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ABSTRACT

Recurrent networks that perform a winner-take-all computation
have been studied extensively. Although some of these studies
include spiking networks, they consider only analog inputs.

We present results from an analog VLSI implementation of
a winner-take-all network that receives spike trains as input. We
show how we can configure the connectivity in the network so
that the winner will be selected after a pre-determined number of
input spikes. To reduce the effect of transistor mismatch on the
network operation, we use bursts of input spikes to compensate
for this mismatch. The chip with a network of 64 integrate-and-
fire neurons can reliably detect the winning neuron, that is, the
neuron that receives spikes with the shortest inter-spike interval.

1. INTRODUCTION

Recurrent networks that perform a winner-take-all computation are
of great interest because of the computational power they offer.
They can be used to model attention and recognition processes in
cortex and are thought to be a basic building block of the cortical
microcircuit [2]. Descriptions of theoretical models [3] and analog
VLSI (aVLSI) implementations of these models [4] can be found
in the literature. Although the competition mechanism in these
models uses spike signals, they usually consider the external input
to the network to be either an analog input current or an analog
value that represents the spike rate.

We describe the operation and connectivity of a winner-take-
all network that receives input spikes. We consider the case of the
hard winner-take-all mode, where only the winning neuron is ac-
tive and all other neurons are suppressed. In Section 3, we will dis-
cuss a scheme for setting the excitatory and inhibitory weights of
the network so that the winner which receives input with the short-
est inter-spike interval is selected after a pre-determined number
of input spikes. The winner can be selected with as few as two
input spikes, making the selection process fast [3].

We implement this network on an aVLSI chip with 64 integrate-
and-fire neurons and various synapses. The current implementa-
tion of this network has large mismatch in the transistors of the in-
put synapses. To reduce the effect of this mismatch on the winner-
take-all operation, we use a spike coding mismatch compensation
procedure to store the individual synaptic weights. This procedure
is described in Section 4. Once the network is calibrated, it reliably
detects the winning neuron. We present results for the discrimina-
tion capability of the network in Section 5.
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2. CONNECTIVITY

A possible connectivity for a winner-take-all network is shown in
Figure 1. The network containsN identical spiking neurons. Each
neuron receives external input spikes. It inhibits all other neu-
rons and has self-excitation. The weights represent changes in the
membrane potential of the neuron during a spike.

Figure 1: Connectivity of the winner-take-all network. Black cir-
cles: neurons (six shown); dark grey: bi-directional inhibitory con-
nections of synaptic weightVI ; black arrows: self excitation of
synaptic weightVself .

We implement the network using an aVLSI chip which has a
network of 64 integrate-and-fire neurons and circuits for commu-
nicating spikes on- and off-chip using an asynchronous transmis-
sion protocol (AER). When a neuron spikes, the chip outputs the
address of this neuron (or spike) onto a common digital bus (see
Figure 2). An external spike interface module (consisting of a cus-
tom computer board that can be programmed through the PCI bus)
receives the incoming spikes from the chip, and retransmits spikes
back to the chip using information stored in a routing table. This
module can also monitor spike trains from the chip and send spikes
from a stored list. Through this module and the AER protocol, we
implement the connectivity needed for the winner-take-all network
in Figure 1. We do not make use of any on-chip connections in this
work. All components have been used and described in previous
work (e.g. [5, 1]).

3. NETWORK CONNECTIVITY CONSTRAINTS FOR A
WINNER-TAKE-ALL MODE

We first discuss the conditions under which a network operating in
a hard winner-take-all mode will select the winning neuron after
receiving a pre-determined number of input spikes. The winning
neuron is the one receiving the input with the smallest inter-spike
interval. For this analysis, we consider only the case where the
neurons receive regular spiking inputs. Assume that all neurons



Figure 2: The connections are implemented by transmitting spikes
over a common bus (grey arrows). Spikes from aVLSI neurons
in the network are recorded by the digital interface and can be
monitored and rerouted to any neuron in the array. Additionally,
externally generated spike trains can be transmitted to the array.

Figure 3: Membrane potential of the winning neuronk (a) and an-
other neuron in the array (b). Black bars show the times of input
spikes. Trace shows the changes in the membrane membrane po-
tential caused by the various synaptic weights. Black dots shows
the times of output spikes of neuronk.

i ∈ 1 . . . N receive excitatory input spike trains of constant fre-
quencyri. Neuronk receives the highest input frequency (rk >
ri ∀ i 6=k). Every neuron will inhibit all other neurons when it
produces a spike. Each excitatory or inhibitory input spike causes
a fixed discontinuous jumpVE or VI in the membrane potentialVi

of the neurons. The time course of the synaptic currents and the
transmission delay of the spikes are neglected. A neuron spikes
whenVi ≥ Vth, is reset toVi = 0, and receives a self-excitation
signal right after its own spike, resulting inVi =Vself . All poten-
tials satisfy0 ≤ Vi ≤ Vth, in particular, an inhibitory spike cannot
drive the membrane potential below 0. Schematic traces for neu-
ron k and another neuron are shown in Figure 3. The following
constraints have to be fulfilled if the network is to select a winner
after a pre-determined numbern of input spikes:

(a) Neuronk (the winning neuron) spikes only after receiving
nk = n input spikes that cause its membrane potential to exceed
threshold. After every spike, the neuron is reset toVself :

Vself + nkVE ≥ Vth (1)

(b) As soon as neuronk spikes once, no other neuroni 6= k
can spike because it receives an inhibitory spike from neuronk.
Another neuron can receive up ton spikes even if its input spike
frequency is lower than that of neuronk because the neuron is
reset toVself after a spike, as illustrated in Figure 3. The resulting
membrane voltage has to be smaller than before:

ni · VE ≤ nk · VE ≤ VI (2)

(c) If a neuronj other than neuronk spikes in the beginning,
there will be some time in the future when neuronk spikes and
becomes the winning neuron. From then on, the conditions (a) and
(b) hold, so a neuronj 6=k can at most have a few transient spikes.

Let us assume that neuronsj andk spike with almost the same
frequency (butrk > rj). For the inter-spike intervals∆i =1/ri

this means∆j>∆k. Since the spike trains are not synchronized,
an input spike to neuronk has a changing phase offsetφ from an
input spike of neuronj. At every output spike of neuronj, this
phase decreases by∆φ = nk(∆j−∆k) until φ < nk(∆j−∆k).
When this happens, neuronk receives(nk+1) input spikes before
neuronj spikes again and crosses threshold:

(nk + 1) · VE ≥ Vth (3)

We chooseVself =VE andVI =Vth to fulfill the inequalities (1)-
(3) and we adjustVE to achieve the desirednk.

Case (c) happens only under certain initial conditions, for ex-
ample whenVk�Vj or when neuronj initially received a spike
train of higher frequency than neuronk. If we incorporate a de-
cay of the membrane potential in the model, we can assume that
all membrane potentials are discharged (Vi = 0) at the onset of a
stimulus. In that case, neuronk will have the first output spike.

4. MISMATCH COMPENSATION

The neurons in our present aVLSI implementation of the winner-
take-all network show significant mismatch in the transistors of
the input synapses. This causes a large variation of the excitatory
synaptic weight, even though the weight is set by a global bias.
We will describe a procedure to compensate for the mismatch in
the synaptic weights and in the reset voltage of the neurons.

We characterize the mismatch on a functional level by stim-
ulating the neurons with a spike train of a constant frequency of
100Hz. We configured the number of input spikes needed for a
neuron to reach threshold to be 9. The raw spikes are postpro-
cessed to check for abnormal spike statistics. The vector of out-
put spike ratesr has a mean ofµr = 11.28Hz. On average a
neuron needs〈ni〉 = 8.86 input spikes to reach threshold. With
Vth = 1.5V, 〈VE〉 = Vth/〈ni〉 = 169mV. The standard variation
of the output rates isσr =11.69Hz and the coefficient of variation
CV = σr/µr = 103.7%. With this variation, the network always
select the neuron with the highest effective excitatory weight due
to mismatch as the winner (max(r)=42.5Hz). To select a differ-
ent neuron, we have to increase its input frequency tof · 100Hz
with 〈f〉= max(r)/µr ≈ 3.77. Obviously, the computational ca-
pability of the uncalibrated network is quite low. For other settings
of the neurons, the mismatch is even higher.

To compensate for the mismatch in the excitatory synapses,
we transmit a burst of spikes for each input spike to a neuron. This
compensation is done by repeating the same target address in the
routing table of the external spike interface module. We checked
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Figure 4: A burst of spikes sums on the membrane potential,
shown for 3 spikes. Top: one of the AER communication sig-
nals indicating that the chip has received a event from the inter-
face module (active low acknowledge signal of the chip); bottom:
membrane potential of the neuronVi.

that multiple spikes sum linearily on the membrane potential (Fig-
ure 4).

We vary the number of spikes in the burstmi for each neu-
ron until the neuron spikes with the desired output frequency. The
output frequency can only be an integer division of the input fre-
quency, because the neuron needs an integral number of spikes to
reach threshold. The global bias that sets the excitatory weight
has to be set to a lower value than in the uncalibrated case. We
used a simple algorithm to automatically adjustmi: If the out-
put frequency of the neuron is below the target frequency,mi is
incremented by one, otherwise it is decremented.

In the same way we compensate for the mismatch in the reset
mechanism of the neurons. Because of this mismatch, some neu-
rons are not completely discharged while others show a finite re-
fractory period (Figure 5). We use the internal reset mechanism of
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 Figure 5: Mismatch in the reset voltage of the neurons, shown for

some example traces. Some neurons are not completely discharged
while others show a refractory period.

the neurons to discharge the membrane potential by a small voltage
Vc (determined by the hysteresis capacitance, see [5] for a discus-
sion of the neuron circuit). We then send a burst ofpi inhibitory
spikes to a neuron once we receive the output spike of the neuron.
The number of spikespi is adjusted with the calibration algorithm
described earlier so that all neurons are reset to the same voltage
(Figure 6).

Figure 7 shows the resulting output firing rates. The mean
frequencyµr = 11.60Hz is approximately equal to the mean in
the uncalibrated case, but the standard deviation is now onlyσr =
1.006Hz, resulting in a coefficient of variation of8.6%.
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Figure 6: Compensation procedure of the reset voltage mismatch.
An output spike of the neuron (top) gets routed back as a burst of
5 spikes to the inhibitory synapse (middle), discharging the mem-
brane (bottom) to a defined reset voltage.

The weights of the inhibitory connections are calculated from
the reset voltage compensation, which decreases the membrane
potential byVth − Vc. We choose the inhibitory weight such that
the neuron is discharged byVI = Vth.

When the full connectivity of the network is enabled, an out-
put spike of a neuroni is translated into a large block of spikes:
Inhibitory spikes to reset the neuron, inhibitory spikes to all other
neurons and self-excitatory spikes. The total number of spikes is
approximately

si = pi +

N∑
k=1
k 6=i

qk + mi ≈ 750.

Because only the winner emits spikes and the communication is
fast, the spike interface module can transmit this block of spikes
without saturating the communication bus.

5. RESULTS

We characterized the discrimination capability of the winner-take-
all network by stimulating all neurons except one with a spike train
of a constant frequency of 100Hz. This single neuron received an
increased frequency off ·100Hz (Figure 8). For each neuron we
measured the minimum value off at which the network selects
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Figure 7: Output firing rates of the 8x8 neuron array, without (left)
and with (right) mismatch compensation. Each neuron is stimu-
lated with a constant input frequency of 100Hz. X/Y axis: neuron
address; bar height: spike rate.



this neuron as the winner and all other neurons are completely
suppressed. The network can discriminate an input of higher spike
rate if this frequency is at least by(f−1) ·100Hz higher than then
the other inputs.
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Figure 8: Input stimulus to the array (left) and winner-take-all out-
put (right). Each neuron is stimulated with a constant input fre-
quency of 100Hz, except one that receives an increased frequency
of f ·100Hz. This neuron suppresses all other neurons. X/Y axis:
neuron number; bar height: spike rate.

The histogram of the minimum factorsf for all neurons is
shown in Figure 9. On average, the network is sensitive to a dif-
ference in the input frequency of 10%. In the worst case, for the
neuron with the smallest excitatory weight, the frequency differ-
ence is 20%. Since we only use the timing information of the
spike trains, the results can be extended to other input frequencies.
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Figure 9: Discrimination capability of the winner-take-all net-
work. X-axis: factorf to which the input frequency of a neuron
has to be increased, compared to the input rate of the other neu-
rons, to select that neuron as the winner. Y-axis: histogram of all
64 neurons.

In this experiment, the parameters of the neurons were config-
ured to reach threshold after aboutnk =9 input spikes to demon-
strate the capability of the mismatch compensation, however, any
value ofnk is possible. For largenk, the input represents a rate-
code. Fornk = 1, the winner codes the latency of the input spike
trains. In this case, the delay of a spike after a global reset deter-
mines the strength of the signal. The winner is selected with the
first input spike to the network. If all neurons are discharged at
the onset of the stimulus, the network does not require the global
reset. In general, the computation is finished at a timenk·∆k after
stimulus onset.

6. DISCUSSION

We analysed the performance and behavior of a winner-take-all
network that receives input spike trains. The neuron that receives
spikes with the shortest inter-spike-interval is selected as the win-
ner after a pre-determined number of input spikes. Assuming a
non-leaky integrate-and-fire model neuron with constant synaptic
weights, we derived constraints for the strength of the inhibitory
connections and the self-excitatory connection of the neuron. A
large inhibitory synaptic weight is in agreement with previous anal-
ysis for analog inputs [3].

The assumption of a constant input frequency is too restricted.
We are currently extending our analysis to spike trains with Pois-
son distribution. In that analysis we will also use a leaky integrate-
and-fire neuron model and conductance-based synapses.

We described a spike-coding calibration procedure to compen-
sate for the mismatch in our chip. A burst of spikes is sent to
the neuron for each input spike from the spike interface module.
The number of spikes in a burst is equivalent to the weight of the
synapse. This procedure provides a simple solution to the long-
discussed storage of synaptic weights for aVLSI neurons com-
pared to analog techniques like floating-gate transistors.

We calibrated the excitatory synaptic weights, which could be
done simultaneously for all neurons at once using the spike inter-
face. For the calibration of the reset voltage, we had to measure the
analog membrane potential for each individual neuron. The next
chip revision will include an adjustable reset voltage that is not
sensitive to mismatch. The complete connectivity of the network
was implemented through the asynchronous spike interface mod-
ule. The calibration procedure results in a large number of spikes
(here:∼750) that have to be routed for each output spike. For a
network of 64 neurons, this load does not saturate the communi-
cation bus, but introduces jitter to the other spike trains since the
bus is blocked during this time. With an adjustable reset voltage
in the next chip version, we can implement an inhibitory connec-
tion with only one spike per target neuron, reducing the number of
spikes to 64. The results show that the aVLSI network can perform
a reliable winner-take-all computation.
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