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Abstract. We present an analysis of the range of values of synaptical
connections to enhance the storage proprieties of neural networks. Con-
sider a random connected system to which random patterns are shown;
these patterns impose specific activities over neuron pairs that might be
connected evoking long term synapse modifications. Two approaches are
given. The first one focuses on the noise context and the second one fo-
cuses on the learning rule. We find that increasing the variability among
the synapse values within a given range, both the quality and the speed
retrieval increase.

1 Introduction

In order to achieve experience, it is essential that each developing biological
system, at the first stage of its development, should own the possibility of rec-
ognizing, indiscriminately, a very large number of patterns. Most neural circuits
should be organized according to two mechanisms that bring to the formation
of the neural maps: anatomical, in the formation of the neural substrate, and
synaptical, in the formation of a specified connectivity. In certain stages of the
development these two events are overlapped to create and to consolidate par-
ticular maps. In the neural substrate, different groups of cells should be able to
perform the same functions better or worse. The specified connectivity is devel-
oped following to the modification of synaptical contacts, which are responsible
for compensating the unfaithfulness of a distributed system. Yet, during the ani-
mal experience, the initial neural substrate may contain cellular groups that are
functionally equivalent to or even more ”efficient” than the ones already active
in the modified maps [3]. We should evince from the stochastic nature of the
neural substrate that the organization (that should reflect the initial condition
of the developing brain) of a connected system gives the highest retrievable qual-
ity to a large number of patterns if the synapse values are taken within certain
ranges. In order to prove this we will compute the ratio between the activity
of a neuron which belongs to a pool of neurons that encode a specific pattern
and any other neuron that does not participate to the encoding. This ratio is a
measure of signal to noise ratio (SNR). Another measure for retrieval quality is
also being given in terms of mutual information.



2 Context and initial conditions

In the following analysis we will consider sparse distributed representation in
which a small proportion of neurons is active at any time. Suppose a pattern is
shown to the system after the presentation of p consecutive different patterns;
all these patterns belong to a set of statistically independent random patterns.
In normal conditions of physiologically enabled synaptic dynamics, the obtained
synaptic structure would be independent of the initial condition determined by
the presentation of the very first (i.e. oldest) pattern. This condition, usually,
depends on the speed of learning/forgetting implied in the synapse dynamics [4].
Let f be the fraction of the overall N neurons of a local module that encodes a
specific stimulus (i.e. pattern); f measures the sparseness of the output firing
pattern and will be referred to as foreground activity. For simplicity, we consider
only the excitatory contribution since it is the only responsible for the emerging
auto-associative characteristics of the network. The connection between a pair
(i, j) within the network is a random variable J with distribution P(J). For sim-
plicity suppose that each neuron is excitatory, Jij ≥ 0. We will investigate the
stochastic properties of the synaptic matrix J in order to evince analytically the
conditions to express the SNR and the measure of information as a function of
the synaptic value distribution.

Information quantification

Consider the information conveyed by an autoassociative memory that can store
a number of patterns. In retrieving pattern µ-th, the network produces a distinct
firing pattern ξ. The similarity between ξµ and ξ can be measured by the average
mutual information

〈I(ξµ, ξ)〉 =
∑

ξµ,ξ

P(ξµ, ξ) log2 P(ξµ, ξ)/P(ξµ)P(ξ), (1)

where P(ξµ, ξ) is the joint probability of receiving ξµ and emitting ξ. Substituting
ξ in Eq.1 with ξi = f (

∑

j ξµ
j Jij) and in vectorial notation ξi = f (ξµ

Ji) for the
single i component, and ξ = {ξi} = {f (ξµ

Ji)} for the entire ξ pattern, where
f (.) is the activation function and Ji is the i-th column of the synaptic matrix
J leads to:

〈I(ξµ, ξ)〉 =
∑

ξµ P(ξµ, {f(ξµ
Ji)}) log2 P(ξµ, {f(ξµ

Ji)})/P(ξµ)P({f(ξµ
Ji)});

taking:
P(ξµ, ξ) = P(ξµ, {f(ξµ

Ji)}) ∝ P(J, ξµ), and for Bayes: P(J, ξµ) = P(J|ξµ)P(ξµ),
we can write:

〈̂I(ξµ, ξ)〉 =
∑

ξµ

P(J|ξµ)P(ξµ) log2 P(J|ξµ)P(ξ). (2)

Hence, 〈I(ξµ, ξ)〉 ∝ 〈̂I(ξµ, ξ)〉 is a measure of the mutual information dependent
of ξµ and J. We can investigate the stochastic properties of J in order to assert
the information content of a neural network with dependence of the different
connection strengths.



3 Stochastic implications of the synaptic values

To simplify the analysis we assume that the set of stable internal synaptic states
is discrete. The synapse dynamics can be described by a random walk confined
into two reflecting barriers, where the reflecting barriers are the saturation values
(i.e. the maximal and the minimal value) of the synapses. This random walk is
induced by the presentation of the sequence of the p uncorrelated stimuli. The
random walk can be formalized as a particular kind of Markov process. Let
MKJ be the probability that a synapse makes a transition from the internal
stable state K to the stable state J given p(ξi, ξj), which is the probability that
a stimulus imposes the activities ξi, ξj to the pair on neurons i, j (see e.g. Fusi
2002 [4]). The conditional distribution function pp(J |(ξ1

i , ξ1
j )) that a synapse is

in state J following the presentation of p patterns, the first of which imposed
ξ1
i , ξ1

j on the synapse, satisfies the equation:

pp(J |(ξ1
i , ξ1

j )) =

ns
∑

K=1

p1(K|(ξ1
i , ξ1

j ))M(p−1)
KJ , (3)

where the superscript (p − 1) indicates the rising power factor. K runs over
all the stable ns synaptic states. (3) states that after the presentation of p − 1
patterns we can still recall the p-th pattern which is, actually, the first pattern
shown to the system. Since this kind of dynamics is ergodic, for a large number
of presentations, the system will be independent of the first stimulus, and hence,
it will forget the first pattern [6, 5].

Simplifying the scenario

Reducing the random walk among the discrete states to the extreme situation in
which only two stable synapses are present, facilitates the analytical analysis of
the problem. Simulations [4] and experimental data [2, 7] have shown evidences
for such situation in long time scenarios. Accordingly, we will analyse MKJ (a
2x2 matrix), given by:

MKJ =

[

1 − α α
β 1 − β

]

, (4)

where α=q+f2 is the probability of a transition to the upper state given the
probability of being in the lower state when the pre- and post- synaptic neurons
are both active (i.e. f2), and β=q

−
f(1 − f) is the probability of a transition to

the lower state given the probability of being in the upper state when the pre-
and the post- synaptic neuron are respectively active and inactive or viceversa
(i.e. f(1−f)). Eq.(4) takes into account the distribution of the synapses given the
interference of the other patterns. This interference should be further analyzed by
introducing the correlation that can arise between random patterns that share
the same encoding neurons. In this simplified approach we will focus only on
Eq.(4) to investigate the synapse distribution, after having shown p−1 patterns,
independently of the specific activated fraction of neurons.



4 Searching for the solutions

In this paragraph we shall use two different quantification measures to test how
the distribution of the synaptic values modifies the retrievability of the stored
patterns and the information content.

SNR approach

SNR is a direct measure of the quality of retrieval of patterns embedded in
noise background. The immediate quantification regards the mean spiking rate
of a fraction of neurons among the entire system’s rate. If the spike rate arriv-
ing to each channel is low, but in an interval τ the number of arriving spikes
is high, due to the large number of input channels C, then the source of the
depolarization is Gaussian. To obtain an idea concerning the neuron’s output
rate, we will consider the simplified treatment of the spike emission process [1]
which is a good approximation of the full Integrate&Fire neuron when the spike
rates are much lower than 1/τ . In each of the integration time intervals τ the
depolarization is equal to the sum of unitary inputs Ji arriving in that inter-
vals. If the synaptic input to the neuron in the τ interval has mean µ and STD
σ and the threshold is θ, the probability that a spike is being emitted in the

time interval τ is: P(ν) =
∫ inf

θ
dI/(

√
2πσ(ν))e

−

(I−µ(ν))2

2σ(ν)2 ; if the output rate is
given by νout= P(ν)/τ , the mean µ and the STD σ of the afferent current is:
µ = JCντ ; σ = J

√

Cντ(1 + ∆2), being the value of the synapse STD equal to
∆ times J . Since the p.d.f. of the spike emission is Gaussian, the STD of the
firing rate distribution can be taken equal to the STD of the afferent current for
each neuron. The ratio between the σs and σn is a measure of SNR, where the
subscripts indicate s-ignal (i.e. all those neurons activated by the stimulus pre-
sentation and whose activity is in foreground with respect to the system activity)
or n-oise. Although ∆n is being modified by the learning process, in order to
obtain ∆s for the fraction f of neurons belonging to the specific pattern, in this
simplified approach we will assume that learning has been already carried out
and ∆s is proportional to ∆n. A more complete treatment of this dependence
upon MKJ is currently studied and it will be reported elsewhere. We shall plot

(see Fig.1a ) the SNR in dB: 20Log σs

σn
, where σs

σn
=

√
νs(1+∆2

s)√
νn(1+∆2

n)
for different values

of the ratios νs

νn
=α and of

1+∆2
s

1+∆2
n
=β.

Information theory approach

Let us recall the issues discussed in sections 2 and 3. The distribution of the
potentiated synapses may deviate from the extreme case (4) (depicted in section
2), and be distributed around the potentiated (i.e. J+) value and the depressed
value (i.e. 0). This case is practically what we expected from the distribution of a
sum of independent random variables1 as are the synapse values. For this reason
we may consider the distribution as a bi-Normal truncated distribution given
by: c0 = I(0, J+)(x)(φ0,σ2(x) + φJ+,σ2(x))/(2Φ(J + /σ) − 1), where φ and Φ are

1 i.e. law of large numbers and the central limit theorem
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Fig. 1. (a) SNR (dB) over the z-axis; α the ratio between the signal spiking rate and
the noise spiking rate over the x-axis; while over the y-axis, β a measure of the synapse
variance ratio between the foreground neurons and the background neurons. The func-
tion is monotonically increasing for increasing values of the independent variables over
the x, and y axes. (b) Average mutual information, which measures the quality of the
retrieval varying the STD (∆) of the synapses (x-axis) and the probability of depression
q
−

(y-axis) of synapses which bond background neurons not included in the stimulus
retrieval. The surface is obtained for f=1% and p=100

respectively a Gaussian probability distribution function and its corresponding
cumulative function. If the probability to have connectivity is given by C0, the
probability to have no connected synapses is 1 − C0.

We search for the probability to retrieve the first pattern given p−1 patterns
already shown. Substituting p1(K|(ξ1

i , ξ1
j )) in (3) with [1−C0 C0] which is the

vector of the initial probabilities, considering MKJ in (4), being λ = 1 − α − β
the smallest eigen-value of (4), and after some mathematics, we obtain:

p(J|ξ1) = π0 + λp−1(C0 − π0), (5)

where π0 = α/(α + β) = q+/(q+ + q
−

( 1
f
− 1)) is the asymptotical distribution

as λp−1 fades to zero as p increases, and where λ is the smallest eigenvalue.
Substituting (5) in (2) and considering that since ξ1 is every possible pattern
within the set of p − 1 patterns, its probability is 1

p−1 ; in the same way we can

take P(ξ)=f . Since λ ∼ 1 − fq
−

, since p(J|ξ1) does not significantly depend on
variations of q+ in the range of [0 1], and if f=1% and p=100, in Fig.1b 〈̂I(ξµ, ξ)〉
is plotted against ∆ over the x-axis and q

−
over the y-axis.

5 Discussion and Conclusion

The SNR analysis and the information theory approach may reveal different situ-
ations upon which the retrieval of a pattern can depend. The SNR quantification
enables investigation of the influence of the background noise firing rate on the



retrieval capability of the system. It was shown that, even when the firing rates
of the foreground and of the background neurons are equal, the pattern can how-
ever be retrieved if the variance of the synaptic connections, within the fraction
of the neurons participating to retrieval of the pattern, is increased. Moreover,
the information quantification approach revealed the dependency upon the bi-
ological compatible values of the probability to have long term modifications.
However, this demonstrates that for increasing values of the variance of the
synaptic connections within a specific fraction of pattern-stimulated neurons,
information increases within a specific range. The mutual information function
in Fig.1b clearly shows an upper bound to which corresponds the highest qual-
ity retrieval. It is interesting to note that for values of ∆ ∼ 0, in order to have
maximal information content it is important to have high probability of depress-
ing the synapses that connect the background to the foreground neurons and
viceversa. In this case only strong connections within the foreground neurons
and weak connections between the background and the foreground neurons can
elicit high quality retrieval of the specific pattern; in this case we fall back into
the bistable synapse assumption.

Acknowledgements Many thanks to S. Fusi and G. Mongillo for useful discussions.

References

[1] DJ Amit and N Brunel, Model of global spontaneous activity and local structured

activity during delay periods in the cerebral cortex, Cerebral Cortex 7 (1997), 237–
252.

[2] TVP Bliss and GL Collingridge, A synaptic model of memory: long term potentia-

tion in the hippocampus, Nature 361 (1993), 31–39.
[3] GM Edelman, Group selection as the basis for higher brain function, in The Orga-

nization of the Cerebral Cortex, Schmitt F.O., Worden F.G., Adelman G., Dennis
S.G. eds., Cambridge, Mass. MIT Press, London, 1981.

[4] S Fusi, Hebbian spike-driven synaptic plasticity for learning patterns of mean firing

rates, Biological Cybernetics 17 (2002), 305–317.
[5] JP Nadal, G Toulouse, JP Changeux, and S Dehaene, Network of formal neurons

and memory palimpsests, Europhys. Lett. 1 (1986), 535–542.
[6] G Parisi, A memory which forgets, J. Phys, A: Math Gen 19 (1986), 617–619.
[7] CCH Petersen, RC Malenka, RA Nicoll, and JJ Hopfield, All-or-none potentiation

at CA3-CA1 synapses, Proc. Natl. Acad. Sci 95 (1998), 4732–4737.


