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For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary
fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle
nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our
applications, data sets composed of structures from seven chemically distinct compound classes are evaluated
and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our
sequential superparamagnetic clustering approach.

I. INTRODUCTION in compliance with both the testing resources available and
Clustering is a fundamental process inherent to human the need to distribute these tests over the ensemble. For an

cognition and perception. In the scene analysis paradigm,appropriate distribution of tests, it is not the chemical space
humans classify (group together) perceptual information, to but the relevant compound property space that is of
develop a consistent picture of the environment. A priori, importance. Clustering is able to unbiasedly determine the
however, no information about the number of classes or classlatter.
sizes is available. Classes or clusters are seldom clear-cut Clustering based on this insight has been applied for the
entities, a fact that has been exploited in fuzzy logic prediction of physiochemical and biological properties of
implementations. However, clustering has an inherent hier- chemical compounds! the selection of diverse/representative
archical branching nature, as is shown by the simple examplecompounds or reagent sets for the design of combinatorial
of the partitioning of animals into species, subspecies, etc. libraries? compound acquisition selectiéri,and the com-
In our approach, we consider clustering to be a self-organizedpilation of screening sefsA recent application deals with
learning process. Although the partitioning into classes, asthe analysis of high-throughput and the profiling of screening
we will show, can be achieved in an unbiased way, it is the data®'° For clustering to be successful, an appropriate
optimal choice of the resolution that needs to be learned. In description of molecule structures and an adequate clustering
the latter aspect, we deal with a supervised learning approachalgorithm are both essential. Among the variety of methods,
In technical applications, clustering is often applied to the hierarchical Wardf; the nonhierarchical Jarvis-Patriék,
inhomogeneous sets of items that are represented as datand the K-means relocation meth&tsave become popular,
points in a high-dimensional space. Given an appropriate mostly based on fingerprint descriptdfsin chemical
measure of similarity in the form of a distance measure applications (separation of known actives and inactives,
between points, the clustering approach then aims at iden-property prediction, and diversity selection), Ward's method
tifying the clusters made up of similar data points. The clearly outperforms the other twd:'41°Structural classes
rationale for classification and clustering lies in the similar- with very different shapes, densities, or sizes, however,
property principle. It states that structurally similar objects present a problem to Ward’s method. Due to these inhomo-
tend to have similar properties. geneities, the algorithm fails to properly discriminate classes.

In chemistry, the clustering of substances is therefore of We introduce a modified superparamagnetic clustering
central interest. Given a molecule of known properties, approach that is not affected by these problems. Superpara-
compounds that are structurally similar are likely to exhibit magnetic clustering!’ is based on the statistical, thermo-
similar propertied. An important scientific question is to what  dynamical, description of the interactions between ferro-
extent criteria used to describe substances are “natural” andmagnetic Potts spin particles. Our comparison with Ward
“efficient” and “pave the way towards new discoveries”. clustering will be based on a model system composed of
Economically, particularly in drug testing, the identification well-defined chemical structural classes. ISIS count, ISIS
of “natural” classes is of paramount importance. If the classesbinary keys'®*° and Similog 2D pharmacophore triplets
are optimally chosen, efficient testing can be organized. This hologram descriptof$ are the inputs for the similarity
can be achieved by imposing a clustering resolution that is measure. One advantage of the new method is that it
intrinsically provides the possibility to determine the optimal

* Corresponding author phonet0041 1 635 3063; fax:t00411635  number of clusters, i.e., a natural clustering level. With the
3025, e-mail. ruedi@ini.phys.ethz.ch. hierarchical Ward method the best level can only be

T Institute for Neuroinformatics. a e . -
* Novartis Institutes for Biomedical Research. determined a posteriori (using, for instance, the Kelley

10.1021/ci049905¢c CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/04/2004



SUPERPARAMAGNETIC CLUSTERING OF CHEMICAL STRUCTURES J. Chem. Inf. Comput. Sci., Vol. 44, No. 4, 200859

measur®2). We will show that sequential superparamag- similar points. A parameteF, the temperature, controls the

netic clustering clearly outperforms Ward's method. desired resolution of the clustering. It provides us the
possibility to choose between different levels in a cluster
Il. MATERIALS AND METHOD hierarchy.

Potts spin systems are described within the framework of
_statistical mechanics. There the system is embedded in a heat
reservoir, thus the formalism of canonical ensembles can be
applied in order to determine a system’s possible states and
their respective probabilities. The temperatlirie a control
parameter, determining the average energy per degree of

A. Similarity Measure. Chemical fingerprint descriptors
lead to a representation of chemical substances by high
dimensional, binary or integer-valued, feature vectors. For
instance, ISIS keys provide information about the presence
or absence of 166 predefined structural features. Other

fingerprint types, such as ISIS count and Similog keys, also . > 9%
include information on the abundance of these features.freedom of the system. Aligned spins minimize the energy

Nontrivial questions include assessing to what extent the and, thus, naturally reflect small temper'atures. Accordingly,

chosen fingerprints are able to represent the structure and©" Small temperatures, the system is in the ferromagnetic

chemical properties. As a measure for the similarity of two Phase, where all spins are likely to be aligned. Upon a slow

fingerprint vectors, the Euclidian distance seems natural ang'ncrease of the temperature, the tenpiency of spins to he
is, in fact, widely used. The Euclidian distance measure, ?‘"gned decreases_, which reerch the h|gh§r energy contained
however, has a few shortcomings that, in connection with in the system. This, ho'v.vever,'ls not achieved in a smooth
particular fingerprints, can lead to a complete failure of any manner. Instead, transition points occur, where the general
clustering algorithm: Assume that from a set of substances Stat€ Of the system (the phase) changes abruptly. For
described by binary ISIS keys, two chemical structures differ homogengous systems, where all spspin couplings are

by only two structural features. This means that the associatedfdu@; @ single transition from the ordered ferromagnetic to
binary fingerprint vectors differ in exactly two components.

the disordered paramagnetic phase is observed. In the
Two extreme cases can be imagined: (a) The two structuresP@r@magnetic phase, single spins behave almost indepen-
each have exactly one distinct structural feature (implying

dently, and spin alignment becomes a random process. For
that only one component of each vector is nonzero and the

inhomogeneous systems, the picture can be much more
places of these nonzero entries are distinct). In this case, the@MPlicated: Between the ferromagnetic and paramagnetic
two substances are structurally distinct, and their Euclidian

phases, a superparamagnetic phase may occur, where local
o . clusters of aligned spins emerge. These clusters correspond
separation i8/2. (b) Both structures e>_<h|b|t all key fea_tures to regions Witr? strong spin Cougling. Upon a further incregse
but one, Wher_e the respective exceptions occur for d|fferenti the temperature, local clusters may break up into smaller
features. In this case, both substances share many structura':ﬂust(_}rS in cascades of transitions
features; the Euclidian separation, however, still evaluates The ir,nplementation of this appro.ach proceeds along the
to v2: .A good distance measure, hawever, should .be following lines: To each data vectay; a Potts-spin variable
susceptible to the number of shared structural features, |.e.,S is assigned, which may take valugse {1,...q}. The
f/o t?er nutrr?begir(])frno$2ﬁirrc])1 \{[ector ?fci)rinépnﬂsnts:[hli:orint;mary number of Potts statesis largely arbitrary and in no way
ecto S,’[ Te | ary 1a tofo c_:ote ¢ | e; St 0 connected with the vector length xf The choice of] does
afgogge' thgfcfhio 'ﬁccrggg'f'c(;rt'(lgz-e?:?)rr-\t/ag'emevee?.o;'ev(\jle not affect the occurrence of clusters. It mostly affects the
pec[t)orsa andb oWIr S’m'larl'tl mleaé e 'sW integer-valu extentof the phases of stable clusters over the temperature
v » our simiiarity uret range. For a largeg, the superparamagnetic phase shrinks
and the transitions sharpé&hwhich may be of advantage

z min(a;, by) for quick temperature sweeps. However, the computational
: X
T(a, b) = 1001 — 1 costs for. one temperatpre step increase. For the r_esults
(2 b) . (1) reported in this contribution, a number@f= 10 Potts-spin
Z (& +b) - z min(a;, by) states was found to yield optimal results.
| |

Each site can interact via its spin with either (a) the k
_ S o _ nearest neighbor sitekr(N-coupling) or (b) all sites within
This modification is essential in the presence of nonbinary g distancer (ball-coupling). The coupling strength for an

substance representations. interaction is given by
B. The Superparamagnetic Clustering Algorithm.The
basic idea of superparamagnetic clustering is to consider lix, — 112
clustering as a self-organized process acting within an J=J==¢ F{— —Xl) 2)
inhomogeneous Potts spin syst&ii Potts spin system is ! KR 2a°

a set of sites that can interact with each other via Potts spins. .

The sites are given by the data set to be clustered, and theiwhereK is the average number of couplings per site and
arrangement is determined by the similarity measure butllx, — xjll denotes the similarity or distance between the two
otherwise not specified. We assume that the interaction coupled sitesa is a local length scale, for which we take
strength decreases with increasing dissimilary distancethe average distance of coupled sites. Alternatively, for the
between two sites. The interaction among sites is ascoupling strength, similarly decreasing functions of the
follows: Spins that belong to strongly coupled sites, i.e., distance could be used. Note that the similarity measures
sites separated by a small distance, tend to, or have a higlbetween the feature vectors are transferred into their
chance of, being aligned. Thus, clusters of aligned spins mayrespective coupling strengths. On the Potts sgsipace, this
emerge during the system evolution, reflecting classes of coupling strength then mediates the formation of the clusters.
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Figure 1. Euclidian distances distribution of test set (ISIS binary
keys).
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A particular realization of Potts-spin variablgss called
a systemconfiguration S The probability of finding a
configurationSis given by the canonical probability

pS=2z"e"" ®3)

where the partition functiorZ serves as a normalization
factor. The HamiltoniarH is calculated according to
H(S = g Jij (1= ds5) 4)

where the sum runs over all pairs of coupled sités.
measures the energy of a configuratiSrand, therefore,
determines its probability, since low energies are preferred.
The attribution of points to a cluster is done via the pair-
correlation criterion: Two points;, x belong to the same
cluster, if the pair correlatio; exceeds a threshol@

Gy = Dy~ Y P 055(9 = © ®)

where the sum is over all possible configurati@&&orq =

10, a convenient threshold @ = 0.2. Due to the immense
number of possible configurationg{ whereN is the number

of data points)G; cannot be calculated directly from eq 5.
Instead, a Monte Carlo approach is used, according which
the condition onG; is evaluated as

1 M
G = ﬁt; 955(S(M) > © (6)

whereS(t) is the configuration at stejpandM is the number
of Monte Carlo steps. We used the standafSwendsen-
Wang algorithr® to calculate (6).

From the application point of view, the dependence of
cluster formation upon a variation of the internal parameters,
and their optimal values, is of interest. We find a largely
insensitive dependence of the resultsgyrand, similarly,
on the thresholdd, as long as the conditiond/< © <
(1—2/q) is satisfiedt® This robustness is due to the fact that
the pair correlation distribution typically displays two peaks,
corresponding to similar and to dissimilar points, respec-
tively. In contrast, the similarity measure distribution itself

usually shows many peaks, see Figures 1 and 2. Already at

M = 220 Monte Carlo steps, stable results are obtained. The
optimal choice of the coupling randgds more delicate. We
have found that ball-coupling tends to yield slightly better
results tharknN-coupling, provided a good estimation for
the ball radiusr can be found. The results presented are
nevertheless based dmN-coupling, since the sequential
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Figure 2. Corresponding distribution of pair correlatiofs.

clustering introduced in the next section is able to cope with
this aspect, by providing stability of results over a whole
regionk € [5,...,15].

C. Sequential Clustering.The challenges in superpara-
magnetic clustering are to properly deal with inhomogeneities
in shape, density, and size of different clusters. Some clusters
may be stable over a long temperature range, while others
are not. The reason for this is that different densities are
dominant in different temperature ranges: sparse clusters
generally only exist at small temperatures, whereas dense
(sub-)clusters sometimes only emerge after cluster breakups
at higher temperatures. This feature can be exploited, by
considering that the most natural clustering level is not given
by a global clustering resolution. In fact, there are regions
where a higher resolution (high@) and regions where a
smaller resolution (smallef) is advantageous, to identify
the appropriate subclusters. This translates to a difficulty of
finding the “right” coupling: Too weak couplings, i.e., too
few nearest neighbors, may prevent cluster emergence in
sparse regions, whereas too strong couplings, i.e., many
nearest neighbors, hold the danger that superclusters, that
are a conglomeration of many classes, immediately break
up into small pieces. To overcome such difficulties, we
introduced a second level clustering procedure. Basically,
the most stable clusters are identified and extracted from the
data set. The extracted sets and the residual set are reclustered
separately. As a result, we obtain sequences of sets of in-
creasing homogeneity, and cluster detection becomes easier.

This motivates the following automated implementation:
We limit ourselves to the extraction of the most stable cluster,
i.e., the one that is stable over the broadest temperature range.
For this purpose, the algorithm is run over a predefined
temperature range which is determined in the first clustering
step. For a data s& the following steps are performed:

(1) apply superparamagnetic clusteringSo

(2) while (stop criterion not fulfilled forS):

extract the most stable clust8r and the residual set

S = 8S.

go back to 1 withS= § (i = 1,2);

(3) identify classes:

case 1:

if S= S in last loop : identifyS as a natural class;

case 2:

if S= S in last loop orS= initial set: identifySas a set

of unclustered points.

As a consequence of the repeated splitting of Satgo
setsS, S, we obtain a binary tree structure, where a stop
criterion defines the end of each branch. We stop the
procedure, if the biggest cluster after the ferromagnetic phase
is smaller than threshol@®;. This is reasonable because for
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Class (MDDR activity_index) Size Structural scaffold MDDR Numbers (EXTREG)
Benzodiazepine (06210) 21 R R 091031 091379 127118
O N _0 091122 091387 159474

I 091323 091391 297743

091339 091392 297744
091375 091394 297745
091376 091396 297746
091377 091398 297747

Calcium Channel Blocker 24 090008 122198 162312
(31500) 090251 130598 163877
090489 131335 174260
091152 133799 226911
108100 142671 271795
115055 145448 291201
115056 148863 306136
119555 155874 315520
Cephalosporin (64200) 22 090261 112175 166459
090370 127911 176375
091106 129370 176379
091132 138250 185023
o” o 100078 141720 188550
é 101081 144202 189332
106459 153268 291858
109891
Corticosteroid (02400) 18 090741 129983 166657
091057 136805 167983
091480 154424 168221
107010 159710 170014
111914 162123 188135
117492 164968 188136
Opioid (01100) 20 091305 150526 226494

091355 173614 263567
091357 179330 263568
144748 185269 278204
145961 217944 279578
145962 219842 283383
147727 222693

Protone Pump [H+/K+- 21 R 090859 144868 147835

ATPase] Inhibitor (54112) R s _«NIBR 123065 146030 147836
AT 136362 147725 147838

139540 147831 147840

141604 147832 149736
143225 147833 149737
144867 147834 152767
138237 141000 141338
138396 141091 141339
139538 141092 142208
140568 141093 149163
141085 141332 151790
141086 141333 151791
141087 141334 152989
141088 141335 155916
141089 141336 158664

Figure 3. Classes, class sizes, defining structures, and MDDR numbers of the clustered substances.

Statin [HMG-CoA Reductase 27
(beta) Inhibitor] (52500)

sets without cluster structures, the paramagnetic phasevalues for®; can be chosen from a large interval. Taking
immediately follows the ferromagnetic phase, and stable this into account, case 2 is refined as follows:
superparamagnetic clusters do not occur. Note, however, that case 2a: ifTt, > ©,: Sis a natural class.

the biggest cluster need not be the most stable one. case 2b: elseSis a set of unclustered points.

Care has to be taken when only one intrinsic cluster is Proceeding in this way, we found that over the rakge
present. In this case, we will have a direct transition from [5,...,15], the results of our clustering approach did not change.
the ferromagnetic to the paramagnetic phase. The length of
the ferromagnetic phase indicates the compactness of the Il DATA SETS
cluster. For sets without a clear cluster structure, such as
homogeneous residuals, the ferromagnetic phase occurs as The data set used for this study was taken from the MDDR
well, but it is much shorter. A thresholgl, for the transition databasé?® where 153 molecules from seven classes were
temperaturd+, from the ferromagnetic to the paramagnetic selected. Each class shares a common substructure (see
phase helps to determine whether we are dealing with anFigure 3) and a common, well-known mechanism of
intrinsic cluster (exceptionally) or with a set of unclustered pharmacological action, described by the MDDR database
points (normally). Usually, the picture is obvious, since useful activity index. From the MDDR database, the structures were
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| ] Il v \Y Table 1. Performance of Ward’s Method, for Different Keys and
oo Similarity Measures
140 -
optimal no.
similarity  of clusters Jaccard best Jaccard
keys measure (Kelley) coeff coeff
cluster sizelsoo o ISIS, binary Euclidian 19 0.495 0.769 for 6 clusters
ISIS, binary Tanimoto 14 0.654 0.769 for 6 clusters
Similog Euclidian 53 0.407 0.407 for 53 clusters
60 Similog Tanimoto 15 0.534  0.540 for 16 clusters
ISIS count  Euclidian 15 0.674 0.827 for 13 clusters
ISIS count  Tanimoto 16 0.613 0.736 for 12 clusters
20
Table 2. Performance of Sequential Superparamagnetic Clustering

similarity no. of clusters Jaccard
keys measure (including singletons) coeff

Figure 4. Output of the sequential superparamagnetic clustering, ISIS, binary Euclidian 9 0.956
primary step. To guide the eye, lines are drawn connecting constant SIS, binary Tanimoto 9 0.956
size clusters. Because of the four classes of almost equal size, the Similog Euclidian 24 0.420
display is partially hampered. Temperature regions: |, one-cluster Similog Tanimoto 9 0.947
region (ferromagnetic phase); Il, three-clusters region, Ill, most ISIS count Euclidian 9 0.941
stable clusters region, showing correct number of clusters and ISIS count Tanimoto 8 0.986
cluster_ sizes; IV, region of relative stability of clusters; V, break-
up region.
exported as a SD-file. Prior to the calculation of the 244'_{—: ;3
descriptors, they were preprocessed in order to remove i
counterions and other disconnected low molecular weight 20 "
fragments and to neutralize deprotonated acidic and proto- 2 [
nated basic functional groups (using the PipelinePilot 4 - %
softwaré?®). The preprocessed data set was then characterized ek
by three descriptors: (1) the binary ISIS key descriptor,
which is based on a curated dictionary of structural frag- || 10
ments!®1® (2) the ISIS count descriptor, where the number | .
of fragment occurrences is part of the descriptor, and (3) 21 s
the pharmacophore Similog keys. Details on how these |
descriptors and the Similog keys are calculated can be found 2l
in ref 20. =
IV. RESULTS AND DISCUSSION Figure 5. Dendrogram for Ward's method, using Tanimoto

coefficients for ISIS binary keys (implementation by the authors).

To show the stark contrast to concurrent methods, we The number of clusters increases from left to right. The inserted
compared our results with those obtained by the Ward numbers indicate the cluster sizes. The clustering works well only
approach. We assumed the clusters induced by the chemicaftt € Six-classes clustering level.
classes the data were taken from, as the ideal. To measuréy sequential clustering and separately analyzed, to find the
the difference between the clustering results and the idealabove-mentioned two classes.
result, we computed the Jaccard statistifer the clusterings Table 2 vs Table 1 contrasts the results from sequential
obtained with the different descriptors, relative to the ideal superparamagnetic clustering against those achieved by
clustering. When using Ward'’s method, the optimal number Ward’'s method. For ISIS count and Similog keys, our
of clusters was determined by applying the Kelley mea- extension (1) of the Tanimoto coefficient was used. The
sure'®?! The Kelley measure is an accepted cluster level results obtained by using the Kelley measure are shown
selection criterion that balances between the number oftogether with the best Jaccard coefficient achieved. The
clusters and their inherent densities. In the case of super-higher this coefficient, the better the clustering. The com-
paramagnetic clustering, the optimal number of clusters andparison emphasizes that Ward clustering with the Kelley
the size of clusters emerge naturally from the approach. measure tends to favor more, but smaller, clusters and does

Figure 4 shows a typical cluster size diagram obtained by not necessarily reflect the best choice of number of clusters.
applying superparamagnetic clustering to the ISIS binary As a matter of fact, for the considered data, Ward’s method
keys model set. One can identify a short ferromagnetic phase struggles with inhomogeneities in the data sets. In the
followed by a superparamagnetic phase. Clearly, severaldendrogram Figure 5, we see that, due to its density, the big
clusters that correspond to the chemical classes can becluster containingStatin and Corticosteroidbreaks up late
identified. As the temperature increases, they break up into(and not even properly). Some other classes, correctly
subclusters or singletons. The temperature at which a clusteiindicated at the 6-cluster stage, break up earlier. Therefore,
decays can be seen to depend on its consistency. Densea simultaneous occurrence and detection of all chemical
clusters break up later. One big cluster of 45 elements classes of the model set seems intrinsically impossible.
stretches across a broad temperature range. This supercluster, The results worked out by sequential superparamagnetic
containing the class&tatinandCorticosteroid is extracted clustering are substantially better. The original chemical
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Figure 6. Dendrogram for sequential superparamagnetic clustering, using Tanimoto coefficients for ISIS count keys. Inserted numbers
indicate the obtained cluster sizes. In brackets, the correct sizes are added.

classes are recognized almost perfectly. Exceptions rangenovel similarity measure that can be considered an extension
from a singleton in the case of ISIS count with Tanimoto of the binary Tanimoto coefficient.

(see Figure 6), up to at most three compounds for ISIS count To conclude, we estimate that sequential superparamag-
using the Euclidean similarity measure. Only when using netic clustering will be of particular importance to chemical
the Euclidian distance measure with Similog keys, satisfac- applications such as combinatorical library design and
tory results could not be achieved. Since the Ward clusteringanalysis of HTS data hit lists. We also anticipate a wide field
results are similarly bad in this case, we think that this of applications in other topical, technical and scientific, fields.
corroborates the claim that the Euclidian distance should notThese include, e.g., multisensor clustering and visual and
be used as a similarity measure for the very high-dimensionalauditory scene analysis. The results obtained in our contribu-
Similog keys. The overall-comparison demonstrates the tion raise the hope that sequential superparamagnetic cluster-
superiority of the sequential paramagnetic clustering ap-ing will contribute to remove boundaries that currently

proach over Ward clustering. obstruct progress in these fields.
For applications, a comparison of the computational costs
raised by the two approaches is of interest. The core part of ACKNOWLEDGMENT

the superparamagnetic clustering consists of a Monte Carlo
simulation. For this part, a time complexity @(N?) is
required, since the number of Monte Carlo steps can be held
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research projectnformation-based Approaches in Drug

fixed. The number of natural classes within a data set, and Design.

therefore the number of clustering steps, is usually bounded. APPENDIX

We therefore expect the time complexity to be characteristic

for the whole procedure. Ward’s method requic¥sl?) time TheKelley measuréor a cluster level with k; clusters is
complexity as well. defined as

d,; — min(d,)
max(d,) — min(d,)

V. CONCLUSIONS

Our results indicate that sequential superparamagnetic
clustering easily outperforms traditional clustering methods.
Our approach is particularly well forged for data sets with whered,; is the mean of distances between points in the
density differences between chemical classes, where someame cluster at leval and min¢,) and maxd.) are the
clusters only emerge in a subset of adequate homogeneityminimum and maximum of this value across all cluster levels
Sequential clustering is effective, since it is not based on (in Ward'’s clustering approach, the cluster levels are refined
the simultaneous detection of all clusters. The number of from N singleton to one all-encompassing cluster, whére
classes emerges naturally and does not require any biaseequals the number of the data points in the sample).
or a posteriori information. Sequential clustering implies that  The Jaccard coefficient measures how close a clustering
the most natural clustering level, i.e., the level where the C; is to an a priori known clustering, (in our case, the
most natural chemical classes occur, is not given by aknown chemical classes). It is evaluated according to
globally fixed resolution. Instead, the optimal resolution
depends on local densities. This principle is the key feature
exploited by the sequential clustering procedure.

We found that in some cases (e.g. Similog keys), the
choice of an appropriate similarity measure is crucial. The wherea is the number of pairs of points that are clustered
Euclidian distance measure, in particular, may introduce in both clusteringsh is the number of pairs that are clustered
serious shortcomings. It is more advantageous to use ourtogether in the first clustering but not the second, ansl

+1+k (7)

Kelley, = (n — 2)(

a

JaccardC,, C,) = T¥brc (8)
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