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Körding, Konrad P., Christoph Kayser, Wolfgang Einhäuser, and
Peter König. How are complex cell properties adapted to the statistics
of natural stimuli? J Neurophysiol 91: 206–212, 2004. First published
August 6, 2003; 10.1152/jn.00149.2003. Sensory areas should be
adapted to the properties of their natural stimuli. What are the under-
lying rules that match the properties of complex cells in primary
visual cortex to their natural stimuli? To address this issue, we
sampled movies from a camera carried by a freely moving cat,
capturing the dynamics of image motion as the animal explores an
outdoor environment. We use these movie sequences as input to
simulated neurons. Following the intuition that many meaningful
high-level variables, e.g., identities of visible objects, do not change
rapidly in natural visual stimuli, we adapt the neurons to exhibit firing
rates that are stable over time. We find that simulated neurons, which
have optimally stable activity, display many properties that are ob-
served for cortical complex cells. Their response is invariant with
respect to stimulus translation and reversal of contrast polarity. Fur-
thermore, spatial frequency selectivity and the aspect ratio of the
receptive field quantitatively match the experimentally observed char-
acteristics of complex cells. Hence, the population of complex cells in
the primary visual cortex can be described as forming an optimally
stable representation of natural stimuli.

I N T R O D U C T I O N

Most neurons in the primary visual cortex can be classified
into one of two generic cell types. The simple cells respond
selectively to bars and gratings presented at a specific position,
orientation, spatial frequency, and contrast polarity (Hubel and
Wiesel 1962; Schiller et al. 1976b). The neurons of the other
type, complex cells, also respond to bars or gratings of ade-
quate orientation and spatial frequency. They, however, re-
spond equally well regardless of the contrast polarity of the
stimulus and its precise location within the region of the
receptive field (Hubel and Wiesel 1962; Kjaer et al. 1997).

The properties of sensory neurons, including the complex
cells, can be expected to be well adapted to the statistics of the
stimuli they are exposed to under natural conditions.

The most prominent hypothesis of how neural properties
should be adapted to the statistics of natural scenes is called
“sparse coding.” It states that sensory neurons should be se-
lective to specific features, only responding strongly to a small
subset of stimuli, but otherwise showing low activities (Barlow
1961; Fyfe and Baddeley 1995; Olshausen and Field 1996).
This theory could well explain the properties of simple cells in
primary visual cortex (Bell and Sejnowski 1997; Olshausen
and Field 1996; Van Hateren and van der Schaaf 1998).

Under what assumption about the objective of adaptation do

simulated neurons develop the same properties as complex
cells? To derive such an objective, we start with the insight that
it is one of the tasks of the brain to extract relevant sensory
features (Barlow 1961). Relevant variables, such as the de-
scription of a visual scene in terms of objects, change on a
slower time scale than low-level features, such as luminance in
a small spatial region. If we, for example, see an animal such
as a tiger, it usually stays around for some time. However, the
position of the image of its stripes on the retina changes on a
shorter time scale. Such insight has led to the development of
criteria that measure the stability or temporal coherence of the
responses of simulated neurons (Becker 1999; Einhäuser et al.
2002; Földiak 1991; Kayser et al. 2001; Klopf 1982; Stone and
Harper 1999; Sutton and Barto 1981; Wallis and Rolls 1997;
Wiskott and Sejnowski 2002). These studies have successfully
applied this criterion to the representations of artificial stimuli
such as moving bars to establish that such a mechanism could
lead to complex-type neurons (Földiak 1991; Wiskott and
Sejnowski 2002). However, by using such simple stimuli, the
population of neurons does not obtain a rich enough distribu-
tion to be thoroughly compared with physiology.

Here we apply a similar stability criterion to the represen-
tations of natural stimuli. We then compare the resulting neu-
ronal response properties, i.e., their selectivity to orientation
and spatial frequency as well as their response modulation and
aspect ratio, to those of complex cells in primary visual cortex.

M E T H O D S

Stimuli

We study the response properties of simulated neurons after adap-
tation to image sequences of natural scenes. A freely moving cat
explores the forest located next to the campus in Zürich while carrying
a miniature CCD camera (for details, see Einhäuser et al. 2002) on its
head that samples the natural visual input. This procedure is carried
out in accordance with institutional and national guidelines of animal
care. A video of 3000 frames, recorded at 25 frames/s, digitized at a
resolution of 4.5 pixel/°, and converted to grayscale using the MATLAB
rgb2gray function, is used for this study. Ideally we would like to take
a single long sequence from the central region of the video. Such a
sequence, however, would need to be prohibitively long to uniformly
sample the stimulus material. That is why we instead take pairs of
patches measuring 30 � 30 pixels from randomly selected but match-
ing locations within two subsequent frames in the movie. Temporal
coherence is evaluated between the patches of the same pair, approx-
imating the optimal sampling process. The patches are first multiplied
pointwise with a Gaussian kernel centered over the patch the SD
(width) of which was 10 pixels. This procedure has a limited effect on
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the amount of information available in the input stream but avoids
edge effects and the anisotropy inherent in square patches. Repeating
the simulations below without this windowing leads to qualitatively
similar results (data not shown). The receptive field obtained in such
simulations are localized, do not cover the full patch, and are approx-
imately round too. The resulting patches are decomposed into their
principal components. The first component, representing the mean
patch brightness, is removed. Components 2–100 carry �95% of the
variance and define a vector I, which defines the input to the optimi-
zation algorithm. As the activity of each subunit linearly depends on
the input, the preprocessing of the input by a principal component
analysis, which is also linear transformation, has no influence on the
optimization process. Discarding the higher-order components, how-
ever, does have an effect. As these components carry only a small part
of the total variance, we do not expect an influence of this step on the
results obtained. Indeed, this assumption is supported by the results of
a recent study (Kayser et al. 2001). On the positive side, as the number
of dimensions of the optimization problem is reduced by a factor of
9 a significant increase in computational efficiency is achieved.

Simulated neurons

Complex cells, in contrast to simple cells, display several strong
nonlinear properties (Chance et al. 1999; Movshon et al. 1978;
Ohzawa et al. 1997; Spitzer and Hochstein 1988). Hence, it is not
possible to describe them adequately by linear models, and we have to
consider nonlinear model neurons. Identical to the choice in a number
of other studies (e.g., Hyvärinen and Hoyer 2000) we chose the two
subunit energy model (Adelson and Bergen 1985; Hyvärinen and
Hoyer 2000).

Each such model neuron consists of two subunits (Fig. 1A). Each
of the subunits computes the scalar product of the same input patch
(I) with a weight vector (W1,i, W2,i respectively). Hence each
neuron is characterized by two linear receptive fields. Both outputs
are subsequently squared and summed to define the neurons activity:
Ai � �(W1,iI)

2 � (W2,iI)
2.

These simulated neurons can, given appropriate weights, exhibit a
large variety of response properties. Most of these properties are never
observed for real neurons. The simulated neurons can, however, also
act like a complex cell if both subunits have Gabor-wavelet-like
receptive fields with identical orientation and spatial frequency, and
the two wavelets have a relative phaseshift of 90° (Fig. 1B). If such a
neuron is excited by a visual stimulus in form of a bar that is moved
over its receptive field, each subunit has an activity that depends on
the bar’s position. As the bar is shifted, the subunits alternate in
having large squared activity. Thus the neuron’s activity, the sum of
the squared subunits activities, changes only little as the bar is moved
within the receptive field. Given the large number of parameters
(twice the length of the weight vector) involved in determining the
response properties of these model neurons, such complex cell like
properties are only one among many other conceivable outcomes.

Optimization

The input consists of image patches that are extracted from suc-
cessive frames of the movies. To simulate the adaptation process, we
optimize the parameters of a population of 100 neurons so that their
responses are maximally coherent over time while being decorrelated
from one another. This is done by maximizing the following objective
function

� � ��
i

1

�A� i
2	

�
A� i,t � A� i,t�40ms�
2	

�stable

� �
i�j

�A� iA� j	
2

�A� i
2	�A� j

2	

� decorr

Here, � 	 denotes the average over all stimuli and thus over time; A� i,t

is the activity of neuron i at time t minus its mean over all times.

�stable takes on large negative values if the output activities change
fast. It thus punishes fast temporal variations. The 40-ms lag between
two successive time points used in that objective function is well
within the range of strong correlations of orientations in natural
stimuli (Einhäuser et al. 2002). �decorr, on the other hand, takes on

FIG. 1. A: patches of size 30 � 30 are extracted from each frame, win-
dowed by a circular kernel, and fed into a network of neurons modeled as 2
subunit energy detectors. Each subunit sums up the common input weighted by
its weightvector. The outputs are squared and added to obtain the output of the
neuron. B: the way such a model neuron can become translation invariant is
sketched. Both subunits need to have receptive fields that are Gabor wavelets
with a relative phaseshift of 90°. A bar of optimal orientation and spatial
frequency is moved through the neurons receptive field. Whenever 1 subunit
has a very positive or very negative activity the other 1 has an activity of 
0.
The outputs of each subunit thus vary a lot, whereas the sum of the outputs of
the 2 subunits does not change much as the bar is moved.
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large negative values in the case of correlated activities of different
neurons and thus punishes such correlations. The average squared
value of each subunit’s activity is multiplicatively normalized to be
one each iteration of the algorithm.

The parameters of the model neurons are optimized by scaled
gradient descent. For �stable, this leads to a local Hebb-type learning
rule. The weight change is local to the synapse and depends only on
pre- and postsynaptic activities at two subsequent points in time.

We furthermore compare our results to the work of Hyvärinen and
Hoyer (2000). In this work, they simulate a set of optimally sparse
neurons that are modeled as four-subunit energy models. All subunits
are constrained to have uncorrelated output thus effectively enforcing
a phase shift of 90°. We repeat their simulations using their code with
our data as input. In this simulation, 24 energy detector neurons with
four subunits are used. We also perform a number of control simula-
tions where we substitute �stable with one of a number of alternative
definitions of sparseness.

Data analysis

In analogy to physiological experiments, we characterize the re-
sponse properties of the model neurons by several indices. The ori-
entation tuning width is calculated as the range of orientations for
which the response to a bar of optimal position is above 1/�2 of the
maximal activity. The best orientation � is defined as the stimulus
orientation that leads to maximal responses. The selectivity for spatial
frequency is defined via the range of spatial frequencies to which the
response exceeds 1/�2 of the maximal level (Schiller et al. 1976b).
The difference between the lower and upper bound of this range is
then multiplied by 100. We measure the responses of neurons to
drifting sinusoidal gratings of optimal orientation and spatial fre-
quency. The neurons AC/DC ratio is the maximum minus the mini-
mum divided by the mean of the resulting activity.

The models that are used for the modeling of complex cells, such
as the two subunit energy model used here, always respond to moving
gratings with twice the temporal frequency of the moving grating as
they respond equally well to bright and dark edges. This implies that
the simulated neurons have a vanishing first harmonic (F1) while the
second harmonic (F2) does not vanish. Real complex cells, however,
show such frequency doubling only to a limited degree, and both
components are small (Heeger 1992; Spitzer and Hochstein 1985).
How should the AC/DC ratios of such simulated neurons be compared
with the relative modulation of real neurons? Either we could compare
the AC/DC ratio to the F2/F0 ratio of real neurons, assuming that the
frequency doubling is just an artifact of the simulation method.
Alternatively we could compare the AC/DC ratio of the simulated
neurons to the F1 of the real neurons; this is the preferable method to
distinguish complex cells from simple cells. In the scenario followed
in this paper, the simulated neurons should have small AC/DC ratio
compared with the relative modulation of real neurons.

The envelope of the receptive field is defined as: Ei(x, y) ' Wi,1

(x, y)2 � Wi,2(x, y)2. The length Li and width V i (defined via the SDs)
of the receptive field is calculated (using the abbreviation [ � ]� '
max(., 0))

Li � ��
x,y


x sin 
�� � y cos 
���2�Ei
x, y� � 0.5 std 
Ei���

Vi � ��
x,y


x cos 
�� � y sin 
���2�Ei
x, y� � 0.5 std 
Ei���

Where x and y are the positions relative to the center of gravity of the
receptive field. The aspect ratio is defined as Li/Vi. The subtraction and
rectification prevents points with low values, lying far from the
receptive field, from strongly influencing the aspect ratio. This is
comparable to removing values below the noise level in physiological
experiments. Histograms are compared using a one-sided Kolmo-

gorov-Smirnov (KS) test yielding the probability of both histograms
being drawn from the same distribution.

Parametric studies

In parametric studies we characterize the dependence of �stable on
the receptive field properties. To elucidate why sparse coding alone is
not expected to result in complex cell type responses, we also measure
the dependence of a specific definitions of sparseness on the receptive
field properties

�Kurtosis � �
i

�A� i
4	

�A� i
2	2

We repeat this simulation with the objective function derived from the
Cauchy prior and the SD obtaining essentially the same results. We
use the same two-subunit model as in the optimization procedures in
the preceding text albeit with simplified receptive fields. Because the
optimization methods result in Gabor type receptive fields and neu-
ronal receptive fields are well approximated by these, we choose the
subunits to be Gabor wavelets of fixed orientation and spatial fre-
quency. The phase and aspect ratio of each subunit, however, remain
free parameters

G
a, s, sx, sy, x, y� � sin 
180x/a � s� � exp
�x2/
asx�
2 � y2/
asy�

2�

where a, which is fixed to a value of 5 pixels, is the size of the Gabor,
s is the relative shift between the subunits, sx and sy are the relative
length and width, and x and y the relative positions of the pixels. For
Fig. 4, B and C, we choose identical shapes: W1 � G(5,0,1,1), W2 �
G(5,s,1,1) and vary the shift, s, between the subunits. For Fig. 4C, we
choose a fixed shift of 90°: W1 � G(5,0,�,w), W2 � G(5,90°,�,w) and
vary length, �, and width, w, between 0.5 and 4 in steps of 0.1. Aspect
ratios are binned in steps of 0.2 between 0.2 and 5.

R E S U L T S

We simulate neurons and adapt them to display optimally
stable activity over time. The resulting response properties are
characterized by the receptive fields of their two subunits (Fig.
2A). Most of the subunits exhibit a receptive field that is well
described by a Gabor wavelet. They thus have receptive fields
that are localized in the visual space and that are selective to
orientation and spatial frequency. Most neurons exhibit a phase
shift between the Gabor wavelets representing the receptive
fields of each of its subunits that is close to a quarter cycle
(90°). This suggests that the response properties of the simu-
lated neurons exhibit some translation invariance (sketched in
Fig. 1B), a key property of complex cells. The neurons are
furthermore tuned to orientation and spatial frequency (Fig. 2,
B and C) (see also Webster and De Valois 1985).

In the following, we quantitatively compare the simulated
neurons’ responses to bars and gratings to those of real neu-
rons. First we investigate the orientation specificity. In re-
sponse to a bar of optimal width, the population of optimized
neurons displays a narrow orientation tuning (38° width, Fig.
2A). This specificity is somewhat tighter than the tuning width
of real complex cells (56°, P � 0.001 KS test) (Schiller et al.
1976a). The simulated neurons also exhibit a tight tuning
(index of 51.9) to spatial frequency comparable to the tuning
index of cortical neurons (average index of 46.9, Schiller et al.
1976b), although the small difference is significant (P � 0.01
KS test).

Next we compare real and simulated neurons on the basis of
their response to moving gratings. In primary visual cortex, a
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bimodal distribution of relative modulation strengths is ob-
served (Skottun et al. 1991) (Fig. 3C). Complex cells are
defined as having a relative modulation �1.0, whereas simple
cells are defined by larger values of the modulation ratio. In our
simulations, a wide bimodal distribution of AC/DC values is
also observed. The AC/DC ratios of the optimally adapted
complex cells have a mean (0.41) that is not significantly larger
than the experimentally observed relative modulations (0.40,
P � 0.3 KS test).

Last we compare the aspect ratios of the receptive fields
defined as the ratio of its width relative to its length. Real
complex cells have an aspect ratio of 1.02 � 0.2 (Ohzawa and
Freeman 1997) (mean � SD; Fig. 3D). The optimally adapted
neurons have an aspect ratio of 1.09 � 0.3, closely matching
the experimental values (P � 0.3, t-test).

AC/DC ratio and aspect ratio define the invariant processing
performed by complex cells. Thus the simulated neurons with
optimally stable activity result in good fits to the measured
properties of complex cells in the primary visual cortex.

It has been proposed that combining sparse coding with

appropriate boundary conditions also leads to complex cells
(Hyvarinen and Hoyer 2000). We repeat that simulation using
our stimulus database. This simulation yields neurons with an
orientation selectivity of 37° and a spatial frequency selectivity
of 40.5, both well in the range of the physiological values (56°,
46.9, respectively) and comparable to optimizing a stability
objective (38°, 51.9, respectively). For the AC/DC ratio, this
simulation, however, results in a value of 0.65 that is far larger
than the physiological value (0.40) and the result of optimizing
a stability objective (0.41; P � 0.001 KS test). Thus combining
a sparseness objective with additional boundary conditions
does not result in sufficiently translation invariant neurons.
Furthermore, the aspect ratio of 1.73 is far larger than the one
observed for real complex cells (1.02, P � 0.001 t-test).
Similar results and equally significant deviations are found if
we exchange �stable in our simulations by the objective func-
tion derived from a Cauchy prior as used by Olshausen and
Field (1996) or the Kurtosis. This suggests that only the ob-
jective of stability adequately explains the properties of com-
plex cells.

The head-mounted camera does not register changes in gaze
associated with movements of the eyes. However, recent re-
sults indicate that under the conditions the stimuli were re-
corded eye movements contribute little to stabilizing the retinal
image (Möller et al. 2003). To control for possible residual
stabilizing effects of eye movements, we perform two experi-
ments: 1) we simulate eye movements that randomly stabilize
50% of the patches. And 2) we randomly shuffle 10% of the
patches. The resulting receptive field properties are essentially
unchanged in both cases. In particular in both cases, they are
translation invariant and have AC/DC ratios close to the rela-
tive modulation of physiological data (P � 0.3 for both con-
trols, KS test). Therefore we do not expect major changes of
the reported results if eye movements of the cats under free
viewing conditions were taken into account.

To investigate if the results generalize to a more general
nonlinear model or if the results are due to the way, we
constructed our model neurons we perform an additional sim-
ulation (Fig. 4A). Simulated neurons consisting of eight half-
squaring subunits are modeled. The neural properties resulting
from optimizing �stable are similar to those found for the
two-subunit energy model described in the preceding text.
Importantly, the AC/DC ratio distribution is not significantly
larger than the relative modulations of real complex cells (P �
0.3, KS test). Thus the results do not critically depend on the
constraints on the model neurons’ nonlinear properties defined
by the two-subunit energy model. The type of the nonlinearity
is set in our simulations. For the neurons to exhibit complex
cell properties, however, the subunits need to obtain identical
orientation and spatial frequency as well as the right phase
shift. This simulation thus shows that these properties can be
obtained from natural scenes even for varied neuron models.

To better understand the preceding results, we proceed to
characterize some important nonlinear statistical properties of
videos natural scenes. To do so, we measure the objective
values of simulated neurons in response to the videos of natural
scenes. We choose the subunits of the same model as in the
preceding text to be Gabor wavelets of fixed orientation and
spatial frequency, leaving the aspect ratio and the relative
phase as free parameters. With this more restricted set of
subunit receptive fields, we can systematically analyze the

FIG. 2. Qualitative properties of the simulated neurons. A: pairs of recep-
tive fields are shown of neurons with optimally stable activity. B: the responses
of 2 representative neurons to bars of changing orientations and widths
(displayed at the optimal positions) are shown. C: responses of the same
neurons to gratings of optimal phase and orientation but varying spatial
frequency are shown. D: the optimal orientation and optimal spatial frequency
are plotted for all the simulated neurons.
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influence of the receptive field properties on various objective
functions. Varying the relative phase of the subunits reveals
that �stable is maximal if the simulated neuron is translation
invariant and the wavelets have a relative phase of 90° (Fig.
4B). Neurons then represent localized oriented energy detec-
tors and are translation invariant as are real complex cells. We
furthermore analyze the influence of the aspect ratio on the
objective functions (Fig. 4C). �stable reaches its highest value
for spherical receptive fields with an aspect ratio of 
1 similar
to the value of real complex cells (Ohzawa and Freeman 1997).
For comparison with other studies, we also plot sparseness as
a function of phase and aspect ratio, which peaks at values that
are far from those found in physiology. It thus seems that
stability is a good candidate for an adaptation criterion that
links complex cells with the statistics of natural scenes.

D I S C U S S I O N

We have show that adaptation to a stability objective leads
to simulated neurons sharing important spatial properties of
complex cells in the primary visual cortex. Sparseness can be
derived from several ideas such as minimizing energy con-
sumption, optimal channel coding, or searching for a mean-
ingful representation of data. Stability can also be derived from
various ideas: high level variables such as object identities are
stable, stable variables can be transmitted through channels
with lower bandwidth, and learning is easier in a system where
variables change slowly.

Recently Hurri and Hyvarinen (2003) have proposed that
optimizing stability of linear neurons in response to natural
stimuli leads to receptive fields like those of simple cells. The
stability of linear neurons, however, is always considerably

lower than the stability of the nonlinear complex cells in our
study. The authors furthermore use a slightly different objec-
tive that biases the neurons to be both stable and sparse. These
results might still indicate that both simple and complex cell
responses could be understood in a coherent framework de-
rived from the idea of stability.

In our simulations, each neuron only saw the input stimulus
windowed by a Gaussian. Parts of the properties of the neu-
rons, in particular the aspect ratio could thus be affected by this
preprocessing. Some of the simulated neurons, however, do
have receptive fields that are smaller than the size of the
Gaussian. There is a tendency for neurons to obtain localized
receptive fields. It would be interesting for future studies to
analyze if the distribution of receptive field sizes can be ob-
tained exclusively from optimizing stability. Such studies
would, however, need very large numbers of simulated neurons
as they would need to jointly encode the retinal space in
addition to the orientation and spatial frequency space.

Do neurons found in primary visual cortex exhibit sparse or
stable or maybe both types of response properties? Both ob-
jectives seem useful for processing in the nervous system. The
question of which objective links the properties of natural
scenes to the properties of complex cells is experimentally
accessible. On one hand, for these analyses, recordings from
neurons in response to natural scenes would need to be com-
pared with response to artificial stimuli such as bars or grat-
ings. With respect to sparseness some experiments started to
address this issue (Baddeley et al. 1997; Vinje and Gallant
2000). If a large set of natural visual patterns is presented in
sequence, most of these are not effectively stimulating the
recorded neuron. A small subset of stimuli, however, can
activate the neuron strongly and elicit very high firing rates.

FIG. 3. Density distribution of properties of complex
cells in primary visual cortex and of neurons with opti-
mally stable activity. A: the orientation tuning widths
are shown for cortical complex cells in monkey cortex
(Schiller et al. 1976a) and for the simulated neurons. B:
the selectivities to spatial frequency are shown for cor-
tical complex cells in monkey cortex (Schiller et al.
1976b) and for the simulated neurons. C: the relative
modulation strengths are shown for a collection of 1,061
cat complex cells replotted from Skottun et al. (1991)
along with the AC/DC ratio of the simulated neurons. D:
the distribution of aspect ratios is sketched for cat cor-
tical neurons (Ohzawa and Freeman 1997). This is com-
pared with the aspect ratios of the simulated neurons.
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Similar experiments could address how stable neural responses
are.

The fact that complex cells of adult animals are well de-
scribed as an adaptation to a stability objective raises the
question whether this adaptation occurs on onto- or phyloge-
netic time scales. If there is an ontogenetic component to the
development of complex cells, it allows the following experi-
mental test of the stability hypothesis. Changing the environ-
ment during an animal’s critical period (e.g., by strobe rearing)
would impair the development of complex cell type receptive
fields. In particular there should be a range of strobe rates in
which complex cells are severely affected, whereas simple
cells are not. From measurements of correlation times in nat-
ural videos (Kayser et al. 2003), this rate is expected to be of
the order of 10Hz.

If simple cells optimize a sparseness criterion and complex
cells optimize a stability criterion, it is tempting to speculate,
whether such a division of labor is repeated in higher areas.
Indeed in a widely used architecture for invariant object rec-
ognition, the Neocognitron (Fukushima 1980), a hierarchical
network with an alternation of simple and complex type cells
is used. Hence it is interesting to build larger systems consist-
ing of several layers, each optimizing an adequate objective.
This could result in a hierarchical system allowing to predict
the response properties of neurons in higher cortical areas and
to relate the response properties of such neurons to the statistics
of the real world.
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