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Abstract. When a system becomes unstable or noise becomes excessive, often
regulations in the form of limiters (barriers obstructing excursions in undesired
directions) are imposed. It is hoped that under the influence of this element,
the system can be calmed and its behaviour optimized. We consider a simple
noisy nonlinear economics model that self-organizes towards criticality. We
demonstrate that the inherent effect of limiters is the emergence of stable cycles,
and that the limiters need to be implemented with care in order to obtain an
optimized system response. In particular, implementing the limiter at maximal
system response is generally a suboptimal solution. We find that the system
average is generally optimized by controlling a period-one cycle. Furthermore,
we provide optimality conditions for the case where the control is restricted to
being on the natural system behaviour.

Strong interventions are needed in order to acquire the period-one cycle. In
democratic countries, a transparent control policy would be a necessary condition
for its implementation. The framework discussed provides such a model.
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1. Introduction

Economic booms and bouts affect modern societies strongly, with a direct impact on
individuals’ biographies. In western economies, cycles have been a ubiquitous (undesired)
observation. Among the most remarkable, Kitchin cycles emerged [1]. Until the 1970s, as
the legacy of Keynes [2], cycles were regarded as primarily due to variations in demand
(company investments and household consumption). As a consequence, economic analysis
focused on monetary and fiscal measures to offset demand shocks. During the 1970s, it
became obvious that stabilization policies based on this theory failed. Shocks on the
supply side, in the form of rising oil prices and declining productivity growth, emerged as
equally crucial for the generation of cycles. In a paper published in 1982, Kydland and
Prescott [3] offered new approaches to the control of macroeconomic developments. One
of their conclusions was that the control should be kept constant throughout a cycle, in
order to minimize negative effects.

Cycles and crises may be inherent to the principles on which our economics is based.
However, if they could be predicted and their origin understood, they might be engineered
to take a softer course. An extreme form of this approach was taken in the centrally
planned economies in the former socialist countries. In order to deal with this problem
in democratic societies, it is necessary to be able to communicate a sufficiently simple
optimality policy. For obtaining it, the understanding of the response to control in simple
economical models may provide important guidelines [4]. The prediction problem of
economics is closely related to the one in chaotic processes, where strategies for overcoming
it have been developed. Although the question of to what extent real economies can
be classified as chaotic can readily be disputed, low-dimensional chaotic models yield
insight into the mechanisms that govern the response of economics to control policies.
Interestingly, in early implementations of the optimal control program, it was already
found that control mechanisms themselves may induce chaotic behaviour [5]–[7] and
render optimal control impossible. As a general mechanism inherent in many of these
examples, chaos is induced by a preference function that depends on past experience.
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This delay mechanism naturally makes a dynamical system infinite dimensional, which
has the tendency of resulting in a chaotic behaviour.

Chaos is composed of an infinite number of unstable periodic cycles of increasing
periodicities. In order to exploit this reservoir of characteristic system behaviours,
elaborate methods have been developed to stabilize (or ‘control’) intrinsically unstable
orbits, using only small control signals [9]–[12]. By the more detailed study of the potential
of these control methods in economics [13]–[17], several limiting factors were identified.
As a first shortcoming, the inherent latency of most of the above control approaches
emerged. In the context of quickly changing economics, control, however, is required to
be fast. As a second shortcoming, most economic data cannot be collected continuously.
This renders the application of the standard control methods, that are based on the
explicit knowledge of the geometry of the economical dynamics, tedious, and targeting
methods, designed to improve the speed of convergence towards the desired solutions,
inefficient. Moreover, the large amount of strong noise that is characteristic for economics
tends to veil these structures. As a third shortcoming, the control should be realizable
as a simple economics policy. For control strategies that are based on past observations
(e.g. statistical data from the preceding year), this is not easily achievable. Moreover,
these control strategies lead to policy functions involving time delays [4], which often
entrain chaotic behaviour, as in the above-mentioned pioneering examples [5]–[7]. These
observations apply in particular to time-delayed feedback control methods [17, 18] that
for some time were proposed as a means of controlling financial markets. Due to these
problems, the interest in the application of dynamical systems methods for the control of
economic dynamics has decreased subsequently.

In our contribution, we identify a general principle that naturally generates cycles
in economical models. We then demonstrate a detailed mechanism of how cycles are
additionally introduced when applying even the simplest control strategies. The insights
obtained add a new facet to the control advice of Kydland and Prescott: the optimal
system behaviour is not obtained by controlling the natural cycle, but is achieved by a
controlled period-one orbit. This does not only require a control policy that is kept fixed
through time. To acquire the period-one state, a strong initial control effort is generally
required, and control must be permanently maintained. In order to control the system
on a period-one orbit, it may be advantageous if the system is in the chaotic regime. We
show how the regime can be identified from the system’s response to control.

The structure of this paper is as follows. First, the logistic map is introduced as a
simple, but generic, model of economics. Using this model, a primary source of cycles is
identified. Then the principles of the simplest natural control method are explained, and
the laws underlying the generation of (super)stable cycles by means of the control are
outlined. Finally, the control method is applied to noisy stable and chaotic time series of
the logistic map, and the conditions for optimal control are determined.

2. A simple view on economics

When exponential growth is possible, real economies have little problem. It is mostly when
the limits of the economic systems are reached that their prediction becomes difficult.
From the mathematical point of view, this is due to the nonlinearities that are required to
keep the system within the boundaries. Economies naturally tend towards the recruitment
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of all available resources. This drives them towards the boundaries and fosters a natural
tendency of the system to evolve towards maximally developed nonlinearities. We can thus
describe economics in a simplified and abstract way in terms of a parameter indicating the
degree of globalization of resources (nonlinearity parameter a), and a dynamical parameter
x expressing a generalized consumption. The evolution of this simple model of economics
takes place on three timescales: a slow one which modifies parameter a, an intermediate-
term variable x that is assumed to be deterministic, and momentary perturbations that
are included in x in the form of noise. The underlying deterministic system is defined by
the property that for states far from full exploitation of the resources, the consumption can
grow almost linearly. Close to maximal exploitation, the next consumption is required
to be small, to let the system recover. Over a large parameter range of small a (local
economics), this behaviour, however, is avoided and a state of quasi-constant consumption
emerges.

A most simple and generic setting for modelling this dynamics is provided by the
iterated logistic map

f : [0, 1] → [0, 1] : xn+1 = axn(1 − xn). (1)

The above-mentioned self-organization towards an ever-growing exploitation of the phase
space [0, 1] is reflected in a slow increase of the order parameter a towards a = 4. At a = 4,
it can easily be seen how the nonlinearity keeps the ‘orbits’ xn away from the boundary:
starting with small values, xn increases almost linearly (with factor a). As soon as xn

approaches the upper phase-space boundary (at xn = a/4 = 1), this is counterbalanced
by the factor 1− xn. If a is increased further, large-scale erratic behaviour sets in, as the
process is no longer confined to the previously invariant unit interval. After a potentially
chaotic transient, the system settles into a new area of stability, where the same scenario
takes place anew, starting at rescaled small a. We believe that in particular the effects of
technical shocks may be adequately described in this framework.

On its way towards the globalization of resources (a → 4), the system undergoes
a continued period-doubling bifurcation route, where a stable period-one solution is
transformed, over a cascade of stable orbits of increasing orders 2n (where n =
2, 3, 4 . . .), into a chaotic solution (the Feigenbaum period-doubling cascade [8]). Using
renormalization theory, it can be shown that in order to reach the next bifurcation, a
progresses geometrically, with factor q ≈ 1/4.67. This implies that the transition point
to period infinity is reached within a finite interval of a. Beyond this period-doubling
accumulation point, chaos is possible and abundant [19, 20]. The properties exhibited
by the logistic map are characteristic for a large universality class of unimodal maps (of
which it is the simplest representative; see e.g. [21]). Our model is thus characteristic for
the whole class of systems that are subject to such a process of self-organization.

Equation (1) has previously been used in a number of nonlinear models of economics.
In an early example given by Benhabib and Day [7], under suitable conditions economics
was found to be described by the logistic map. This was an early indication that economics
could eventually become chaotic. In their model, there is a competition between the
demand for two goods. The preference for one good is a function of past experience (this
is taken account of by an iterative implementation) and of a constraint formulated in terms
of a fixed budget. The nonlinearity parameter a is a decreasing function of the prices.
Other simple examples that naturally lead to the logistic map can easily be constructed
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along the following lines. Consider, e.g., whaling in the Northern Atlantic Ocean. If the
whaling fleet is small (captured by a � 1), the annual catch xn will be small and affect
the whale population little, so xn will stay at a quasi-fixed point. An increase of a will
raise the average catch x̄. Larger ships will start venturing to the whole of the Atlantic
Ocean. At the point when we start to exploit a considerable part of the whole system
(a → 4), the fixed-point behaviour naturally ceases to hold. After a situation of almost
complete exploitation (xn ≈ a/4), the system needs an extended time to recover. Novel
technologies may annihilate the constraints that originally defined the confinement to the
unit interval. The universality underlying the above-discussed route to ever more complex
dynamical behaviour, however, implies that under the new constraints, the whole process
will repeat, leading to a cascade of such processes, theoretically ad infinitum.

3. Effects of simple control

Whereas the usage of the logistic map as a simple, yet generic, model of macroscopic
economics seems reasonably motivated, in real economics the demand x is characterized
by strong short-term fluctuations, often of local or external origin. Whereas in the case
of small a such perturbations are stabilized by the system itself, for larger a they lead
to ever more long-lived erratic excursions. To incorporate these fluctuations within our
model, we perturb x with multiplicative noise, for simplicity chosen uniformly distributed
over a finite interval. The size of the noise sampling interval, in the following denoted by
str, is a measure for the amount of noise. To render economics predictable under these
circumstances, it is natural to apply a control mechanism to x. For this, a sufficiently
simple control tool is needed, whose properties are well understood and which does not
additionally complicate the behaviour of the system. As a natural candidate, control by
means of placing a limiting value on x that the system is not allowed to cross, can be—and
in reality often is—imposed. In figure 1, three time series generated from this model are
displayed. For the first series, the system was tuned so as to generate a noisy superstable
period-four orbit (for the definition of (super)stability of orbits see e.g. [21]). For the
second series, a limiter at the highest cycle point was inserted, whereas in the third series
the control was on the unstable period-one orbit. It is easily seen that the period-one
orbit yields the highest average value.

Recently, exact results for this so-called hard limiter control (HLC) have been
obtained. For reasons of convenience, we will expose their nontrivial essence. By
introducing a limiter, orbits that sojourn in the forbidden area are eliminated (see
figure 2). Modified in this way, the system tends to replace previously chaotic with
periodic behaviour. By gradually restricting the phase space, it is possible to transfer
initially chaotic into ever simpler periodic motion. When the modified system is tuned in
such a way that the control mechanism is only marginally effective, the controlled orbit
runs in the close neighbourhood of an orbit of the uncontrolled system. In a series of
papers [22]–[26], this control approach was successfully applied in different experimental
settings, and its properties were fully analysed.

Flat-topped maps are the proper paradigm for studying HLC [25, 26]. They are
obtained by replacing the peak region of a map by a horizontal line at height h, which
limits the phase space to {x | x < h}. A detailed analysis shows that the class of
flat-topped maps shares a number of remarkable topological and metric features [25].
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Figure 1. Noisy time series of a superstable period-four orbit (str = 0.02),
uncontrolled (red), controlled in the maximal cycle point (dark green), and
controlled in the unstable period-one orbit (light green). The period-one orbit
yields the highest average.

Figure 3(a) shows the generic bifurcation diagram exposed by this class, as a function
of the natural control parameter h (for optimized display, the diagram of the flat-topped
tent map is shown). It is observed that the controlled map undergoes a period-doubling
bifurcation cascade, leading to long, seemingly chaotic, orbits. However, in this system,
no chaotic orbits are allowed. By ergodicity, each orbit will eventually pass by the control
segment, from where on the orbit is periodic, as landing on the control segment entrains
a zero slope. (A multiplication of a product of slopes, as involved in the calculation of
Lyapunov exponents, by a zero factor, leads to a zero product. This immediately sets the
Lyapunov exponent to minus infinity, which implies superstable periodic behaviour.)

Period-doubling cascades are characterized by two constants, α and δ [8]. The
constant α describes the asymptotic scaling of the fork openings of subsequent period
doublings, whereas δ represents the scaling of the intervals of period 2n to that of
period 2n−1 near the period-doubling accumulation point, i.e. at the transition to chaos.
The observed period-doubling bifurcation cascades are typical for flat-topped maps (or
the control method) and differ in scaling from the Feigenbaum case. The ratio of
the bifurcation fork openings within forks of the same periodicity now depends on the
derivative of the map, and is therefore non-universal.

The scalings induced by HLC also explain the large-scale repetitive star-like
bifurcation structures and the adjacent repetitive empty bands (whose positions are
indicated in figure 3(b) by the large and the small circles, respectively). It is easy to
see that the asymptotic scalings of these repetitive structure stars are both given by the
derivative of the leftmost fixed point of the map. As a consequence, both scalings are
again non-universal. In applications, the time required to arrive in a close neighbourhood
of the target orbit is an important characteristic of the control method. With the classical
methods, unstable periodic orbits can only be controlled when the system is already in
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Figure 2. HLC for time-continuous and discrete dynamical systems. Limiter
positions are indicated by dashed lines. (a) HLC changes chaotic into period-
one behaviour (modified from Corron et al [24]). (b) HLC for the noisy logistic
map. Placement of the limiter around the maximum of the map preserves the
natural noisy period-two orbit (red). For lower placement, a modified period-one
behaviour is obtained (green).

the vicinity of the target orbit. As the initial transients can become very long, algorithms
have been designed to speed up this process [27, 28]. HLC renders targeting algorithms
obsolete, as the control-time problem is equivalent to a strange repeller-escape (control is
achieved as soon as the orbit lands on the flat top). As a consequence, the convergence
onto the selected orbit is exponential [25].

These properties of 1D HLC systems fully describe the effects generated by the limiter
control. Due to the control, only periodic behaviour is possible. Period-doubling cascades
that have a superexponential scaling δ−1(n) ∼ 2−2n

[25], and therefore are not of the
Feigenbaum type, emerge in the control space. The convergence onto controlled orbits is
exponential. Controlled orbits are unmodified original orbits only at bifurcation points
of the controlled map. For generic one-parameter families of maps, all bifurcation points
are regular, and isolated in a compact space. As a consequence, their Lebesgue measure
is zero. These properties substantially modify the uncontrolled system behaviour.

4. Natural versus control-induced cycles

It is a widespread misunderstanding that control methods only apply to inherently
unstable systems. Unmodified control methods can be used to control unstable orbits
of inherently stable systems. In either case, the control should be only minimally active.
In the noise-free case, the control is optimal, if after an initial phase the controller no
longer experiences any noticeable strain. This is the case at the bifurcation points of the
controlled map. Questions that remain are whether a corresponding statement also holds
true for noisy systems, and which of the orbits should be controlled.
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Figure 3. (a) Generic bifurcation diagram of flat-topped maps. The (for display
reasons: tent) map is drawn over the vertical axis x (broken lines). To obtain the
controlled map at control parameter h, replace the (rightwards pointing) peak of
the map by a vertical segment positioned at h. The asymptotic controlled orbit
points are also displayed with abscissa h, giving rise to a bifurcation diagram.
(b) Relation between the n-fold iterates of F (graphs Fn, n = 1, 2, 3, shown by
dashed–dotted, dashed, and full lines) and the scaling of the ‘stars’ (large circles):
back-iterations (arrows) of the period-one fixed point x = 2/3 yield successive
star locations. Their scaling is therefore determined by the derivative F ′(0). A
similar argument applies for the size of the ‘windows’ (whose x-values are located
around the small circles).

As the economic system evolves, it will be in a noisy, but stable period-one state. This
is a convenient economic behaviour. Predictions and forecasts are simple to make. To
reduce the noise, the limiter will be placed around the periodic point. As the system turns
into a period-two one, the question emerges of whether to maintain the unstable period-one
cycle, or whether to move on to the stable period-two one. We will argue that maintaining
the period-one cycle is preferable, from most economics aspects. The predictions for these
systems are simpler, and lead to simpler economic policies. Many economic indicators
(taxes, budgets, etc) are evaluated over a period of one year. Moreover, the period-one x-
average will be generally higher than that of the controlled period-two case, as well as any
other higher cycle. This appears counter-intuitive, since the natural tendency to relax back
to the ‘natural’ system state has to be compensated for by the control. From the convexity
of the nonlinear map, however, it is easy to prove that our claim holds. To change a
natural higher periodic behaviour into a period-one state generally requires a relatively
strong initial control action. That this is beneficial appears to be counter-intuitive again,
and needs to be communicated in an accompanied economic policy statement.

When the timescale over which the external parameter a varies becomes comparable
to the cycle wavelength, the optimality of the above-described control may break down,
as continued adjustments need to be made in order to follow the changing period-one
location. In this case, it may be preferable to control a natural cycle. The most obvious
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Figure 4. Dependence of dev on the control point h (summation over 500 orbit
points, period-one orbit). (a) For zero noise, a piecewise linear function with a
minimum (= the optimal noise-free control point) emerges. (b) In the presence
of noise (str = 0.02), the function becomes nonlinear, with a nonzero minimum
at the optimal noise-free control point.

control goal would then be to control the system as closely as possible along the underlying
noise-free system. In the numerical control results presented below, we deal with both
control goals.

5. Control results

To measure the efficacy in performing control on natural cycles, we define the control
distance as the absolute difference between the ‘natural’ underlying solution and the
controlled solution, per step. If the underlying system is of periodicity larger than one
and the control is on a period-one fixed point, the control distance becomes particularly
large. If the underlying system is in the chaotic regime, all cycles are unstable, and the
control of any of them is a priori equally well justified and natural. In particular, control
can be established on a period-one orbit with zero control distance in the zero-noise limit.
Below, we discuss the most salient numerical results obtained from applying HLC to noisy
systems.

5.1. Control in the stable system regime

For our numerical investigations, we restrict ourselves to the control of superstable orbits
(by choosing a = 2 and 1 +51/2, for the periods one and two, respectively), and apply the
control at the cycle maximum. As a measure of efficacy, we calculate the average deviation
of the noisy control relative to the noise-free system, denoted by dev, as a function of the
noise and of the limiter position h. This seems to reflect best the natural tendency of
the system to return to the vicinity of the uncontrolled noise-free system once the control
is relaxed. We find that for zero noise, dev(h) is a piecewise linear function (shown in
figure 4(a) for the period-one orbit), where the nonzero slope, associated with h below
the maximum of the function f , is determined by the periodicity and by the amount of
nonlinearity expressed by a. For nonzero noise, the formerly piecewise linear function
becomes nonlinear, with the minimum being situated at the optimal control point of
the noise-free system. For noise strengths str < 0.1, which we consider to be a realistic
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Figure 5. Results for the chaotic regime, where an unstable period-two orbit is
controlled. (a) Linear dependence of the optimal control point displacement δh
on the noise strength str. (b) Linear dependence of dev at the optimal control
point on the noise strength str.

case, the deviation is a linear function of str (see figure 4(b)). The stronger the required
corrections, the more the orbit histograms focus around the control point. The controlled
orbit, however, deviates ever more from the original system orbit, which leads to a fast
increase of dev. The control of the superstable period-two orbit yields a similar picture.
One important difference, though, is that the amount of noise allowing maintenance of
the control decreases considerably. For stable orbits, control can beneficially be applied
up to relatively large noise levels (str ∼ 0.08). Control is lost when, due to the noise,
interchange of orbit points occurs. This is why in the presence of a substantial amount
of noise, only low-order cycles can be controlled. For a period-four orbit, a noise level of
str > 0.01 already leads to control loss. If the correct ordering of the cycle points has
no importance, control beyond orbit point interchange will be beneficial. Interestingly,
the function dev(h, str) scales linearly with str (identical curves emerge if h and dev are
replaced by h/str and dev/str, respectively). As a rule of thumb, by means of optimal
control, the deviation can be reduced by a factor of ∼0.5.

5.2. Control in the chaotic system regime

To investigate the control in the chaotic regime, we focus on the fully developed logistic
map (a = 4). To control true system orbits, the control point must be chosen at locations
corresponding to the bifurcation points (see figure 3(a)), whose location can be evaluated
analytically [25]. Without control, chaos prevents the system from staying on a given
cycle. As a consequence, the efficacy of the control is measured as the difference between
controlled noise-free and controlled noisy systems. In order to obtain a period-one orbit
in the noise-free case, the limiter was adjusted to h = 0.75. Experiments show that in
the presence of noise, the optimal control point moves away from the noise-free optimal
control point. This is in contrast to the behaviour in the stable regime, and may help
to distinguish between the two cases. The displacement is a linear function of the noise
strength, as is the deviation dev measured at the optimal shifted control point. To provide
an unstable noise-free period-two orbit, the controller was adjusted at h = 0.904. Again,
the optimal control point’s displacement and the minimal deviation are linear in the noise
strength (see figures 5(a), (b)). Controlling period-four orbits yields an even stronger shift
from the optimal noise-free controller position at h = 0.925. The amount of sustainable
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noise, however, is further reduced if compared to the period-two case (by a factor of ∼0.5).
Beyond a noise strength of str = 0.04, the orbit escapes control.

6. Conclusions

Control mechanisms of limiter type are common in economics. This control, however,
inherently generates superstable system behaviour, whether the underlying behaviour be
periodic or chaotic. A priori, a frequent change of the position of the limiter might appear
to be a suitable strategy in order to compensate for the amplified or newly created cyclic
behaviour. This strategy, however, will only result in ever more erratic system behaviour.
Our analysis shows that it is advantageous to keep the limiter fixed, adjusting it only over
timescales where the system parameter a changes noticeably. In this way, reliable cycles
of smaller periodicity will emerge. Among these cycles, the period-one cycle appears to
be the optimal one, from most economic points of view. To recruit this state, a strong
initial intervention is necessary and the control must be permanent. Otherwise, a strong
relaxation onto the suboptimal natural behaviour sets in. In discussions of real economics,
these effects will be natural arguments against the proposed control. To overcome such
arguments, a sufficiently simple control policy must be formulated in democratic societies.
The framework discussed may provide the basis for the formulation of a control policy for
attaining economic optimality.

As the most obvious challenge to the proposed control strategy, instead of maximizing
the average x̄, the minimal distance to the noise-free dynamics could be chosen as the
control target. We demonstrated that when a varies slowly, this control generally does
not lead to an optimum of x̄. If superstable orbits are controlled at the highest orbit
point of the noise-free behaviour, the location of the optimal control point is independent
from the noise strength. In the chaotic regime, in contrast, the optimal control point is
displaced, linearly in the noise strength. Controlling at this point reduces the dev error by
roughly one fourth, if compared to the control at the noise-free optimal point. Detailed
investigations show that the observed shift of the optimal control point also depends on
the nature of the noise. If purely positive noise is added, the shift vanishes. From the
perspective of economics, HLC-induced noise reduction can be regarded as a substantial
improvement. However, since the period-one orbit has substantial advantages, the control
of the latter state is preferable.

Our framework could be of relevance for better understanding and monitoring of
economic behaviours. It has been found [29] that for either very underdeveloped or
developed economies, stable fixed-point behaviour is predominant. At an intermediate
level, however, complex economics emerges that can induce chaotic dynamics of the
entrepreneur’s wealth, Wn [30]. In order to control this case, HLC in the form a tax on
assets with a sufficiently fast progression could be applied, forcing Wn to remain below a
maximal value, Wmax. With sufficient care, HLC on a period-one system could be achieved,
and excessive economic variations due to chaotic dynamics could be prevented. Political
realizability will often require the use of ‘softer’ limiters (in the sense that Wn > Wmax is
not strictly prohibited), but the main features of HLC will be valid even in these cases [26].

We emphasize that short-term cycles emerge at all levels of economics. It has become,
e.g., a common observation that the demands for certain professionals (in central Europe
in particular for teachers) undergo large fluctuations from one year to another. In one year,
severe problems are encountered in recruiting a sufficient number, so that the professional
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requirements have to be lowered, whereas in the next year, there is an excess supply. We
propose to interpret this as the signature of an economy that has moved out of period-one
behaviour. From the teaching quality as well as from the individuals’ biographies points
of view, the occurrence of this effect should be prevented or smoothed. Our approach
offers a perspective for understanding, studying and, potentially, also engineering such
phenomena.
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