (typical cut) and showed that calculating the
typical cut is equivalent to performing inference in
graphical models. In the context of graphical mod-
els, loopy belief propagation (BP) is a well-known
algorithm for an efficient calculation of marginals
(see, e.g., [3]). In [2], loopy (and generalised) BP
was successfully applied for obtaining an approxi-
mate solution of the typical cut problem of larger
data sets.

A question of central character, however, re-
mains: How to select the most natural resolution
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level and thus the number of classes among all lev-
els provided by SC? In [4], it was demonstrated
that, based on a sequential extraction of clusters, a
unique (natural or stable) clustering can be found.
Furthermore , it was outlined that the most natural
resolution level is a local property that cannot be
characterised by a global temperature 7' anymore.
In this contribution, we exploit the potential of BP
in connection with sequential clustering. The ques-
tion of interest is whether BP, used for sequential
clustering, outperforms the traditional MCMC ap-
proach in terms of performance and complexity.

The paper is organised as follows: For the read-
ers new to the field , we give a brief introduction to
graphical inference problems by means of pairwise
Markov random fields (PMRF) and the connection
to BP in Sec. 2!. In Sec. 3, the concept of sequen-
tial SC is reviewed and is connected to PMRF's and
BP. In Sec. 4, we address some issues related to the
practical implementation and explore the compu-
tational performance on the basis of a simple toy
system example. Finally, Sec. 5 offers some con-
cluding remarks.

2 Pairwise Markov Random Fields and Be-
lief Propagation

Pairwise Markov random fields
PMRFs have become attractive models for infer-
ence problems in computer vision. In such prob-
lems, we usually want to infer some information
about the visual scene from an array of pixel in-
tensities y;,4 = 1,...,N. Consider as an example
the task of a figure-ground segmentation. z; de-
notes to which segment pixel i belongs (e.g., back-
ground: z; = 0; figure: z; = 1). Normally, some
evidence for x; is available which can be expressed
as a function ¢;(x;,y;). Furthermore, there usu-
ally exists a statistical dependency between the ;-
values of neighbouring (i.e. ’connected’) pixels: If
two neighbouring pixels show similar characteristics
then they are likely to belong to the same segment.
This dependency is represented by pairwise func-
tions ’lp,'j (.’L‘i, iL‘j).

For fixed y;, the overall joint probability of a
scene z; is taken to be
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1Tn Sec. 2, we essentially follow [3].



Z is a normalisation constant. Typically, we are
interested in the marginals p;(z;). In connection
with SC, we are also interested particularly in the
pair-marginals

Z p(zy, ey

Tk kFi,]

pij(Ti, ;) = TN)- (2)

Belief propagation

For large systems it is hopeless to carry out all the
sums in (2) as the number of calculations increases
exponentially with V. BP is an algorithm for an ef-
ficient calculation of these marginals. In the case of
loop-free PMRFs the algorithm was shown to pro-
vide the exact marginals (in a time proportional
to the number of links in the graph [3]). How-
ever, in the case of loopy fields there is no guar-
antee that BP does converge, and if so, that it con-
verges to useful values. Despite this uncertainty,
BP was proven to deliver useful approximations for
marginals of many loopy problems. Superparamag-
netic clustering poses a problem on a highly loopy
graph. We will thus concentrate on a ’loopy’ BP
implementation.

In the language of BP, messages between con-
nected nodes of the PMRF are interchanged. The
message m;;(z;) sent from node i to node j con-
tains a recommendation about what state node j
should be in (e.g., if m;;(1) < m;;(0) then z; =0
should be preferred). Given the set of messages at
time t, {mﬁj (x;)}, the messages at time ¢ + 1 are
determined by

t+1
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N(i)\j denotes all neighbouring nodes of i with-
out the node j. Once the algorithm has converged,
the two-nodes beliefs that approximate the pair-
marginals are calculated with

bij (i, 5) = iy (@i, 25) di () 5 ()

X H myi(z:) H mi; (25), (4)
keN(i)\j leN(5)\j
where ¢ is a normalisation constant. The one-

node beliefs for the approximation of the marginals
pi(x;) can be calculated with

bi(i) = cpi(:) [ mjil=i).

JEN(9)
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Obviously, (5) is consistent with b;(z;) =
sz bij(x;,x;), which also allows to calculate b;(x;)
from (4).
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3 Superparamagnetic Clustering and Se-
quential Clustering

Superparamagnetic clustering
The superparamagnetic clustering algorithm is
rooted in statistical physics, more precisely in in-
homogeneous Potts spin models; these are extended
Ising models for magnetic materials. Essentially,
such models consist of interacting spins that are
assigned to the sites of an irregular grid. For the
clustering setting, the sites are given by the N
data items to be clustered. Each spin variable x;
can take ¢ > 1 values from a discrete set, i.e.,
z; € {1,...,q}. The choice of g is largely arbitrary
and is not connected to the number of occurring
clusters. The spin sites are locally connected: each
spin interacts with its k& (not necessarily mutual)
nearest neighbours. The neighbours are determined
by means of the given distances or ’dissimilarities’
d;; between two items. SC can perform solely on
the set of d;;. The actual items need not be known.
The coupling strength J;; decreases with increasing
d;j. We choose
1 _dIQJ
ii = Ji; = —=e2a?
Jij = Jji I?e

(6)

where K is the average number of coupled neigh-
bours (not necessarily equal to k) and a is the aver-
age distance between them. The chosen connectiv-
ity leads to a highly inhomogeneous network; this is
a basic requirement for clustering and is in contrast
to the normal situation of magnetic systems on reg-
ular grids. Each spin configuration is characterised
by an energy value given by

H({z}) = Z Jij (1

(4.9)

(7)
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where the sum runs over all connections (ij). The
expression (7) is referred to as Potts spin Hamilto-
nian. The system is considered in the formalism of
the canonical ensemble. Thus, the probability for
a certain spin configuration is given by the Boltz-
mann/Gibbs distribution

p({z}) = fH({w})/T

where the partition function Z = Z(T) serves as
a normalisation factor. The temperature T acts
as a control parameter expressing the average en-
ergy of the system. As T is increased, the system
typically undergoes a number of phase transitions:
(I) For small T', the system is in the ferromagnetic
phase where spins are likely to be aligned. (IT)
For an intermediary T-range, a superparamagnetic
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phase occurs. Strongly coupled spins tend to be
aligned, whereas weakly coupled spins behave in-
dependently. Thus, clusters of aligned spins occur,
reflecting groups of similar data points. A further
increase of T generally leads to a cascade of these
clusters into smaller clusters, so that a hierarchy of
classes and subclasses is obtained. (III) For high
T, the system enters the paramagnetic phase where
any order disappears and only singleton clusters re-
main.

Among the data points, clusters can be identified
for each T by means of the pair correlation crite-
rion: Two points ¢ and j belong to the same cluster,
if the pair correlation

Gij = Zp({x})(swlazj

= Zpij(mi,l'j =zi) (9)

exceeds a given threshold © (0 = 0.7 in this contri-
bution). Clusters define transitive relations in the
sense that if 7 and j as well as j and k belong to a
cluster, all points belong to the very same cluster.
In practice, the sum (9) cannot be carried out
for large sets. In the standard SC approach [1],
a MCMC method (Swendsen-Wang) was proposed
for an approximative calculation of (9). In the fol-
lowing, we combine the concept of PMRF and SC
to replace MCMC by loopy BP.
SC translated into a PMRF
For practical reasons we formally amend the Hamil-
tonian (7) with an external field term, H({z}) =
Z(i,j) Jij(l - 6;51.%.) - ZZ hz(!Ez), where h,(x,) =0.
The Boltzmann distribution (8) can then be fac-
torised in the form

p({z}) = % [[e stee/T [ b7, (10)

(i5) i

where Eij(.’L'i,.’L'j) = Jz](l — (5%%) A compari—
son with (1) allows for a straightforward conversion
of the Potts spin model into a PMRF. The fac-
tor functions read v;;(z;, z;) = e~ %i(@i2)/T and
bi(x;) = ehi(za)/T

Sequential clustering

For the purpose of data clustering, the superpara-
magnetic phase is the most relevant. In that phase,
clusters of groups of similar data points appear.
However, as T is increased, such clusters may break
up into smaller units. Then the question arises:
Which T provides the best clustering resolution,
i.e., the most natural choice of clusters? However,
this problem is ill-posed, since the clusters might be
chosen from different 7’s. A hint on which clusters
should be selected is given by their T-stability. The
most natural cluster structures in the data set are
stable over larger temperature ranges. In [4], we
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Figure 1: A simple two-dimensional toy system.

introduced an algorithm that successively extracts
the most stable cluster(s) from a set and reclus-
ters the single subsets (i.e., the cluster(s) and the
residual set) with readjusted parameters K and a
in (6). The procedure stops in a branch if no sta-
ble (in terms of T-stability) substructures can be
found anymore. This method does not only pro-
vide us with an intrinsic criterion for an automatic
selection of clusters. In [4] it was also shown that
this procedure is able to find natural substructures
that would remain hidden due to density differences
when only the whole set is clustered (for more de-
tails see [4]).

4 The Potential of Belief Propagation for
Sequential Clustering

A toy system example

To gain a first estimate for the performance of
BP in connection with sequential SC, we designed a
simple two-dimensional toy system with 320 points
(Fig. 1). The distribution contains three clusters
(labelled by A ,B,C) whose sizes are around 55,90
and 115 points. Some points cannot be clearly as-
signed to a cluster and form a background distri-
bution.

In the following, we report on the compari-
son of BP with the standard MCMC algorithm
(Swendsen-Wang). We used ¥ = 9 and ¢ = 2.
The questions of interest are: a) Are the results
achieved with BP as good as the results from the re-
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Figure 2: ’Naive’ BP implementation applied to
the toy set shown in Fig. 1. The size of occurring
clusters is drawn as a function of T'.
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Figure 3: Results for BP with external field.

liable MCMC? b) Is BP more efficient, i.e., quicker
than MCMC? To judge a), it is sufficient for the
sequential clustering procedure that size and T-
stability of the stable clusters for BP and MCMC
are very similar, but not necessarily identical.

Implementation issues: 1) A crucial step is
the normalisation of the messages after each iter-
ation, ie., 37, mij(z;) = 1. If one fails to do
this, the messages quickly tend to zero. 2) In
Fig. 2 the results for a 'naive’ BP implementation
are displayed. On a first glance, the results seem
reasonable; three clusters are clearly recognisable.
However, these results only reflect the local poten-
tials, i.e., b,-j(x,-,wj) = Clbij(xi;wj); and can thus
be achieved by a simple cut of all connections J;;
with 1/(1 4 e~7/T) < ©. This effect is due to the
sustained symmetry of the messages for a uniform
initialisation. For improvements, the symmetry has
to be broken. In practice, we realised this by intro-
ducing a nonzero external field at one arbitrary site
lin an arbitrary ’direction’ k : hy(x;) = 0,1 (in con-
trast, one spin is totally clamped in [2]). This exter-
nal bias leads to an asymmetry travelling through
the whole (irreducible) network yielding improved
results (Fig. 3), comparable to those of MCMC
(Fig. 4).

Performance comparison: a) Fig. 3 and 4
are interpreted as follows: For T' = 0 all points
are in one cluster (ferromagnetic phase). This clus-
ter immediately breaks up into two big units (one
unit containing B and C, the other unit correspond-
ing to A) and some singletons (background). After
another transition, the three clusters A, B and C
coexist and finally decay. The temperature of the
decay depends on the compactness of a cluster, i.e.,
more compact clusters are more stable. The com-
parison of BP and MCMC yields almost identical
results for the particular test set. The occurring
differences are irrelevant for sequential clustering.

b) For sequential clustering, MCMC based on
Swendsen-Wang is relatively efficient, i.e., 200 MC
steps yield reliable results for the cluster detection.
In the above example BP converges within 15 to
about 300 iterations, depending on 7. For higher
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Figure 4: Results for MCMC.

T’s, the algorithm slows down. The performance
also depends on the site where the external field
is placed. If it is placed within the background,
the performance is worse. Our experiments so far
have shown that our version of loopy BP does not
necessarily outperform MCMC in terms of compu-
tational time. However, we hope to tap the full
efficiency potential of BP in our further work.

5 CONCLUSIONS

In earlier work, we have shown how ’natural’ clus-
terings can be determined without fixing the num-
ber of clusters a priori; the key idea is to sequen-
tially extract clusters that persist over a large tem-
perature range, and to recluster them separately.
In this paper we exploited the potential of BP-
based superparamagnetic clustering in connection
with this sequential procedure. We reported on im-
plementation and performance issues. In the near
future, we will elaborate these issues in a more rigid
manner. Furthermore, we plan to apply our ap-
proach to real-world tasks such as visual scene anal-
ysis and data analysis in combinatorial chemistry.

References

[1] M. Blatt, S. Wiseman, E. Domany, “Superpara-
magnetic clustering of data,” Phys. Rev. Lett.,
vol.76, pp.3251-3254, 1996.

[2] N. Shental, A. Zomet, T. Hertz, Y. Weiss “Pair-
wise Clustering and Graphical Models”, Pro-
ceedings of NIPS 2003.

[3] J. S. Yedidia, W. T. Freeman,Y. Weiss, “Un-
derstanding Belief Propagation and its Gen-
eralizations”, Exploring Artificial Intelligence
in the New Millennium, ISBN 1558608117,
Chap.8,pp.239-236 2003.

[4] T. Ott, A. Kern, A. Schuffenhauer, M. Popov,
P. Acklin, E. Jacoby, R. Stoop, “Sequential su-
perparamagnetic clustering for unbiased classi-
fication of high-dimensional chemical data,” J.
Chem. Inf. Comput. Sci., vol. 44(4), pp. 1358-
1364, 2004.





