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ABSTRACT
An explicit measure of the computation performed by gen-

eral systems (electronic circuits, neurons, mechanical de-

vices, etc.) is defined. We propose that the deeper nature

of computation, and thus of any measure of computation, is

in its reduction of complexity. The latter we understand as

the ”obstruction against prediction”, experienced by an ob-

server. We demonstrate the applicability and usefulness of

this concept in different examples, which include some of

the most studied families of dynamical systems. The mea-

sure can also be computed for higher-dimensional and ex-

perimental systems.

1. INTRODUCTION

Real world (=”natural”) systems have recently received in-

creased scientific attention, because of their obvious effi-

ciency properties. A simple bee, e.g., shows that biological

systems can perform perception tasks in a way yet unchal-

lenged by artificial (digital) systems. Often, in this context,

it is argued that these natural systems ”perform computa-

tions”. However, this notion of computation generally re-

mains undefined. It may seem that in artificial digital sys-

tems, the notion of computation has an intrinsic meaning.

Only recently, the fundamentals of computation have been

investigated in more details. One line of approachwas to de-

fine computation in terms of the difficulty of solving classes

of fundamental problems, under (mostly: time) constraints.

Another line of approach was the extension from intrinsi-

cally rational to real weights, as is advocated by biologi-

cally motivated neural networks. Depending on the starting

point, widely diverging concepts emerged [1, 2, 3]. All that

these concepts, however, offer no measure of computation.

The approach that we pursue in this contribution is rad-

ically different. It is our understanding that before mak-

ing extended use of a notion, it first should be defined. In

physics, this is generally done by conveying a means for

measuring the property (this measure can be as general as

verification, which is restricted to the value set
� � � � �

). This

is why we are going to define a measure of computation for

natural systems. The measure will be applicable to most

classes of dynamical systems.

Such a measure of computation cannot be tied to a par-

ticular problem to be solved. Rather, it should be defined as

an average over all possible problems possible to solve by

the device. As the most natural and general enough start-

ing point of computation, we first focus on the initial con-

dition (in the context of artificial digital computation often

called operands). Among all possible inputs, low- as well

as high-complexity input strings have to be expected, with

no particular distribution. The only possible way of imple-

menting this requirement is by taking averages over the in-

put space. Next, a sufficiently general notion of a computing

system should be defined, capable of processing the initial

condition. In accordance with the intuitive understanding

of ”computation”, we let a general map represent the com-

putational system. This can be motivated by insights from

neural network theory, where the simplest tractable repre-

sentation of a computational unit is a map (general neural

networks are universal approximators of functions). More

general space-time systems may pose conceptual difficul-

ties. However, many specific aspects will nevertheless be

describable in terms of maps. The initial condition to this

map (e.g., a single input for one-valued operators, or a string

composed from two numbers in the case of a two-valued op-

erator) is then iterated by themap; this is what we take as the

representation of the computation. The simplest way is to

look upon input as binary digit expansions that are fed into

the map. Without restriction of generality, the map hence

can be assumed to operate on some subset of the unit in-

terval. The computation halts, when the transient behavior

of the map has been passed. (This criterium demands, in

principle, a measure of accuracy by the observer. Since in

our approach we shall operate on sets of unspecified pre-

cision, this assumption will automatically be incorporated.)

Because of the general formulation, various results of com-

putation, in particular, periodic, quasiperiodic, as well as

chaotic behavior are consistent with the approach. In order

to obtain an overall characterization of the computation per-

formed, we will have to average (possibly in a generalized

sense) over all initial conditions.

Real systems can be defined as systems that are noisy,

with unspecified values on small digits. To define computa-

tion in a way applicable to these systems, it makes no sense
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to define computation by means of single, isolated, initial

conditions. Instead, it implies to operate on the level of sets

of neighborhoods, where the linear approximation � � , or� � in the case of dimension one, is the appropriate repre-
sentation of the map � . This replaces the classical view of
computation based on a mapping between points, involv-

ing questions of precisions. To arrive at a measure of com-

putation, it appears that the most natural way would be to

consider the number of iterations needed, starting from any

initial condition, to arrive at any of the possible results. If

a non resolution-dependent characterization is to be given,

this implies taking the asymptotic limit � � � . In this
way, as the simplest measure of computation, the quantity� � � 	 
 � �	 
 � � � � � � � � � 	 � � � � � � �

emerges, where
� � � �

denotes the natural density. The obtained measure, how-

ever, coincides with the Lyapunov exponent of the system,

implying that by the notion of computation, no novel quality

would be obtained. This is in stark contrast to our intuitive

notion, that does not foresee such a coincidence.

In the quest for a more suitable concept, the question

emerges what the deeper notion of computation could be.

Using a generally accepted perception of computation as the

starting point, our answer is, that it should be understood as

the reduction of the difficulty of prediction in the statisti-

cal sense. This quantity should be averaged over the input

space, working on sets of neighboring trajectories because

of the finite accuracy required (in this sense, our notion of

computation indeed will be vaguely related with the concept

of Lyapunov exponents). Computation thus should reduce

complexity, when the latter is understood as the obstruction

against predictability. In this way, the following rough pic-

ture emerges: Consider an arbitrary input, represented as a

binary expansion from the unit interval. To this input, al-

ready a complexity can be attached, as it may have emerged

as the result of some iterated mapping. We shall intrinsi-

cally assume that the input complexity can be of any pos-

sible complexity (in the Kolmogorov sense [4, 5] or in the

sense of a complexity of prediction as defined below). By

means of the system that we expect to perform the ”compu-

tation”, this input complexity is transformed into an output

complexity (measured, again, by a complexity of predic-

tion). The reduction of the input complexity by means of

the map defines our measure of computation.

2. � � COMPLEXITY
Our outlined concept of a measure of computation thus pre-

requisites the definition of an appropriate measure of com-

plexity. This measure should express the difficulty of mak-

ing predictions for real systems based on past observations.

As such, it needs to be based on neighborhoods of trajecto-

ries in real number space, rather than on individual trajec-

tory in the space of rational numbers. As a consequence,

this measure of complexity will be different from the Kol-

mogorov complexity.

Recently, such a measure of complexity has beenworked

out [6, 7]. Its main features will be outlined below. Let

us consider a dynamical system with discrete time, defined

by a map � on some set � in the Euclidean space � 	
.

Pick an arbitrary point
� �
in the phase space, take some

neighborhood � � � � � � �
and consider the orbits

� � � 	  � !
,� " # . We are interested in observables that relate to mea-

sures that are multiplicative along the orbit, i.e., for which

the � -step average is evaluated as � $ 	 % �& ' � ( � � � &  � � � � � � ) 	
,

where
� " � is the initial state of a particular orbit. Ex-

amples of such measures are derivatives, probabilities, etc.

Take such a measure ( � � �
and define our observable * as( � � � � + , - . � * � � � �

. Our goal is to study the problem of

prediction of the next values * � � � /  � � � � 0 1 2 � , along the
orbits. For the decay of the probability 3 of retaining a par-
ticular measurement value of the observable during a system

evolution of � steps, we employ the large deviation ansatz
[8] 3 � * 0 � � � * 4 5 % 	 6 � 7  � * . The thermodynamic formal-
ism implies [8] that

8 � * � � * 9 : � * � 0
(1)

where : � * �
is an entropy function. In more detail, the ther-

modynamic formalism departs from a partition function ; � � 0 < 0 * �
,

where � is the level or depth of the partition and <
can be

viewed as an inverse temperature. With ; � � 0 < 0 * �
, a free

energy = � < � � � � � 	 
 � �	 � � � � ; � � 0 < 0 * � �
is associated,

where in = � < �
we suppressed the dependence on the ob-

servable * . In the absence of phase transitions, an entropy
function is obtained by means of the Legendre transform: � * � � * < 9 = � < �

. Entropy functions : � * �
have the prop-

erty of strict convexity, with infinite derivatives at the two

end-points of the curve (in the absence of phase transition

effects).

A suitable complexity measure is defined as the diffi-

culty of prediction of the observable * , averaged over all
system behaviors. Equation (1) implies that the probabil-

ity for observing trajectories with a specific value of * , as a
function of � behaves as

3 � * 0 � � � * 4 5 % 	 � 7 % � � 7   � * > (2)

As * ? : � * �
, the smaller * 9 : � * �

, the better the pre-

diction based on the past of the orbits will be. Orbits with* � : � * �
will yield perfect long-time prediction. Indeed,

this situation characterizes the long-time average of the nat-

ural invariant measure (depending on the observable, Lya-

punov exponent, information dimension, e.g. [6, 7]). As the

complexity is the difficulty of making correct predictions,
over all length scales, the average@ : � * �

* � * (3)
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is defined as the measure of complexity.

In order to facilitate the comparison of systems with dif-

ferent topological entropies and to extend the range of ap-

plications, the above concept can be refined. � and � � � �
can be rescaled as �� � � � � �

and �� � �� � � � � � � � � �
, where� �

is the topological length scale exponent. Geometrically,

this corresponds to a similarity transformation of the en-

tropy function’s graph at
� � 	 � �

, which maps the topological

length scale exponent � �
to unity. In this case, our com-

plexity measure assumes the form 
 � � � � � � � � 
 � �� � �� ��� � �� .
where on the left-hand side, � refers to the chosen observ-
able. To obtain a fined-tuned distinction of dynamical sys-

tems according to their complexity, we may exponentiate

the front factor and the integrand independently. Then the

most general form of our measure is obtained as


 � � � 	 � � � � � � � � � 
 � � �� � � � � � �� � �� ��� � � � �� 	
(4)

where
�
and

�
are weightening exponents. To avoid diver-

gence, we require
� � �  

. Most relevant for our purpose,

however, will be 
 � �  	 � �
, as this characterizes the natural

measure of the difficulty of prediction under suppression of

lengthscale aspects.

3. COMPUTATION MEASURED

As the desired measure of computation should reflect the

ability of the system to reduce the difficulty of prediction,

the most natural and straightforward way to define it is to

define it as the quantity
 ! � �  � � 
 � �  	 � � "  � 	
(5)

where 
 � �  	 � �
is the

�  	 � �
-complexity measure as de-

fined above and where 1 has been added in the denomi-

nator in order to prevent a possible singularity caused by
 � �  	 � � � �
. This measure of computation is statistical

in nature, as it is extracted by means of the thermodynamic

formalism. It does not require explicit hierarchical analysis

and is non-divergent by construction. If the maximal scal-

ing index � # $ % is finite, the measure itself will be finite,
bounded from below by zero and from above by the value " & ' ( � � # $ % �

. 
 ! � �  
indicates a system that performs

optimal (decisive) computation, whereas 
 ! � ) �
 indi-
cates that the system performs no notable computation. It

is worth noting that in this way the measure of computation

will be finite, in all realistic cases.

Examples: To get some idea for the implications by this
definition, we focus on the the natural partition of the phase

space generated by the iteration of a map * and denote
the associated observable by + � , - . �/ 0 1 / [6, 7]. Accord-
ing to their computational measure, systems can be divided

0.5 1a
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1
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(a)
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(b)
1
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Fig. 1. Computation 
 ! � . a) Hyperbolic tent map

paradigm, parameter 2 : location of peak. b) Nonhyperbolic
bungalow tent map paradigm, parameter 2 : location of right
diagonal point.

into classes of increased computation: 3 � 
 ! � 4 � 5 6 �
, 3 3� � 5 6 4 
 ! � 4  �

, 3 3 3 � 
 ! � �  �
. The first class is given

by systems that almost perform no computation. In this

class, we have the intermittent systems, as their complex-

ity when measured by means of 
 � �  	 � �
, is highest among

the prototypical classes of dynamical systems [6, 7]. This

is in agreement with observations that biological complex-

ity is highest at the border between order and chaos [9, 10].

Two of the most prominent 1-d dynamical system classes

are the (skewed) tent map family, as the standard representa-

tive for hard hyperbolic chaotic systems, and the bungalow

tent map as the standard representative for nonhyperbolic

chaotic systems. Both systems allow for a simple analytic

determination of the computation measure. As a function of

the family parameter, they mostly belong to the intermedi-

ate, second, class, as is shown in Fig. 1. For the parabola

family 7 � 2 8 �  � 8 �
, 2 9 : ; 	 < =

, computation can be cal-

culated analytically only for the isolated parameter values.

This family belongs to a mixture between the second and the

third class, depending on the parameter value. For 2 � <
, as
 � �  	 � � � + � �  � ; , the computation is ; � > . The third class,

with maximal computation 
 � �  	 � � �  
, is characterized

by the most simple emergent behavior. As outlined in the

introduction, stable periodic orbits are one possible exam-

ple. This is why in the periodic windows, the parabola falls

into this class. However, also classical arithmetic operations

are members. In the case of addition where one operand is

fixed (e.g., to the value
8 � 2 ), the map * � 7 � 8 " 2

mod
 
can be taken as a representation. Since the complex-

ity of this map is zero, maximal computation 
 ! � �  
is

obtained. The identical result is obtained, if multiplication

by 2 is represented by * � 7 � 2 8
mod

 
.

4. DISCUSSION

In this paper, we constructed an observable-dependentmea-

sure of computation. The range of applications of our method
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extends to a very broad class of systems. The evaluation is

particularly simple, if a generating or approximate generat-

ing partition is available. More generally, our measure can

be calculated, whenever an entropy function of scaling ex-

ponents can be evaluated. These cases include experimental

time series (see, e.g.,[8]).

Our measure provides three main insights. First, the nu-

merical results for 1-d maps point out that nonhyperbolic-

ity per se does not have a strong influence on computation.
Second, when we compare the fully developed parabolawith

the symmetric tent map, these systems can be transformed

by means of a conjugacy, preserving two points of � � � �
(the

natural measure and the topological measure). For an ob-

server making predictions, they appear as distinct instead.

This is captured by our measure, which yields computation

� � � � � 	
and � � � � 


, respectively. Third, for inter-

mittent systems, that are at the border between chaos and

order, the computation emerges to be smallest. Their appar-

ent job therefore is not to compute, but to provide sufficient

complexity, on which computational elements then can do

efficient computation.

Our concept of computation also can be interpreted in

the context of periodic orbits of dynamical systems. It has

recently been shown that unstable orbits can easily be stabi-

lized [11]. Stabilized orbits are among the simplest com-

putational results in our approach. If the stabilization is

achieved by means of simple limiter control, it has a sim-

ple interpretation in terms of inhibitory neuronal connec-

tions. In our framework, this control process is interpreted

as a process with maximal computation. We also evalu-

ated our complexity measure for experimental neuron data

(unpublished). In an in vivo experiment of cat visual cor-

tex V1, inter-spike intervals (”ISI”) between firing events

were recorded and analyzed, for two distinct stimulation

paradigms [12] (stimulation by noisy patterns moving into

the neuron’s preferred direction and square-wave stimula-

tion as the optimal stimulus). Using our measure of com-

putation, we obtained the insight that optimal stimulation of

the neuron led to larger computation if compared to non-

optimal stimulation. Thus, optimal stimulation leads to an

improved computation. The vast amount of information ar-

riving at different stages of cortical computation may ren-

der the assessment of the computation hardly feasible, if the

system is divided into small computational steps. In this

case, we propose to replace the whole cascade process by

one single map, for which the computation can be evaluated

along the lines outlined.

What is the advantage of such a viewpoint, apart from

putting computation on the fundament of measureability?

Computation in natural systems appears in different stages.

Each one taking particular properties into account, ruling

out some complexity, but retaining complexity to be com-

bined with results from other computations. With the cur-

rent approach, the computation performed by individual units

in the process as well as the computation performed by the

whole can be evaluated and compared. It can be expected

that from this comparison, more insight into the relation

between computation performed by parts and done by the

whole system can be obtained. This knowledge will be re-

quired in order to exploit computation by natural, in partic-

ular biological, systems for technical purposes.

The authors strongly benefited from discussions with

W.-H. Steeb on the nature of computation. R. S. acknowl-

edges the support by a KTI-contract with Phonak AG hear-

ing systems.
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