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Cognitive Control Signals for
Neural Prosthetics

S. Musallam, B. D. Corneil,* B. Greger,
H. Scherberger,† R. A. Andersen‡

Recent development of neural prosthetics for assisting paralyzed patients has
focused on decoding intended hand trajectories from motor cortical neurons
and using this signal to control external devices. In this study, higher level
signals related to the goals of movements were decoded from three monkeys
and used to position cursors on a computer screen without the animals emitting
any behavior. Their performance in this task improved over a period of weeks.
Expected value signals related to fluid preference, the expected magnitude, or
probability of reward were decoded simultaneously with the intended goal. For
neural prosthetic applications, the goal signals can be used to operate com-
puters, robots, and vehicles, whereas the expected value signals can be used to
continuously monitor a paralyzed patient’s preferences and motivation.

Neural prosthetics are being designed to
record brain activity related to intended
movements from the sensorimotor pathway
of paralyzed patients and to use these signals
to control external devices. It would be valu-
able to determine what parameters can be
decoded and used for prosthetic applications.
Previous research has concentrated on ex-
tracting the online (real-time) intended trajec-
tories of the hand by recording signals pri-
marily, but not exclusively, from the motor
cortex (1–5). This study explores whether a
higher level signal of the goal of a movement
can be decoded for prosthetic control. For
example, a goal signal indicates the intention
to reach for an apple, whereas a trajectory
signal would indicate the intended direction

of the hand movement during the reach. An-
other high-level signal of interest is expected
value, which is used for making decisions.
For instance, if an individual has two poten-
tial reach goals, an apple and an orange, and
the subject prefers apples over oranges, there
are signals in his or her brain that indicate this
preference and will influence the decision to
reach for the apple instead of the orange. We
refer to this approach of extracting high-level
signals as cognitive based; intended trajecto-
ries can also be considered among this group
of signals, although at a lower level.

Recordings were made at points along a
major pathway for visually guided movement
which begins in the extrastriate visual cortex
(6) and passes through the parietal reach re-
gion (PRR) and area 5 to the dorsal premotor
cortex (PMd) and then to the primary motor
cortex (7, 8). Although PRR is specialized for
reaching movements (9, 10), it represents the
goals of the reach in visual coordinates (11).
This visual representation indicates that the
planned movement is at an abstract level and
codes the intended goal rather than how to
move the hand. Further emphasizing its cog-
nitive nature, this goal signal is present when
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versity/Eidgenössische Technische Hochschule (ETH)
Zurich, 8057 Zurich, Switzerland.
‡To whom correspondence should be addressed. E-
mail: andersen@vis.caltech.edu

Fig. 5. Recovery of behavior. (Top) The escape
bend of a fish before regeneration, after regen-
eration, and in an unlesioned fish. Images are
shown every 2 msec after the start of the turn
until the maximum of the bend. Bottom panels
quantify the escape performance before and
after cAMP-induced regeneration (mean �
SEM). Performance measures included (A) re-
sponse latency, (B) peak angular velocity, (C)
duration, and (D) maximum angle of the bend.
These performance measures are shown for a
group of five fish (five trials each) studied be-
fore (black bar, 3 days post-lesion) and after
(black bar, 5 days post-lesion) cAMP treatment
and for a control, untreated group (white bars)
over the same time course (P � .0001 in every
case for treated versus control). White bars on
the right show performance measures from
wild-type (w.t.) fish at 9 days.

R E P O R T S

9 JULY 2004 VOL 305 SCIENCE www.sciencemag.org258

 o
n 

M
ay

 3
1,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


animals plan but withhold movements in the
dark; that is, the planning activity exists apart
from any visual or movement-related signals.
Area 5 has also been shown to encode
movement intention in both visual and limb
coordinates (12). Although less is known
about the reference frame of PMd, it ap-
pears that at least a subset of cells have
similar properties to PRR (13–15).

In three monkeys, 64 and 32 electrode
arrays were implanted in the medial intrapa-
rietal area (MIP) (a component of PRR) and
area 5, respectively (16). Only cells from
MIP were used for decoding in two monkeys
(monkeys S and C), whereas a small minority
of area 5 neurons were included for monkey
O. Monkey S also had 64 electrodes implant-
ed in PMd in a separate surgery.

Experiments were initiated 2 weeks after
array implantation and each daily experimen-
tal session consisted of 250 to 1100 trials
(median number of trials was 819, 726, and
361 for monkeys S, C, and O, respectively).
Each session was divided into a reach seg-
ment for collecting a database and a brain
control segment to decode the position of a
cursor on a computer screen. Each session
started with the reach segment, during which
monkeys performed 30 (or 20 for PMd)
memory guided reaches per direction. This
task required them to reach to a flashed cue
after a delay of 1.2 to 1.8 s (memory period,
Fig. 1A). The go signal was the offset of a

central green target (17). Neural data record-
ed during successful reaches were added to a
database to be used in the brain control seg-
ment. The brain control trials began similarly
to the reach trails, with a cue flashed in the
periphery. However, during the memory pe-
riod the movement intention was decoded
with 900 ms of neural data beginning 200 ms
after the cue offset. When the correct goal
was decoded, a cursor was placed at the
intended reach location and the subjects were
rewarded. Trials were aborted if a hand
movement occurred during the memory peri-
od. If the wrong target was decoded, then
monkeys were instructed by the offset of the
central green target to reach to the cued lo-
cation (17). Trials in both the reach and brain
control segments were aborted whenever any
eye movements occurred that placed the gaze
outside of a 5° centrally located window.

In different sessions, the database was either
not updated after the end of the reach segment
(frozen database), or updated after successfully
decoded brain control trials (adaptive database).
The adaptive and the frozen database yielded
similar decode results (fig. S2), indicating that
the database update was unnecessary. Notably,
the adaptive database eventually contained
only brain control trials without leading to
loss in performance. This indicates that train-
ing sets for cognitive prosthetics can be ob-
tained in paralyzed patients who do not have
the ability to reach.

The use of memory period activity en-
sured that only the monkeys’ intentions were
being decoded and not signals related to mo-
tor or visual events. An example of the ab-
sence of motor-related signals during brain
control trials can be seen in Fig. 1B. The
memory activity of this cell is present for
both reach and brain control trials, but the
motor burst, which occurs about 1.4 s after
the onset of the memory period in reach trials
(red), is absent during successfully decoded
brain control trials (black).

Three representative performances of
online cursor control with intentional sig-
nals from three separate sessions from
monkey S are shown in Fig. 1, C and D. On
the basis of only memory period activity
from eight PRR neurons, four targets were
correctly decoded with 64.4% accuracy
with 250 brain control trials, and six targets
were decoded with 63.6% accuracy with
275 brain control trials in separate sessions
(Fig. 1C). On the basis of recordings of 16
cells from PMd, eight targets were decoded
with 67.5% accuracy with 310 brain control
trials (Fig. 1D). Figure 1E describes the
overall performance of the three monkeys
across all sessions for brain control trials.

The performance can likely be improved
by increasing the number of cells. Although
many neurons were tuned during the visual
and/or motor period of the task, they were
not used during brain control trials unless

      

       

       

       

   

   
 

Fig. 1. (A) Task for reach and brain control trials (17 ). At 500 ms after the monkeys
touched a central green cue and looked at a central fixation point (red), a peripheral cue
(green) was flashed for 300 ms. For reach trials, the monkeys were rewarded if they
reached to the target at the end of a memory period of 1500 � 300 ms. During brain
control trials, data from 200 to 1100 ms of the memory period was used to decode the
intended reach location. Monkeys were rewarded if the correct target was decoded. (B)
Comparison of neural activity during reach (red) and brain control (black). Each row is
a single trial aligned to the beginning of the memory period. Thickness of the
poststimulus-time histogram (PSTH) represents the standard error calculated with the
bootstrap method. M, start of memory period; Sp, spikes. (C) Cumulative decode
performance of monkey S during brain control trials for four targets and six targets on
the basis of eight neurons from the parietal cortex. Dashed line indicates chance
performance. (D) (Left) Cumulative performance of a brain control session with 16
neurons recorded from the dorsal premotor cortex of monkey S. (Right) Offline decode
with the same data, showing the effect of the number of cells on decode performance.
Notably, the number of neurons that can achieve a high success rate remained relatively
low. (E) Mean success rate across all sessions for three monkeys. Values are the percentage
of successfully decoded brain control trials. Number in parentheses is the standard
deviation of the distribution of success rates. NS, number of sessions; *, recordings from dorsal premotor cortex; all other recordings are from parietal cortex.
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they showed significant tuning during the
memory period as assessed by an analysis
of variance (17). The right panel of Fig. 1D
shows the effect of the number of PMd
neurons on the performance of the decode
offline. Neurons were randomly chosen
without replacement from the pool of 16
used in the brain control trials. The im-
proved performance offline, compared with
the left panel of Fig. 1D, is due to the larger
training sets used (17). Increasing the number
of neurons improves performance. However,
the total number of neurons still remained
relatively low. A similar result was found for
PRR neurons with an offline decode of cells
that were recorded one at a time (18).

Shorter decode intervals than 900 ms can
also be used for the online decoding (17) (fig.
S6). Offline analysis on the subset of sessions
that yielded decode rates greater than 60% on
900-ms intervals showed that a 100-ms inter-
val (200 to 300 ms of the memory period)
decreased the performance by a mean (�SD)
of 14.3 � 6.1%. Thus, it is likely that increas-
ing the number of cells will result in very fast
and accurate online decodes.

Significant learning resulted in im-
proved performance of the brain control
task for PRR recordings over a period of
weeks. The percentage of trials successful-
ly decoded from the parietal cortex in mon-
keys S and C for all sessions with four
targets (250 to 1100 brain control trials per
session) is shown in Fig. 2A. Not enough
sessions were available for monkey O and
the PMd recordings from monkey S to per-
mit a similar analysis. For monkeys S and
C, our ability to decode their intentions was
initially poor, hovering just above chance
level. However, it continuously improved
over the course of a number of weeks.
Regression coefficients of the performance
as a function of session number for monkey
S and monkey C were 0.5 and 0.08 percent-

age points per session, respectively. Both
of these positive regression coefficients are
significant (P � 0.01 for monkey S and
P � 0.02 for monkey C).

Over the course of all the sessions, the
amount of information carried by neurons
in the brain control task increased more
than the amount of information during the
reach segment of the task. We calculated
the mean of the mutual information of the
neurons in the memory period during the
reach segment and during the brain control
segment for each of the first 68 sessions for
monkeys S and C (17). The mutual infor-
mation measure quantifies the degree of
spatial tuning and can be used as a metric
that can describe any change in the degree
of tuning. Data from monkey S are shown
in Fig. 2B. This analysis yielded two points
per session: the mean information during
the reach segment while constructing the
database (120 reaches, red points, Fig. 2B)
and the information during the initial 120
brain control trials immediately following
the reach segment (black). The information
carried by cells recorded during the same
session increased more during the brain
control segment than during the reach seg-
ment over the course of 68 sessions
(P � 0.01). A similar result was seen in
monkey C (17 ).

Another series of experiments examined
whether expected value could also be decoded
from PRR activity. We ran a variant of the
memory reach task in which cue size indicated
the amount, probability, or type of reward that
monkeys would receive upon completion of a
successful trial. Only one aspect of the reward
(amount, probability, or type) was varied in a
single session. Cue size was randomly varied
trial by trial and the interpretation of cue size
was varied across sessions so that a large cue
represented the more desirable and less desir-
able rewards on different days.

PRR neurons increased their spatial tun-
ing during brain control and reach trials
when the preferred type of reward (orange
juice versus water) was indicated (Fig. 3, A
and B) (19). The prior knowledge of a
high probability of receiving a reward or
the impending delivery of a large volume of
reward also increased the tuning of these
cells (Fig. 3, C and D). The latter two
effects were observed for all three animals.
The increased activity is unlikely to be due
to attention, given that no increase to the
expected delivery of the nonpreferred re-
ward was recorded when it was aversive
[0.076 M NaCl (20)]; the response to the
saline was similar to the response of a
neutral (water) reward. In addition, the in-
creased activity during the memory period
for preferred rewards was not related to
an associated increase in muscle activity
(17) (fig. S3).

For the brain control trials, those ending
with the delivery of the preferred reward
carried more information than trials ending
in nonpreferred rewards (nonpreferred re-
ward: median, 0.062; 95% confidence in-
terval, 0.0571 to 0.0671; preferred reward:
median, 0.091; 95% confidence interval,
0.077 to 0.097) (Fig. 4A). Accordingly, the
increased information encoded during the
preferred reward condition should improve
the success with which movement inten-
tions could be decoded. To test this asser-
tion, two independent decodes were run
online and in parallel during the brain con-
trol task: one for the preferred reward and
one for the nonpreferred reward. Within a
given experimental session, a single aspect
of the reward (size, probability, or type)
was varied. The preferred and nonpreferred
rewards were randomly interleaved on a
trial-by-trial basis (17). An example of the
performance of these dual decodes, which
used six neurons and varied reward size, is
shown in Fig. 4B. The expectation of a high
volume of reward improved the overall de-
code success rate during the brain control
segment by 12.2%. Over all the sessions,
the increase in the expected value for larger
reward volume increased the successful on-
line decode of goals by up to 21% (Fig. 4C)
with a median of 8.1% (n � 32). The
increase in decode performance also oc-
curred when probability (median � 10%,
n � 4) and reward type (median � 9%, n �
8) were varied. Taken together, these re-
sults show that cells were better tuned dur-
ing the preferred reward trials, providing
greater information about the target loca-
tion and thereby improving the decode.

The expected value could also be decoded
on a trial-by-trial basis from brain control trials.
Offline decodes similar to those used for the
goal, produced a mean accuracy of 84.7 �
8.5% (17) (fig. S5). Even more importantly,

Fig. 2. (A) Overall success rates for decoding movement intention from four possible target
positions. Black circles, monkey S; blue squares, monkey C. The number of brain control trials varied
from 250 to 1100 trials. (B) The mean mutual information of the cells from monkey S, whose
activity was used to build the database (red) and perform the brain control task (black), is depicted
for all 68 sessions. For each session, a selection of cells was chosen on the basis of significant
tuning. These cells were then used in the brain control trials. The mutual information of these cells
was calculated for the 120 reach trials and the subsequent 120 brain control trials.
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expected value (preferred versus nonpre-
ferred for type, magnitude, or probability)
and reach goals were simultaneously read out
with a mean accuracy of 51.2 � 8.0%
(mean � SD; chance � 12.5%) (Fig. 4D).

The results of this study show that the
goal signal can be used as a source of pros-
thetic control. At first, it would appear that
the retinotopic coding of the plan could be
problematic for prosthetic applications when
subjects are free to move their eyes. Howev-
er, the activity within the map of space in
PRR is updated with each eye movement to
maintain activity for the same locations in
extrapersonal space (9), and the patterns of
eye and hand movements are highly coordi-
nated and stereotyped (21). In addition, one
brain control session from monkey O con-
ducted with free viewing yielded a four-target
decode performance of 80.5%, indicating that
intended reaches of animals who are allowed
free viewing during reach tasks can be read
out with PRR activity.

Recently, the human equivalent of PRR
has been identified by means of functional
magnetic resonance imaging (22). One ad-
vantage of using PRR as a target for a cortical
prosthetic is the visual nature of the area.
Somatosensory feedback regarding the out-
come of a movement is often lost with paral-
ysis, but vision generally remains intact.
Thus, PRR can receive a very direct visual
“error signal” for learning to operate a neural
prosthetic in the face of paralysis. PRR is also
more anatomically remote from the somato-
sensory and motor pathways that are dam-
aged in paralysis (23). It is possible that PRR
will show less degeneration than is seen in
other cortical areas that are more closely
connected to these pathways.

Consistent with work on cortical plasticity
(24), the animals learned to improve their
performance with time. This plasticity is im-
portant for subjects to learn to operate a
neural prosthetic. The time course of the plas-
ticity in PRR is in the range of 1 or 2 months,
similar to that seen in motor areas for trajec-
tory decoding tasks (2, 4).

Short-term improvements in performance
were achieved by manipulating the expected
value of reward [see also (25)]. The expected
value of the probability of reward, the size of
the reward, and the type of reward were
decoded from the activity in the brain control
experiments. These signals in PRR have not
been previously observed, and parallel a
similar finding of expected value in the
nearby lateral intraparietal area (26) as well
as other cortical and subcortical areas (20,
27, 28). This activity does not appear to be
linked to attention, given that PRR is active
selectively for reach plans independent of
attention (10), and also did not show an
enhancement of activity when aversive out-
comes were expected.

Fig. 3. (A) Response of a neuron during brain control
trials in which reward type was varied; orange juice
(black) versus water (red) and (B) its tuning curve. Ras-
ters are aligned to the onset of the memory period. The
direction of the intended reach that elicited the respons-
es is written on the figure. Vertical lines superimposed
on the PSTH enclose the 900-ms memory segment used
to calculate the tuning curves and the duration of the
neural activity used to decode reach intention during
brain control trials. Volume of juice and water was the
same (0.12 ml). (C and D) Tuning curve calculated from
the firing rates of two additional cells while the proba-
bility (C) and magnitude (D) of reward was varied.

Fig. 4. (A) Mutual informa-
tion for all the cells used to
decode reach intentions for
nonpreferred (left) and pre-
ferred (right) rewards dur-
ing brain control trials for
all sessions. Cells for each
session are not unique. Yel-
low vertical lines running
through the histogram rep-
resent the median of the
distribution. (B) The perfor-
mance of monkey S from
one session during pre-
ferred (black) and nonpreferred (red) reward conditions. Dashed line represents chance. Decode
performance for the two reward conditions is indicated on the plot. (C) Improvement in decode
between preferred and nonpreferred reward. Black, variable magnitude (high volume, 0.12 ml; low
volume, 0.05 ml); red, variable type ( juice versus water, volume � 0.12 ml); green, variable
probability (high probability � 80%, low probability � 40%). Total number of sessions is 44 (32
reward magnitude, 4 reward probability, and 8 reward type). (D) Offline simultaneous decode of
four directions and expected value (dashed line shows chance). Error bars show mean � SD and
were obtained by cross-validation (leaving 30 trials out per iteration).
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The correlation of increased activity
with increased expected reward is substan-
tiated by behavioral data that showed a
decrease in reaction times for the preferred
rewards (fig. S4). Expected value is a nec-
essary component of the neural system that
mediates decision-making (26, 29). On the
other hand, it is possible that we are seeing
motivational effects that are a direct conse-
quence of expected value (30). Further ex-
periments will be required to distinguish
between these two explanations.

The decoding of intended goals is an
important feature for a cognitive-based
prosthetic. Once these goals are decoded,
then smart external devices can perform the
lower level computations necessary to ob-
tain the goals. For instance, a smart robot
can take the desired action and can then
compute the trajectory. This cognitive ap-
proach is very versatile because the same
cognitive, abstract commands can be used
to operate a number of devices. The decod-
ing of expected value also has a number of
practical applications, particularly for pa-
tients that are locked in and cannot speak or
move. These signals can directly indicate,
online and in parallel with their goals, the
preferences of the subject and their moti-
vational level and mood (Fig. 4D). Thus,
they could be used to assess the general
demeanor of the patient without constantly
querying the individual (similar to assess-
ing body language). These signals could
also be rapidly manipulated to expedite the
learning that patients must undergo to use
an external device. Moreover, this research
suggests that all kinds of cognitive signals
can be decoded from patients. For instance,
recording thoughts from speech areas could

alleviate the use of more cumbersome letter
boards and time-consuming spelling pro-
grams, or recordings from emotion centers
could provide an online indication of a
patient’s emotional state.

The cognitive-based prosthetic concept
is not restricted for use to a particular brain
area, as can be seen by the finding that PRR
and PMd activity could both provide goal
information. However, some areas will no
doubt be better than others depending on
the cognitive control signals that are re-
quired. Future applications of cognitive-
based prosthetics will likely record from
multiple cortical areas to derive a number
of variables. Moreover, online trajectory
information can also be considered as a
cognitive variable that can be decoded
along with other cognitive variables.
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