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Abstract—In this paper we are to find the optimum

multiwavelet for compression of electrocardiogram (ECG) 

signals and then, selecting it for using with SPIHT codec. At 

present, it is not well known which multiwavelet is the best 

choice for optimum compression of ECG. In this work, we 

examine different multiwavelets on 24 sets of ECG data with 

entirely different characteristics, selected from MIT-BIH

database. For assessing the functionality of the different 

multiwavelets in compressing ECG signals, in addition to

known factors such as Compression Ratio (CR), Percent Root

Difference (PRD), Distortion (D), Root Mean Square Error 

(RMSE) in compression literature, we also employed the Cross 

Correlation (CC) criterion for studying the morphological

relations between the reconstructed and the original ECG signal 

and Signal to reconstruction Noise Ratio (SNR). The simulation

results show that the Cardinal Balanced Multiwavelet 

(cardbal2) by the means of identity (Id) prefiltering method to

be the best effective transformation. After finding the most 

efficient multiwavelet, we apply SPIHT coding algorithm on 

the transformed signal by this multiwavelet.

Keywords— ECG compression, Prefiltering, Cardinal 

Balanced Multiwavelet.

I. INTRODUCTION

om

im

pressing biological signals, especially ECG has an

portant role in diagnosis, taking care of patients

and signal transfer through communication lines.

Therefore, ECG data compression has been one of the

most active research areas in biomedical engineering.

Techniques for ECG compression which have been 

reported in the literature  fall mainly into two categories:

(1) direct compression such as Amplitude-Zone-Time

Epoch Coding (AZTEC) method, the coordinate 

reduction time coding system (CORTES), turning point

(TP) technique, Scan-Along Polygonal Approximation

(SAPA), and the long–term prediction (LTP), differential

pulse code modulation (DPCM), (2) transformational

methods such as Fourier transform, Walsh Transform,

Karhunen-Loeve Transform (KLT) and Wavelet

Transform (WT). In most cases, direct methods are 

superior to transform methods with respect to system

simplicity and error. However, transform methods usually

achieve higher compression rates and are insensitive to

noise contained in original ECG signal [1].
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Among the methods mentioned above, wavelet

transform is an efficient tool in signal processing aimed

at compressing ECG signals, detection of QRS complex,

analysis of ventricular late potential, etc. The purpose of

this paper is to employ the multiwavelet as an extension

of wavelet for ECG compression. The primary results of 

applying multiwavelets in signal processing [2,3,4,5],

compression [4,6,7] and noise elimination [4,8,9] indicate

the superiority of multiwavelet to wavelet. By comparing

compression results, we choose the one which has the

best results. After applying multiwavelet transform on

ECG signal, we encode the transform coefficients by 

SPIHT coding algorithm, which has shown superior

results in image compression [16] and wavelet

compression of ECG signals [15].

II. MULTIWAVELET

A. A Brief History of Multiwavelet

Multiwavelets constitute a new chapter which has been

added to wavelet theory in recent years. Recently, much

interest has been generated in the study of the

multiwavelets, where more than one scaling function and

mother wavelet are used to represent a given signal.

The first construction for polynomial multiwavelet was 

given by Alpert, who used them as a basis for the

representation of certain operators. Later, Geronimo,

Hardin and Massopust constructed a multi-scaling

function with 2 components using fractal interpolation.

In [10], multiwavelets based on Cardinal Hermite

splines were constructed. In spite of the many theoretical

results on multiwavelet, their successful applications to 

various problem in signal processing are still limited.

Unlike scalar wavelets, in which Mallat's pyramid

algorithm have provided a solution for good signal

decomposition and reconstruction, a good framework for

the application of the multiwavelet is still not available.

Nevertheless, several researchers have proposed method

of how to apply a given multiwavelet filter for signal and

image decomposition. For example, Xia et al [10, 11]

have proposed new algorithm to compute multiwavelet

transform coefficients by using appropriate pre- and post-

filtering filters, and have indicated that the energy

compaction for discrete multiwavelet transform may be

C
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better than that obtained using conventional discrete

scalar wavelet transforms.

So, based on problems mentioned above, finding a 

multiwavelet that has the most energy compaction is an

important subject in signal compression. Our motivation

in this work is to find multiwavelet that has the best

energy compaction for different ECG signals.

B. Multi-scaling Functions and Multiwavelets 

The concept of multi-resolution analysis can be 

extended from the scalar case to general dimension

. A vector valued function

belonging to ,  is 

called a multi-scaling function if the sequence of closed

spaces:

r

1 2

T

r= 2( )rL r

( ){ }22 2 . : 1 ,
j

j
j iV span k i r k=     (1)

for  constitute a multi-resolution analysis (MRA) of

multiplicity r for . The multi-scaling function must

satisfy the two-scale dilation equation:

j

2( )L

( ) 2 (2 )k

k

t = G t k                  (2) 

Now let Wj denote a complementary space of Vj in Vj+1.

The vector valued function such

that:

1 2

T

r=

( )22 2 . : 1 ,j
j i

j
W span k i r k=     (3) 

for is called a multiwavelet. Multi-scaling and

multiwavelet functions must satisfy the two-scale

equation:

j

( ) 2 (2 )k
k

t = H t k                 (4) 

where is an r  matrix of

coefficients [4, 9]. The two-scale equation (2) and (4) can

be realized as a multi filterbank  operating on r input data

streams and filtering them in two 2r output data stream,

each of which is down-sampled by a factor two. If we

denote by a given signal and assume that ,

then

2( )r rk Z L ×
H r×

( )x t 0( )x t V

0,( ) 2 ( )T
k

k

x t t k= V                         (5) 

and the scaling coefficient of the first level can be

considered as a result of lowpass multi-filtering and

down-sampling:

1,kV

                          (6) 1, 2 0,k m k

m

=V G V m

m

1,

Analogously, the first level multiwavelet coefficients 

 are obtained using high-pass multi-filtering and

down-sampling:

1,kW

                         (7) 1, 2 0,k m k

m

=W H V

Full multiwavelet decomposition of the signal  can 

be found by iterative filtering of the scaling coefficient: 

( )x t

, 2j k m k j

m

=V G V m

1,

                        (8) 

, 2j k m k j

m

=W H V m                        (9) 

Note that ,j kV  and ,j kW are  column vectors. 1r ×

C.Multiwavelet in Comparison with Wavelet

The multiwavelet idea originates from the

generalization of scalar wavelets; Instead of one scaling

function and one wavelet, multiple scaling functions and

wavelets are used. This leads to more degree of freedom

in constructing wavelets. Therefore opposed to scalar

wavelets, properties such as compact support,

orthogonality, symmetry, vanishing moments and short 

support can be gathered simultaneously in multiwavelets,

which are fundamental in signal processing [4, 5].

The increase in degree of freedom in multiwavelets is 

obtained at the expense of replacing scalars with

matrices, scalar functions with vector functions and

single matrices with block of matrices. However, 

prefiltering is an essential task which should be

performed for any use of multiwavelet in the signal

processing [4, 12].

D.Prefiltering of the Data

One of the challenges in realizing multiwavelets is the

efficient prefiltering. In the case of scalar wavelets, the

given signal data are usually assumed to be the scaling

coefficients that are sampled at a certain resolution, and

hence, we directly apply multi-resolution decomposition

on the given signal. But the same technique can not be 

employed directly in the multiwavelet setting and some

prefiltering has to be performed on the input signal prior 

to multiwavelet decomposition. The type of the

prefiltering employed is critical for the success of the 

results obtained in application

There could be infinitely many ways to do such 

prefiltering. There exist well known prefilters in literature

[11, 13, 14]. The most obvious way to get second input

row is just to repeat the first one and use two identical

rows of length n.

A different way to get the input rows for the

multiwavelet filterbank is to preprocess the given scalar 

signal f(n). In our implementation, first we refer to 

repeated row (rr) and second we refer to approximation

prefilter (app).

For the balanced multiwavelet, the identity (ID) 

prefilter is used. This prefilter just separates the input 

data in two streams: one consisting of even numbered

samples, the other consisting of odd numbered samples.
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III. COMPRESSION METHOD

A. Multiwavelet Decomposition

The goal of this section is to apply nine multiwavelets

with prefiltering mentioned above on ECG signals. We

retain the same number of largest coefficients for each 

multiwavelet, and then invert the algorithm to reconstruct

the signal and measure the performance of each

multiwavelet by assessment criteria. All of our tests are

applied on the first 2048 samples of the Lead I from

MIT-BIH records 100, 101, 102, 103, 104, 105, 106, 107,

118, 119, 200, 201, 202, 203, 205, 207, 208, 209, 210, 

212, 214, 215, 217, 219. A simple threshold compression

method has been applied based on the following steps:

1) prefiltering and multiwavelet decomposition up to

6 levels.

2) keeping the first N largest coefficients of the

decomposition.

3) reconstruction from N coefficients. 

For simplicity, we have considered N = 125, 

corresponding to compression ratios of 16.384 for all

signals.

B. Assessment Criteria 

An ECG compression algorithm is judged by its ability

to minimize the distortion while retaining all significant

features of the signal. The distortion in reconstruction has 

been computed by means of the following formula:
2

2
D or re

or

x x

x
=

where  is the original signal and  is the

reconstructed signal.

orx rex

Another method that can be used to measure distortion

is PRD. So  and  are signals of length N, PRD 

can be defined as:
orx rex

( )

( )

2

2
PRD 100%

or re

or

x x

x
= ×

Another criterion we use for measuring distortion is

RMSE. In data compression, we are interested in finding

an optimal approximation for minimizing this criterion as 

defined by the following formula:

( )
2

1

1
RMSE

N

or re
i

x x
N =

=

However, since the similarity between the reconstructed

and original signal is very important from the clinical

point of view, the CC is employed to evaluate the

similarity between the original signal and its reproduced

version, defined as:

( )( )

( ) ( )

1

22

1 1

1
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1 1

N

i i
i

N N

i i
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N

x x y y
N N

=

= =

=

where  and are the samples of the original signal

and its reproduced version,

ix iy

x and y  are their average 

values, respectively. 

Another criterion that is used here is SNR and is given

by:

ˆ
SNR 20log

ˆ
or

or re

x

x x
=            (dB) 

 where  denotes the standard deviation estimator. In 

signal processing we are interested in finding an optimal

approximation for maximizing this criterion.

ˆ

After testing different multiwavelets and assessing their

performances in ECG compression (with respect to

indexes such as D, PRD, CC,), we choose that which has

the best performance and use it along with the SPIHT 

coding algorithm. The reason for using codec is firstly to

obtain more data reduction. But we must do a tradeoff

between the complexity of codec and the increase in CR

we gain. Secondly, by some coding  methods (such as 

what we use here, SPIHT) we obtain the coded transform

coefficients as a simple bit stream, which is very more

efficient for transmission, in comparison with raw

coefficients that should be treated as, for example, 32-bit

double numbers.

IV. SPIHT CODING ALGORITHM

A. Embedded Coding

In this paper we use SPIHT coding algorithm for

coding multiwavelet transform coefficients of ECG 

signal. Set partitioning in hierarchical trees (SPIHT) is an

embedded coding technique. In an embedded coding

algorithm, all encodings of the same signal at lower bit

rates (than target rate) are embedded at the beginning of

the bit stream for the target bit rate. So we can use any 

amount of bits received for decoding, at a lower bit rate

that can be achieved when using the whole bit stream of 

the coded signal. Effectively, bits are ordered in

importance. This type of coding is especially useful for

progressive transmission and transmission over a noisy

channel. Using an embedded code, an encoder can

terminate the encoding process at any point, thereby 

allowing a target rate or distortion parameter to be met

exactly. Typically, some target parameters, such as bit

count, is monitored in the encoding process and when the

target is met, the encoding simply stops. Similarly, given

a bit stream, the decoder can cease decoding at any point

and can produce reconstruction corresponding to all

lower-rate encodings. 

Embedded coding is similar in spirit to binary finite

precision representations of real numbers. All real

numbers can be represented by a string of binary digits.

For each digit added to the right, more precision is added. 

Yet, encoding can cease at any time and provide the best

representation of the real number achievable within the

framework of the binary digit representation. Similarly,
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the embedded coder can cease at any time and provide 

the best representation of the signal achievable within its 

framework.

Embedded zerotrees of wavelet (EZW), introduced by

J. M. Shapiro [17] is an embedded coding algorithm for 

image compression. It works on discrete wavelet

transform coefficients of an image. It is very effective 

and computationally simple technique for image

compression. SPIHT algorithm introduced for image

compression in [16] is a refinement to EZW and uses its

principles of operation. These principles are partial

ordering of transform coefficients by magnitude with a

set partitioning sorting algorithm, ordered bit plane

transmission and exploitation of self-similarity across

different scales of an image wavelet transform. The 

partial ordering is done by comparing the transform

coefficients magnitudes with a set of octavely decreasing

thresholds. In fact, in this algorithm, a transmission

priority is assigned to each coefficient to be transmitted.

Using these rules, the encoder always transmits the most

significant bit to the decoder. SPIHT has even better

performance than EZW in image compression. In [15], 

SPIHT  algorithm is modified for 1-D signals and used 

for wavelet compression of ECG signals, that we call it 

1D-SPIHT. We apply it on multiwavelet coefficients of

ECG signal.

B. Details of SPIHT Algorithm

Here we explain the details of 1-D SPIHT based on 1D-

DWT coefficients of a signal. It’s directly applicable for 

multiwavelet transform coefficients. We directly apply

the 1D-SPIHT codec over the subband coefficients from

multiwavelet decomposition up to six levels. 1-D SPIHT

is one of the excellent embedded coding systems that

deserve great attention. In the 1-D SPIHT, the original

signal is first decomposed into several subbands by 1D-

DWT. Then a special tree structure called the spatial

orientation tree is defined according to the similarity

among coefficients across subbands. Such an orientation

tree represents the parent-offspring relationship among

these quadrate mirror filters (QMF) decomposition

subbands. We use arrows in Fig. 1 to illustrate the parent-

offspring relationship defined in the 1D-SPIHT and a 5-

level 1D-DWT is assumed. Each black dot in this figure

denotes a wavelet coefficient. 

In Fig. 1, the subbands are arranged from lowpass

subbands to highpass subbands. Let xi be any wavelet

coefficient and i denote its corresponding coordinate.

There are three important definitions in the 1D-SPIHT

parent-offspring relationship as shown in Fig. 2:

1) O(i): offspring O(i) represents the set of the 2

coefficients (as pointed by arrows) of next higher

subband from coefficient xi.

2) D(i): the descendent D(i) of coefficient xi is the set 

containing all offspring in all later subbands. 

3) L(i): a set defined by L(i) = D(i) - O(i)

We can observe in Fig. 1 that according to this 

relationship, one coefficient in the lowest frequency

subband (i.e. xL5) has no descendent in terms of 

orientation trees.

In order to exploit the self similarity during the 1D-

SPIHT coding process, several oriented trees are taken

from a wavelet transformed signal. Every tree is rooted as

the corresponding top-most lowpass subband. The 1D-

SPIHT algorithm assumes that each coefficient xi is a 

good predictor of the coefficients which are represented

by the subtree rooted by xi, i.e. D(i). the overall procedure 

is controlled by an attribute, which gives information on 

the significance of the coefficients. A coefficient of the 

wavelet transformed signal is significant with respect to a 

threshold k if its magnitude is larger than 2k. Otherwise 

it’s called insignificant with respect to the threshold k. It 

can be described as:

1, if 2
( )

0, otherwise

k
i

ik

x
S x =

where  denotes the significance of x( )k iS x i with respect

to a threshold k.

In the 1D-SPIHT, the wavelet coefficients are classified 

in three sets, namely the list of insignificant points (LIP) 

which contains the coordinate of those coefficients that

are insignificant with respect to the current threshold k,

the list of significant points (LSP) which contains the

coordinates of those coefficients that are significant with 

respect to k, and the list of insignificant sets (LIS) which

contains the coordinates of the roots of insignificant

subtrees. In addition, the contents of LIS are classified in 

types A and B, which represent the D(i) and L(i) cases, 

respectively. We use 22 steps to depict the overall 1D-

SPIHT coding process as follows:

(0) Initialization

Compute and output 2log max i
i

k x= ,

, where K denotes the number of 

DWT coefficients. 

0 i K

LSP=  and LIP=H, where H is a set of all roots

coordinates in the top-most lowpass subband. 

Add all elements i  with  to LIS

as type-A entries.

H ( )D i

(1) Sorting pass

(2) For each i LIP

(3) Output ;( )k iS x

(4) If , then( ) 1k iS x =

move i to LSP and output the sign of xi;

(5) For each i LIS

(6)   If i is of type-A then

(7) Output ;( ( ))kS D i

(8) If  then( ( )) 1kS D i =

(9)     For each ( )j O i
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XL5

XH5

XH4

XH3

XH2

XH1

Fig. 1- A 5-level 1D-DWT spatial orientation tree of the SPIHT.

(10)      Output ;( )k jS x

(11)      If  then( ) 1k jS x =

Add j to LSP and output the sign of 

xj;

(12)      else append j to LIP; 

(13)      if  then( )L i

(14) move i to the end of LIS as an entry 

of  type-B and go to step (5);

(15)      else remove i from LIS

(16)   if i is of type-B then

(17)    output ;( ( ))kS L i

(18)    if  then( ( )) 1kS L i =

(19) append each  to LIS as an entry 

of type-A and remove i from LIS;

( )j O i

(20) Refinement pass

For each LSP except those included in the 

sorting pass, output the kth bit of | x

i

i |; 

(21) If  then end; else and go to step 

(1).

0k = 1k k=

In the 1D-SPIHT, wavelet coefficients are arranged in a

parent-offspring orientation tree in order to exploit the

spatial self-similarity property of wavelet coefficients

across subbands. The property implies that if a node

coefficient is insignificant with respect to a given

threshold, probably all nodes descending from that are

insignificant too.

V. RESULTS AND DISCUSSION

We applied nine multiwavelets on a set of 24 records

from MIT-BIH database (see sec. III-A). The results are

displayed in Table I, presenting the average RPD, D and 

CC calculated for each multiwavelet for the 24 different 

records. As observed from these results, cardbal2 by the

means of Id prefiltering method exhibits the best results 

comparing the others.

In order to investigate the effect of compressing ECG 

signals using the cardbal2 by the means of Id prefilter

(keeping N largest coefficients and discarding others,

then reconstructing the signal) from the clinical point of 

view, three waveforms including original and 

reconstructed waveforms and difference between original

and reconstructed signal (error) of records 107, 119 and

219 are shown in Figs. 3, 4 and 5, respectively. Note that

reconstructed ECG signals are smoothed versions of the

original signals, but error increases when the original 

signal changes abruptly.

As mentioned above, the cardbal2 multiwavelet has 

best performance in ECG compression, so we use it for 

taking multiwavelet transform from ECG signal and then

apply SPIHT coding algorithm on the transform

coefficients.

xi

O i( )

L i( )

D i( )

Fig. 2 - The definition of parent-offspring relationship in 1-D SPIHT
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TABLE I. SUMMARY OF COMPRESSION RESULTS. PRD AND CC ARE IN PERCENT

Muliwavelet PRD CC D RMSE SNR (dB) 

GHM 1 10.199464 98.988928 1.2055274e-002 0.043585007 17.6

GHM 2 10.442661 98.922792 1.2616885e-002 0.044773102 17.9

CL 1 9.3516668 99.145806 1.0522501e-002 0.040056692 18.9

CL 2 9.1507510 99.192476 9.9911897e-003 0.039211513 18.7

SA4 1 9.6601638 99.102202 1.0957484e-002 0.041052841 18.9

SA4 2 9.2169610 99.166599 1.0220815e-002 0.038997280 18.4

bih52s 1 11.212887 98.710719 1.6118575e-002 0.047393910 17.0

bih52s 2 11.682872 98.589613 1.7440181e-002 0.049827301 17.3

bih54n 1 97.075842 99.053456 1.2457205e-002 0.041163568 18.8

bih54n 2 10.555499 98.884445 1.4600110e-002 0.044330958 18.7

bighm2 1 34.906194 91.819611 1.4646049e-001 0.14521119 6.1

bighm2 2 48.399680 85.512920 2.7072476e-001 0.19750880 8.4

Cardbal4 3 8.9235645 99.224869 9.5386841e-003 0.038196125 19.1

Cardbal3 3 9.0019501 99.208416 9.7816903e-003 0.038472232 19.0

Cardbal2 3 8.8986281 99.230226 9.4111670e-003 0.038030973 19.1

1 prefiltered with rr       2 prefiltered with app 3 prefiltered with Id

Fig. 3 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above figure shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 107 are used.

CR=16.384, PRD=7.8842%, CC=99.6612%, D=0.006216.

Fig. 4 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above figure shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 119 are used.

CR=16.384, PRD=4.0136%, CC=99.6335%, D=0.0016109,

RMSE=0.039487, SNR=21.3 (dB)RMSE=0.069803, SNR=21.6 (dB)

Fig. 5 – Compressing ECG using the cardbal2 with Id prefiltering method.

The above figure shows the original signal, the middle shows reconstructed

signal after compression and the bottom shows error between them. The

first 2048 samples of MIT-BIH record 219 are used. CR=16.384,

PRD=5.774%, CC=99.5286%, D=0.0033339, RMSE=0.043508,

SNR=20.2 (dB)

We do similar multiwavelet decomposition, explained

in sec. III-A, and then apply SPIHT on the coefficients.

The stop criterion for encoder is controlled by a threshold

value in the program, that allows obtaining the desired

CR. By decoding the bit stream code generated by

encoder, we reach to multiwavelet coefficients of signal 

and by taking inverse multiwavelet transform, we obtain

reconstructed signal. For computing CR, we divide the

original file size by the length of SPIHT coded bit stream.

The results of applying the cardbal2 multiwavelet with

SPIHT coding algorithm to records 117, 119 and 100 are 

shown in Figs. 6 to 14. In each figure, the original and

reconstructed signals and difference between them (error) 

is plotted. The values of CR and PRD is also shown in

figures. Figs. 6-8 show the result of ECG compression

for record 117 with three different CRs. Figs 9-11 show 

the results for record 119 with three different CRs and

Figs. 12-14 show the results for record 100. From these

figures we see the higher CR obtained by applying

SPIHT codec. For example in Fig. 4 we have 
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Original Signal MIT-BIH Record:117
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Reconstructed Signal CR=14.2374, PRD=0.3987
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Fig 6 - Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 117 are used.

CR=14.2374, PRD=0.3987%.
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Reconstructed Signal CR=20.5559, PRD=0.5816
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Fig. 7 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 117 are used.

CR=20.5559, PRD=0.5816%.
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Fig. 8 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 117 are used.

CR=8.4714, PRD=0.2440%.
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Fig. 9 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 119 are used.

CR=8.7592, PRD=0.3644%.
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Fig. 10 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 119 are used.

CR=13.9180, PRD=0.6794%.
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Fig. 11 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 119 are used.

CR=20.5337, PRD=0.1.2464%.
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Fig. 12 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 100 are used.

CR=8.8041, PRD=0.2284%.
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Fig. 13 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 100 are used.

CR=13.0991, PRD=0.3734%.

100 200 300 400 500 600 700 800 900 1000
900

1000

1100

1200

Original Signal MIT-BIH Record:100

100 200 300 400 500 600 700 800 900 1000
900

1000

1100

1200

Reconstructed Signal CR=20.0919, PRD=0.6929

0 100 200 300 400 500 600 700 800 900 1000

-50

0

50

error

Fig. 14 – Compressing ECG using the cardbal2 with Id prefiltering 

method. The above plot shows the original signal, the middle shows 

reconstructed signal after compression and the bottom shows error

between them. The first 2048 samples of MIT-BIH record 100 are used.

CR=20.0919, PRD=0.6929%.

reconstructed record 119 with CR=16.384 and 

PRD=4.01%, but in Fig. 10, with a close CR to this value

(CR=13.918) we have a much lower PRD, which is

0.6794%. Other results show that just by increasing CR

to very high values we obtain a PRD near previous values

(between 5% to 10%). 

VI. CONCLUSION

In this paper, we studied the optimum multiwavelet

for compressing the ECG signal with respect to some

assessment criteria and found that cardbal2 has the best

performance. Then we applied it with SPIHT codec to

three records from MIT-BIH database and investigate the

results. It should be noted that a further improvement in

results may be achieved with other multiwavelet bases

and new prefiltering approaches. In this paper we only

used inter-beat dependencies. For future work we are 

going to construct 2D-ECG array from one dimensional

ECG toward using intra-beat and inter-beat dependencies

to achieve maximum data compression.
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