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Abstract

Entangled quantum states are an important component of quantum computing
techniques such as quantum error-correction, dense coding and quantum
teleportation. We describe how to generate fully entangled states in the Hilbert
space CV ® CV starting from a unitary matrix and show that they form an
orthonormal basis in this space. Disentanglement is also discussed. Moreover
we also calculate the Wigner function of fully entangled states.

Entanglement [1-7] is the characteristic trait of quantum
mechanics which enforces its entire departure from
classical lines of thought. It is nowadays viewed as a
resource for certain tasks that can be performed faster or in
a more secure way than classically. Einstein et al. [8]
discussed entanglement for infinite-dimensional systems
(position and momentum). Bohm [9] described the case for
finite-dimensional systems.

We describe how to generate fully entangled states in the
finite-dimensional Hilbert space CV¥ @ CY = CV” starting
from the N x N primary permutation matrix and show that
they form an orthonormal basis in this space. We also
describe how to disentangle the generalized Bell states
using the GXOR-operator. Furthermore the Wigner
operator for finite-dimensional systems is calculated for
the Bell states.

We consider entanglement of pure states. For example in
the Hilbert space C* the Bell states

1
|27) =—=(10) ® |0) + 1) ® [1)),

V2
=L _
[©7) =510 ®10) = |1 @ 1),
1
+y
W) = 510 ® 1) +11) ® [0)),

=L -
V) = =0 @11 — 1) @ 10)

are fully entangled states and form an orthonormal basis in
C*. Here {|0), |1)}is an arbitrary orthonormal basis in the
Hilbert space C2. If we choose

e cos 0 —el?sin g
|0) = , 1) =
sin @ cos b
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we obtain
e e cos(26)
1 0 B 1 | €“sin(20)
|DF) i=— ) | )1:7 . )
21 0 21 e?sin(20)
1 — cos(26)
—e%i sin(20) 0
| ' cos(26) B 1] e?
21 &4 cos(26) V2| e
sin(26) 0

If we choose ¢ = 0 and 6 = 0 then {|0), |1)} is the standard
basis in C?.
Consider the Hilbert space CV. Let

) :k=0,1,....,N—1} (1)

be an orthonormal basis in CV. Thus (¢jldr) = i and

N—-1

> le)(gnl = Iy 2)
k=0

where Iy is the N x N unit matrix. The last relation is the
completeness relation. Next we define the matrix

N—

U= 1 {dur] + [én-1) (bol- )

k=0

i8]

Thus we can also write

N-1

U:= Z |¢k modN) <¢/€+1 modN|~ (4)
k=0

For example, in C?> we obtain the Pauli matrix o, if
lpo) = (1,0)7 and |¢) = (0, 1)T and the Pauli matrix o. if
go) = 1//2 (1, )" and |¢y) = 1/v/2 (1, —1)7.

The set of matrices {U, U2,..., UV} form a commu-
tative group under matrix multiplication where UV = Iy.
We also have tr(U) = 0 and det(U) = —1 if N is even and
det(U) =1 if N is odd. The ecigenstates of the unitary

matrix U satisfy
U19;) = exp(—i9))|6;), j=0,1,..., N—1 (%)

where 6, := 2mj/N. Thus the set of eigenvalues {exp(—if;):
j=0,1,...,N—1} form a commutative group under
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multiplication. The group given above and this group are
isomorphic. For N — oo we have the Lie group U(1).
For the standard basis in C" the matrix U is given by

01 00 ... 0
001 0 ... 0
U=|: : : : - | (6)
000 0 ... 1
1 00 0 ... 0
Then the set of matrices {U, U2, ..., UM} is a subgroup of
the group of all N x N permutation matrices under matrix
multiplication.

The normalized eigenvectors of U given by (3) are

A

6)) = —= ) exp(—12mjk)|¢x) (7)
J \/—N g

where j=0,1,..., N—1. If we consider U given by (6)

(i.e., the standard basis is selected), then we find the
eigenvectors

e

«/W(l’ exp(—i27j/N), exp(=i4mj/N), ...,

x exp(—i2m(N — 1)j/N))’.

Thus for the eigenvalue 1 of U we find the normalized
eigenvector

1
VN
The eigenstates {|0;): j =0, 1,..., N — 1} and the orthonor-

mal basis given above are connected by the discrete Fourier
transform

(1,1,....,nH"

1 = .
6) == ; exp(—ik))|¢x),

1=
|pr) = ﬁ Z exp(ik6))[6;). ®)
Jj=0

Next we introduce the two matrices

N—1 . N—-1
A= kg, 6:=) 616)(6. ©)
k=0 =0

A~

We have [U,60] =0. The hermitian matrix 7# can be
considered as the number operator with the eigenvalues
0,1,2,...,N—1. Thf: matrix 7 is diagonal in the standard
basis. The matrix 6 is called the Pegg-Barnett phase
operator [10]. We note that an outstanding problem in
quantum mechanics is the search for a “proper” phase
operator. A number of theories for such operators have
been proposed, but most of them succumb to one or more
of three shortcomings: (i) the operator is non-selfadjoint,
(if) no scheme for an experimental realization, (iii) the
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operator is operationally defined, leaving the questions

open as to what observable the measurement apparatus

really represents and what the conjugate observable is [11].
The matrix 7 has the properties

exp(£ifn)|¢i) = exp(Fif;k)| o),

exp(i6)|0k) = |0k modn)- (10)
The matrix 6 has the properties

exp(+ik6)|6)) = exp(+ik))|6)),

exp(Eikf)|dm) = |Gk modn)- (11)

Note that the matrices 7 and 6 do not commute. Using
these two matrices we introduce the matrices

Vi := exp(i6;1) exp(—ikf) (12)

where j,k=0,1,...,N—1 and Vyy = Iy. Obviously these
N? matrices are unitary. Inserting (9), (10) and (11) into
(12) we can write

N—1
IA/_/k = Z exp(iejm)|¢m modN) <¢m—k modN|‘ (13)
m=0
Let
1 N—1
D) 1= — [ - 14
) ﬁ;m) ) (14)

where ® denotes the Kronecker product of matrices [12].
This state is independent of the chosen basis in each
subsystem. Using this state we define the N2 states

|®j) i= (Vi ® In)|®) = (exp(i6j) exp(—ik6) @ Iy)|P)
(15)

where |®) = |®g). These states can also be written as

1N _
®) = = >V 40) @ [ (16)
=0

The N? vectors |®;) form an orthonormal basis in the
Hilbert space cV, i.e., we have (®j| D) = 8jmbky and [13]

=

—1

=

-1
[P (Pl = In ® Iy = Iy>.

~
Il
S
=
Il
=

The measure for entanglement for pure states E(|y)(y]) is
defined as follows [2-7]

E(¥) (Y]) := Sdim,)(0H,) = Sdimr)(0H,) (17)

where H; =H, =C" and the density operators are
defined as

pr, = T [Y) (Y], pry = Trw [ ¥) (Y (18)

and Sp(p) := —Trplog, p. Tr denotes the trace and Try,
denotes the partial trace over H;. We use the base b for the
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logarithm log,. We have 0Olog,0 =0 and llog,1=0.
Thus 0 < E < 1. If E=1 we call the pure state maximally
entangled. If £ =0, the pure state is not entangled. We
note that

k
—> ijlog,
j=1

where {4;:j=1,..., k} are the eigenvalues of p and p is a
linear operator on a k dimensional Hilbert space.

Using this definition for entanglement of pure states we
find that the states |®jp) are maximally entangled. We
obtain the projection matrix

Sp(p) =

N—1 N—1

1
(D) (@il = D Y exp(6;(! = m)Idux)

=0 m=0

X (¢m+k| ® |¢l> <¢m|~ (19)

Taking the partial trace over the first system yields

1N—1
~ 2 o0l
N; e

Thus Sy(p2) = 1. The state |®) given by (14) is a maximally
entangled state. Thus the other states are obtained by a
local unitary transformation (15) from the maximally
entangled one.

For N = 2 we find the Bell states given above. For N = 3
we obtain the 9 states

P2 :=Tri(|Pp)(Pi]) =

1
|Poo) = —=(100) + [11) + |22)),

7

(®10) = %aom + @11 — I|22y),

|®a0) = %uom — @1 1) 4 eI |22)),

| Do1) \}§(|10 Y+ 121) +102)),

|®gr) = \}g(|01 + 112) 4 120)),

@) Jg(wz ) + eI 10) — 1)),

@) Jlguoz [10) + 1)),

®12) = J§(|01 )+ eI 12) — T 20y),

|©2n) = %UOD — 1) + 2)20))

where |00) = |0) ® |0) etc. and |0), [1), |2) denote the

standard basis in C?.

Given an entangled state in CY ® C" it is important to
know if it can be distilled, i.e., r copies of it can be
transformed by local operations and classical communica-
tion into s copies of |®). State distillability, or useful
quantum correlations, offer an alternative way of analyzing
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quantum nonlocality. All bipartite entangled pure states
can be reversibly transformed using local operations and
classical communication into |®) (in the so-called asymp-
totic regime).
The set of the N? projection matrices

(X = D) (@pl: jik=0,1,...,N—1)
describe the generalized Bell measurement. An application
of the Bell measurement is in teleportation. For any matrix

R N—1 N—1
0= mn|¢m ¢n
m=0 n=0
we have
N—1 N—1 A R
VOV, = N(trO)ly.
Jj=0 k=0

To disentangle the generalized Bell states the generalized
XOR-gate (GXOR-gate) can be used. The GXOR-gate is
defined as [14]

Ugxorlm) & |n):=|m) & |mon)

where m,n=20,1,..., N—1 and

m©on:=m—nmodulo N.

The operator Ugxor 1s unitary and hermitian and there-
fore Ugxor = Ugkor. Furthermore m & n = 0 modulo N
if and only if m = n. For N = 2 we obtain the XOR-gate.
For N = 3 we find the matrix representation

Usxor =10 U, 0 U, 010U,

where @ denotes the direct sum [12] and

0O 0 1
1
2 3
usxm:( 0), v, = o 1 o
1 0 0

Thus Ugxor 1s a permutation matrix. For example for
N = 3 a fully entangled state is given by (generalized Bell
state)

| Do) = f(|0 Y®10)+ 1) @ 1) +12) ® |2)).
Then
Ucxor|®o) =—=(10) + [1) +12)) ® |0).

f

The Wigner operator and Wigner function were originally
introduced for infinite dimensional systems. For finite
dimensional Hilbert spaces with dimension N > 3 prime
the Wigner operator can be defined as [15,16]

N—-1 N—1

W(g.p)=_ Y 8grisexp (l —pr— s))ll 5|

r=0 s=0
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where ¢, p=0,1,..., N—1. The calculations are done
modulo N, i.e., r 4+ s stands for (r + s) modulo », etc. The
(g, p) pairs constitute the discrete phase space. For N = 3
the matrix representation of W is

82[{’0 82%1 efi2np/3 82(]’2 efi47rp/3

7 _ i27p/3 —i27p/3

W(q,p) = | 8241 €2/ 8242 82q3 €712/
82,1,2 ei47rp/3 52%3 eian/3 82,1’4

where 8543 = 8240 and 8544 = 854,1. For a state described by
a density matrix p the Wigner function is

W(q,p) = iNtr(p w).

Wigner functions defined in this way obey analogous
properties to those defined on infinite-dimensional Hilbert
spaces. The marginal distributions of the functions

N—1 N—-1
Pg)=) Wa.p.  Pp)=)_ Wy.p)
p=0 q=0

describe the statistics of measurements of observables ¢
and p, respectively. For a bipartite system with subsystems
1 and 2 described by the joint density matrix p('? we define

1 N A
W(qi,p1, q2, p2) = mtr(ﬂ(lz) Wi(q1, p1) @ Wa(qa2, p2)).

Wigner functions describing a subsystem are obtained by
summing the joint Wigner function in the corresponding
set of the respective variables, i.e.,

N—1 N—-1

W(gi.p)=Y_ Y W(qi.p1. q2. ).

¢>=0 p=0

N—1 N—-1

W(g2.p2) =Y > Wlqi.p1. q2. p2).

¢1=0 p1=0

For the generalized Bell state |®() we find

1
W%o(ﬂl,l’lv q27p2) = W(SQIJD(SP],*PZ'
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Thus Wy, is nonzero if and only if ¢ —¢>, =0 and
p1 +p> =0. The Wigner function given above shows the
connection with the EPR-state for continuous-variable
teleportation [7,8]

8(q1 — q2) ® 8(p1 + p2)-

We have shown, starting from the circulant matrix U, how
to construct fully entangled states in finite dimensional
Hilbert spaces applying the Pegg—Barnett operator. To
prove that the states are fully entangled we have calculated
the entanglement measure E(|¥)(y]). To disentangle the
Bell states, i.e. produce product states, we applied the
Ugxor operator. Thus the Ugxor operator provides
another technique to generate fully entangled states.
Finally we have calculated the Wigner operators and
Wigner functions for the generalized Bell states. The
analogy with the EPR-state has been established.
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