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For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary
fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle
nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our
applications, data sets composed of structures from seven chemically distinct compound classes are evaluated
and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our
sequential superparamagnetic clustering approach.

I. INTRODUCTION

Clustering is a fundamental process inherent to human
cognition and perception. In the scene analysis paradigm,
humans classify (group together) perceptual information, to
develop a consistent picture of the environment. A priori,
however, no information about the number of classes or class
sizes is available. Classes or clusters are seldom clear-cut
entities, a fact that has been exploited in fuzzy logic
implementations. However, clustering has an inherent hier-
archical branching nature, as is shown by the simple example
of the partitioning of animals into species, subspecies, etc.
In our approach, we consider clustering to be a self-organized
learning process. Although the partitioning into classes, as
we will show, can be achieved in an unbiased way, it is the
optimal choice of the resolution that needs to be learned. In
the latter aspect, we deal with a supervised learning approach.
In technical applications, clustering is often applied to
inhomogeneous sets of items that are represented as data
points in a high-dimensional space. Given an appropriate
measure of similarity in the form of a distance measure
between points, the clustering approach then aims at iden-
tifying the clusters made up of similar data points. The
rationale for classification and clustering lies in the similar-
property principle. It states that structurally similar objects
tend to have similar properties.

In chemistry, the clustering of substances is therefore of
central interest.1 Given a molecule of known properties,
compounds that are structurally similar are likely to exhibit
similar properties.2 An important scientific question is to what
extent criteria used to describe substances are “natural” and
“efficient” and “pave the way towards new discoveries”.
Economically, particularly in drug testing, the identification
of “natural” classes is of paramount importance. If the classes
are optimally chosen, efficient testing can be organized. This
can be achieved by imposing a clustering resolution that is

in compliance with both the testing resources available and
the need to distribute these tests over the ensemble. For an
appropriate distribution of tests, it is not the chemical space
but the relevant compound property space that is of
importance. Clustering is able to unbiasedly determine the
latter.

Clustering based on this insight has been applied for the
prediction of physiochemical and biological properties of
chemical compounds,3,4 the selection of diverse/representative
compounds or reagent sets for the design of combinatorial
libraries,5 compound acquisition selection,6,7 and the com-
pilation of screening sets.8 A recent application deals with
the analysis of high-throughput and the profiling of screening
data.8-10 For clustering to be successful, an appropriate
description of molecule structures and an adequate clustering
algorithm are both essential. Among the variety of methods,
the hierarchical Ward,11 the nonhierarchical Jarvis-Patrick,12

and the K-means relocation methods13 have become popular,
mostly based on fingerprint descriptors.14 In chemical
applications (separation of known actives and inactives,
property prediction, and diversity selection), Ward’s method
clearly outperforms the other two.1,8,14,15Structural classes
with very different shapes, densities, or sizes, however,
present a problem to Ward’s method. Due to these inhomo-
geneities, the algorithm fails to properly discriminate classes.
We introduce a modified superparamagnetic clustering
approach that is not affected by these problems. Superpara-
magnetic clustering16,17 is based on the statistical, thermo-
dynamical, description of the interactions between ferro-
magnetic Potts spin particles. Our comparison with Ward
clustering will be based on a model system composed of
well-defined chemical structural classes. ISIS count, ISIS
binary keys,18,19 and Similog 2D pharmacophore triplets
hologram descriptors20 are the inputs for the similarity
measure. One advantage of the new method is that it
intrinsically provides the possibility to determine the optimal
number of clusters, i.e., a natural clustering level. With the
hierarchical Ward method the best level can only be
determined a posteriori (using, for instance, the Kelley
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measure15,21). We will show that sequential superparamag-
netic clustering clearly outperforms Ward’s method.

II. MATERIALS AND METHOD

A. Similarity Measure. Chemical fingerprint descriptors
lead to a representation of chemical substances by high-
dimensional, binary or integer-valued, feature vectors. For
instance, ISIS keys provide information about the presence
or absence of 166 predefined structural features. Other
fingerprint types, such as ISIS count and Similog keys, also
include information on the abundance of these features.
Nontrivial questions include assessing to what extent the
chosen fingerprints are able to represent the structure and
chemical properties. As a measure for the similarity of two
fingerprint vectors, the Euclidian distance seems natural and
is, in fact, widely used. The Euclidian distance measure,
however, has a few shortcomings that, in connection with
particular fingerprints, can lead to a complete failure of any
clustering algorithm: Assume that from a set of substances
described by binary ISIS keys, two chemical structures differ
by only two structural features. This means that the associated
binary fingerprint vectors differ in exactly two components.
Two extreme cases can be imagined: (a) The two structures
each have exactly one distinct structural feature (implying
that only one component of each vector is nonzero and the
places of these nonzero entries are distinct). In this case, the
two substances are structurally distinct, and their Euclidian
separation isx2. (b) Both structures exhibit all key features
but one, where the respective exceptions occur for different
features. In this case, both substances share many structural
features; the Euclidian separation, however, still evaluates
to x2: A good distance measure, however, should be
susceptible to the number of shared structural features, i.e.,
to the number of nonzero vector components. For binary
vectors, the binary Tanimoto coefficient1 takes this into
account. To also account for integer-valued vectors, we
propose the following modification: For two integer-valued
vectorsa andb, our similarity measure is

This modification is essential in the presence of nonbinary
substance representations.

B. The Superparamagnetic Clustering Algorithm.The
basic idea of superparamagnetic clustering is to consider
clustering as a self-organized process acting within an
inhomogeneous Potts spin system.16 A Potts spin system is
a set of sites that can interact with each other via Potts spins.
The sites are given by the data set to be clustered, and their
arrangement is determined by the similarity measure but
otherwise not specified. We assume that the interaction
strength decreases with increasing dissimilary distance
between two sites. The interaction among sites is as
follows: Spins that belong to strongly coupled sites, i.e.,
sites separated by a small distance, tend to, or have a high
chance of, being aligned. Thus, clusters of aligned spins may
emerge during the system evolution, reflecting classes of

similar points. A parameterT, the temperature, controls the
desired resolution of the clustering. It provides us the
possibility to choose between different levels in a cluster
hierarchy.

Potts spin systems are described within the framework of
statistical mechanics. There the system is embedded in a heat
reservoir, thus the formalism of canonical ensembles can be
applied in order to determine a system’s possible states and
their respective probabilities. The temperatureT is a control
parameter, determining the average energy per degree of
freedom of the system. Aligned spins minimize the energy
and, thus, naturally reflect small temperatures. Accordingly,
for small temperatures, the system is in the ferromagnetic
phase, where all spins are likely to be aligned. Upon a slow
increase of the temperature, the tendency of spins to be
aligned decreases, which reflects the higher energy contained
in the system. This, however, is not achieved in a smooth
manner. Instead, transition points occur, where the general
state of the system (the phase) changes abruptly. For
homogeneous systems, where all spin-spin couplings are
equal, a single transition from the ordered ferromagnetic to
the disordered paramagnetic phase is observed. In the
paramagnetic phase, single spins behave almost indepen-
dently, and spin alignment becomes a random process. For
inhomogeneous systems, the picture can be much more
complicated: Between the ferromagnetic and paramagnetic
phases, a superparamagnetic phase may occur, where local
clusters of aligned spins emerge. These clusters correspond
to regions with strong spin coupling. Upon a further increase
in the temperature, local clusters may break up into smaller
clusters, in cascades of transitions.

The implementation of this approach proceeds along the
following lines: To each data vectorxi, a Potts-spin variable
si is assigned, which may take valuessi ∈ {1,...,q}. The
number of Potts statesq is largely arbitrary and in no way
connected with the vector length ofxi. The choice ofq does
not affect the occurrence of clusters. It mostly affects the
extentof the phases of stable clusters over the temperature
range. For a largeq, the superparamagnetic phase shrinks
and the transitions sharpen,16 which may be of advantage
for quick temperature sweeps. However, the computational
costs for one temperature step increase. For the results
reported in this contribution, a number ofq ) 10 Potts-spin
states was found to yield optimal results.

Each site can interact via its spin with either (a) the k
nearest neighbor sites (knN-coupling) or (b) all sites within
a distancer (ball-coupling). The coupling strength for an
interaction is given by

where K̂ is the average number of couplings per site and
|xi - xj| denotes the similarity or distance between the two
coupled sites.a is a local length scale, for which we take
the average distance of coupled sites. Alternatively, for the
coupling strength, similarly decreasing functions of the
distance could be used. Note that the similarity measures
between the feature vectorsx are transferred into their
respective coupling strengths. On the Potts spinq-space, this
coupling strength then mediates the formation of the clusters.
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A particular realization of Potts-spin variablessi is called
a systemconfiguration S. The probability of finding a
configurationS is given by the canonical probability

where the partition functionZ serves as a normalization
factor. The HamiltonianH is calculated according to

where the sum runs over all pairs of coupled sites.H
measures the energy of a configurationS and, therefore,
determines its probability, since low energies are preferred.
The attribution of points to a cluster is done via the pair-
correlation criterion: Two pointsxi, xj belong to the same
cluster, if the pair correlationGij exceeds a thresholdΘ

where the sum is over all possible configurationsS. Forq )
10, a convenient threshold isΘ ) 0.2. Due to the immense
number of possible configurations (qN, whereN is the number
of data points),Gij cannot be calculated directly from eq 5.
Instead, a Monte Carlo approach is used, according which
the condition onGij is evaluated as

whereS(t) is the configuration at stept andM is the number
of Monte Carlo steps. We used the standard16,17 Swendsen-
Wang algorithm22 to calculate (6).

From the application point of view, the dependence of
cluster formation upon a variation of the internal parameters,
and their optimal values, is of interest. We find a largely
insensitive dependence of the results onq, and, similarly,
on the thresholdΘ, as long as the condition 1/q < Θ <
(1-2/q) is satisfied.16 This robustness is due to the fact that
the pair correlation distribution typically displays two peaks,
corresponding to similar and to dissimilar points, respec-
tively. In contrast, the similarity measure distribution itself
usually shows many peaks, see Figures 1 and 2. Already at
M ) 220 Monte Carlo steps, stable results are obtained. The
optimal choice of the coupling rangek is more delicate. We
have found that ball-coupling tends to yield slightly better
results thanknN-coupling, provided a good estimation for
the ball radiusr can be found. The results presented are
nevertheless based onknN-coupling, since the sequential

clustering introduced in the next section is able to cope with
this aspect, by providing stability of results over a whole
regionk ∈ [5,...,15].

C. Sequential Clustering.The challenges in superpara-
magnetic clustering are to properly deal with inhomogeneities
in shape, density, and size of different clusters. Some clusters
may be stable over a long temperature range, while others
are not. The reason for this is that different densities are
dominant in different temperature ranges: sparse clusters
generally only exist at small temperatures, whereas dense
(sub-)clusters sometimes only emerge after cluster breakups
at higher temperatures. This feature can be exploited, by
considering that the most natural clustering level is not given
by a global clustering resolution. In fact, there are regions
where a higher resolution (higherT) and regions where a
smaller resolution (smallerT) is advantageous, to identify
the appropriate subclusters. This translates to a difficulty of
finding the “right” coupling: Too weak couplings, i.e., too
few nearest neighbors, may prevent cluster emergence in
sparse regions, whereas too strong couplings, i.e., many
nearest neighbors, hold the danger that superclusters, that
are a conglomeration of many classes, immediately break
up into small pieces. To overcome such difficulties, we
introduced a second level clustering procedure. Basically,
the most stable clusters are identified and extracted from the
data set. The extracted sets and the residual set are reclustered
separately. As a result, we obtain sequences of sets of in-
creasing homogeneity, and cluster detection becomes easier.

This motivates the following automated implementation:
We limit ourselves to the extraction of the most stable cluster,
i.e., the one that is stable over the broadest temperature range.
For this purpose, the algorithm is run over a predefined
temperature range which is determined in the first clustering
step. For a data setS, the following steps are performed:

(1) apply superparamagnetic clustering toS,
(2) while (stop criterion not fulfilled forS):
extract the most stable clusterS1 and the residual set
S2 ) S\S1.
go back to 1 withS ) Si (i ) 1,2);
(3) identify classes:
case 1:
if S ) S1 in last loop : identifyS as a natural class;
case 2:
if S) S2 in last loop orS) initial set: identifySas a set
of unclustered points.
As a consequence of the repeated splitting of setsS into

setsS1, S2, we obtain a binary tree structure, where a stop
criterion defines the end of each branch. We stop the
procedure, if the biggest cluster after the ferromagnetic phase
is smaller than thresholdΘ1. This is reasonable because for

Figure 1. Euclidian distances distribution of test set (ISIS binary
keys).
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∑
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Figure 2. Corresponding distribution of pair correlationsGij.
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sets without cluster structures, the paramagnetic phase
immediately follows the ferromagnetic phase, and stable
superparamagnetic clusters do not occur. Note, however, that
the biggest cluster need not be the most stable one.

Care has to be taken when only one intrinsic cluster is
present. In this case, we will have a direct transition from
the ferromagnetic to the paramagnetic phase. The length of
the ferromagnetic phase indicates the compactness of the
cluster. For sets without a clear cluster structure, such as
homogeneous residuals, the ferromagnetic phase occurs as
well, but it is much shorter. A thresholdΘ2 for the transition
temperatureTTr from the ferromagnetic to the paramagnetic
phase helps to determine whether we are dealing with an
intrinsic cluster (exceptionally) or with a set of unclustered
points (normally). Usually, the picture is obvious, since useful

values forΘ2 can be chosen from a large interval. Taking
this into account, case 2 is refined as follows:

case 2a: ifTTr > Θ2: S is a natural class.
case 2b: else:S is a set of unclustered points.
Proceeding in this way, we found that over the rangek ∈

[5,...,15], the results of our clustering approach did not change.

III. DATA SETS

The data set used for this study was taken from the MDDR
database,23 where 153 molecules from seven classes were
selected. Each class shares a common substructure (see
Figure 3) and a common, well-known mechanism of
pharmacological action, described by the MDDR database
activity index. From the MDDR database, the structures were

Figure 3. Classes, class sizes, defining structures, and MDDR numbers of the clustered substances.
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exported as a SD-file. Prior to the calculation of the
descriptors, they were preprocessed in order to remove
counterions and other disconnected low molecular weight
fragments and to neutralize deprotonated acidic and proto-
nated basic functional groups (using the PipelinePilot
software24). The preprocessed data set was then characterized
by three descriptors: (1) the binary ISIS key descriptor,
which is based on a curated dictionary of structural frag-
ments,18,19 (2) the ISIS count descriptor, where the number
of fragment occurrences is part of the descriptor, and (3)
the pharmacophore Similog keys. Details on how these
descriptors and the Similog keys are calculated can be found
in ref 20.

IV. RESULTS AND DISCUSSION

To show the stark contrast to concurrent methods, we
compared our results with those obtained by the Ward
approach. We assumed the clusters induced by the chemical
classes the data were taken from, as the ideal. To measure
the difference between the clustering results and the ideal
result, we computed the Jaccard statistics15 for the clusterings
obtained with the different descriptors, relative to the ideal
clustering. When using Ward’s method, the optimal number
of clusters was determined by applying the Kelley mea-
sure.15,21 The Kelley measure is an accepted cluster level
selection criterion that balances between the number of
clusters and their inherent densities. In the case of super-
paramagnetic clustering, the optimal number of clusters and
the size of clusters emerge naturally from the approach.

Figure 4 shows a typical cluster size diagram obtained by
applying superparamagnetic clustering to the ISIS binary
keys model set. One can identify a short ferromagnetic phase,
followed by a superparamagnetic phase. Clearly, several
clusters that correspond to the chemical classes can be
identified. As the temperature increases, they break up into
subclusters or singletons. The temperature at which a cluster
decays can be seen to depend on its consistency. Denser
clusters break up later. One big cluster of 45 elements
stretches across a broad temperature range. This supercluster,
containing the classesStatinandCorticosteroid, is extracted

by sequential clustering and separately analyzed, to find the
above-mentioned two classes.

Table 2 vs Table 1 contrasts the results from sequential
superparamagnetic clustering against those achieved by
Ward’s method. For ISIS count and Similog keys, our
extension (1) of the Tanimoto coefficient was used. The
results obtained by using the Kelley measure are shown
together with the best Jaccard coefficient achieved. The
higher this coefficient, the better the clustering. The com-
parison emphasizes that Ward clustering with the Kelley
measure tends to favor more, but smaller, clusters and does
not necessarily reflect the best choice of number of clusters.
As a matter of fact, for the considered data, Ward’s method
struggles with inhomogeneities in the data sets. In the
dendrogram Figure 5, we see that, due to its density, the big
cluster containingStatinandCorticosteroidbreaks up late
(and not even properly). Some other classes, correctly
indicated at the 6-cluster stage, break up earlier. Therefore,
a simultaneous occurrence and detection of all chemical
classes of the model set seems intrinsically impossible.

The results worked out by sequential superparamagnetic
clustering are substantially better. The original chemical

Figure 4. Output of the sequential superparamagnetic clustering,
primary step. To guide the eye, lines are drawn connecting constant
size clusters. Because of the four classes of almost equal size, the
display is partially hampered. Temperature regions: I, one-cluster
region (ferromagnetic phase); II, three-clusters region, III, most
stable clusters region, showing correct number of clusters and
cluster sizes; IV, region of relative stability of clusters; V, break-
up region.

Table 1. Performance of Ward’s Method, for Different Keys and
Similarity Measures

keys
similarity
measure

optimal no.
of clusters
(Kelley)

Jaccard
coeff

best Jaccard
coeff

ISIS, binary Euclidian 19 0.495 0.769 for 6 clusters
ISIS, binary Tanimoto 14 0.654 0.769 for 6 clusters
Similog Euclidian 53 0.407 0.407 for 53 clusters
Similog Tanimoto 15 0.534 0.540 for 16 clusters
ISIS count Euclidian 15 0.674 0.827 for 13 clusters
ISIS count Tanimoto 16 0.613 0.736 for 12 clusters

Table 2. Performance of Sequential Superparamagnetic Clustering

keys
similarity
measure

no. of clusters
(including singletons)

Jaccard
coeff

ISIS, binary Euclidian 9 0.956
ISIS, binary Tanimoto 9 0.956
Similog Euclidian 24 0.420
Similog Tanimoto 9 0.947
ISIS count Euclidian 9 0.941
ISIS count Tanimoto 8 0.986

Figure 5. Dendrogram for Ward’s method, using Tanimoto
coefficients for ISIS binary keys (implementation by the authors).
The number of clusters increases from left to right. The inserted
numbers indicate the cluster sizes. The clustering works well only
at the six-classes clustering level.
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classes are recognized almost perfectly. Exceptions range
from a singleton in the case of ISIS count with Tanimoto
(see Figure 6), up to at most three compounds for ISIS count
using the Euclidean similarity measure. Only when using
the Euclidian distance measure with Similog keys, satisfac-
tory results could not be achieved. Since the Ward clustering
results are similarly bad in this case, we think that this
corroborates the claim that the Euclidian distance should not
be used as a similarity measure for the very high-dimensional
Similog keys. The overall-comparison demonstrates the
superiority of the sequential paramagnetic clustering ap-
proach over Ward clustering.

For applications, a comparison of the computational costs
raised by the two approaches is of interest. The core part of
the superparamagnetic clustering consists of a Monte Carlo
simulation. For this part, a time complexity ofO(N2) is
required, since the number of Monte Carlo steps can be held
fixed. The number of natural classes within a data set, and
therefore the number of clustering steps, is usually bounded.
We therefore expect the time complexity to be characteristic
for the whole procedure. Ward’s method requiresO(N2) time
complexity as well.

V. CONCLUSIONS

Our results indicate that sequential superparamagnetic
clustering easily outperforms traditional clustering methods.
Our approach is particularly well forged for data sets with
density differences between chemical classes, where some
clusters only emerge in a subset of adequate homogeneity.
Sequential clustering is effective, since it is not based on
the simultaneous detection of all clusters. The number of
classes emerges naturally and does not require any biased
or a posteriori information. Sequential clustering implies that
the most natural clustering level, i.e., the level where the
most natural chemical classes occur, is not given by a
globally fixed resolution. Instead, the optimal resolution
depends on local densities. This principle is the key feature
exploited by the sequential clustering procedure.

We found that in some cases (e.g. Similog keys), the
choice of an appropriate similarity measure is crucial. The
Euclidian distance measure, in particular, may introduce
serious shortcomings. It is more advantageous to use our

novel similarity measure that can be considered an extension
of the binary Tanimoto coefficient.

To conclude, we estimate that sequential superparamag-
netic clustering will be of particular importance to chemical
applications such as combinatorical library design and
analysis of HTS data hit lists. We also anticipate a wide field
of applications in other topical, technical and scientific, fields.
These include, e.g., multisensor clustering and visual and
auditory scene analysis. The results obtained in our contribu-
tion raise the hope that sequential superparamagnetic cluster-
ing will contribute to remove boundaries that currently
obstruct progress in these fields.
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APPENDIX

TheKelley measurefor a cluster leveli with ki clusters is
defined as

wheredwi is the mean of distances between points in the
same cluster at leveli, and min(dw) and max(dw) are the
minimum and maximum of this value across all cluster levels
(in Ward’s clustering approach, the cluster levels are refined
from N singleton to one all-encompassing cluster, whereN
equals the number of the data points in the sample).

The Jaccard coefficient measures how close a clustering
C1 is to an a priori known clusteringC2 (in our case, the
known chemical classes). It is evaluated according to

wherea is the number of pairs of points that are clustered
in both clusterings,b is the number of pairs that are clustered
together in the first clustering but not the second, andc is

Figure 6. Dendrogram for sequential superparamagnetic clustering, using Tanimoto coefficients for ISIS count keys. Inserted numbers
indicate the obtained cluster sizes. In brackets, the correct sizes are added.

Kelleyi ) (n - 2) ( dwi - min(dw)

max(dw) - min(dw)) + 1 + ki (7)

Jaccard (C1, C2) ) a
a + b + c

(8)
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the number of pairs that are clustered together in the second
clustering but not in the first.
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