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Fast spike pattern detection using the correlation integral
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Conventional approaches to detect patterns in neuronal firing are template based. As the pattern length
increases, the number of trial patterns to be tested leads to strongly divergent computational costs. To remedy
this problem, we propose a different statistical approach, based on the correlation integral. Applications of our
method to model and neuronal data demonstrate its reliability, even in the presence of noise. Additionally, our
investigation provides interesting insights into the nature of correlation-integral anomalies.
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[. INTRODUCTION of pre-chosen templates. As the patterns areriori un-

) ) ) . known, large template sets are required to include all poten-
. Biological neural systems can be viewed as an alternatiVgy| patterns to be tested against. Second, due to the omni-
information processing paradigm, that often proves far more,asent noise, patterns cannot be expected to repeat perfectly,
efficient than conventional signal processing. Although the,hich implies having to choose a tolerance for template
underlying structuregneurons and their connectivitgan be  naiching. Adopted tolerances range from fractions of one
accurately modeled by electronic circufts], the principles [11] to a few millisecond$8], demonstrating the difficulty in
according to which they process information are not wellyetermining the required accuracy. As an illustration, let
understood. Growing evidence, however, suggests that Nelg ., ... x.}, wherex,>0, be an ISI series witk,,, denot-
ronal circuits work according to distributed parallel Processyng the smallest an,., the largest element. Templates have
ing principles, and that neuronal information encoding dif-y, & . (t,+T, 4,27, __a_x,tkﬂ), with template lengttk and

fers from that of traditional signal processifj. ~ . ; .
In neural information processing systems, activity istglsetirr?ncgn-rrhee:ul;g b:;t?r;gfe%raégr;illrsv?/lsmii fgr tLi]r?g|aS?ig
manifested as spikes. Temporal recordings of firing eventg_ 9 . ' P 9
width of At=2t yields N=[X.— Xmin/ At] values to test, and

provide interspike interva(lSl) series. It is expected that ° ¢ Intes ch. M biased lat
aspects of the processed information are encoded in the form empiates o malch. Voréover, an unbiased tempiate
of structures contained in the ISI series. Patterns, howevefnalysis requires choosing a Seof distinct tolerances. This

X ¢ads to~kT(L—k+1)NK numbers that need to be compared.

are not the only method of neural information encoding. X . - .
Whereas some neurons indeed specialize in firing in terms of 't 1S evident that an efficient template analysis can only be

patterns(due to their morphology, or their embedding in the Performed for smalk, which may explain the short pattern
network[3]), others prefer firing randomigwhich has led to lengths reported in the literature. For an extended investiga-
the Poissonian firing assumptie4]). For a given neuron, its tion, tools that detect the presence of patterns, find elements
firing characteristics appears to be stable in time. Recently, h €OMPosing the templates and estimitare desired. His-

computational model has been proposed wherein this coefograms and correlation functions fall short as reliable indi-
istence proves advantageds. cators. We propose to use the correlation integral as a purely

Consequently, the detection of pattern occurrences can bgatistical, bias-free tool to detect the presence of patterns.
considered a fundamental step in the analysis of the neurdlMiS approach is computaﬂon(zally inexpensigrumber of
computation. Patterns are defined as those parts of the I§fIrS Of numbers to comparekN’) and significantly reduces
series that repeat significantly more often than they would if1® Set of potential templates to be tested. The underlying
a randomized series based upon the identical distribgigpn ~ &/90rithm is well known and optimized implementations are
The standard approach to the identification of patterns is t§/idely used. In addition, our contribution sheds new light on
systematically predefine pattern templates and to count thelyidely observed anomalies of the correlation integral that are
frequency of occurrencgemplate-based metho@i g]). De- ~ 9enerally not well understood.
fining the length of a pattern as the number of the ISI's
involved, only patterns of lengths from 1 to 5 have been Il. CORRELATION INTEGRAL METHOD
reported [9'101'. Template-pased method_s suﬁer from o the correlation integral was originally designed for the
fundamental difficulties. First, the detection relies on the S€ljetermination of the correlation dimensift2,13. The pur-

pose of our paper is to explore its potential for the detection

of patterns in neuronal spike trains. First, we briefly intro-

*Corresponding author. FAX:41-1-635-3053. Electronic ad- duce the correlation integral, and elucidate its ability to de-
dress: ruedi@ini.phys.ethz.ch tect clusters. Second, we address its application to ISI pat-
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FIG. 1. Log-log plot steps from different ISI modei®i=2; Euclidean norm; log:l0g,). (a) low-noise casénoise+1%:; solid line in all
four plot9, (b) noise +10%,c) unstable periodic orbitgd) patterns within noisy background.

terns. Third, we evaluate to what extent the method is helpfutithms to the base 2 for our numerical results.
when determining ISI pattern lengths. In practical applications of the method, the steps in the
Consider an arbitrary scalar time series of measurementsg-log plot generally become less salient due to influences
{x}, i=1,... L, whereL denotes the length of the time se- that will be discussed below. In this case, the difference quo-
ries. From these data, embedded po@ﬁ‘l’% are constructed: tient A IogCF\‘m)(ei): :IogC(Nm)(eHl)—IogCLm)(ei), which ap-
f(km):{xk,ka .-« Xr(m-1))» Wherem s called the embedding proximates the derivative of the correlation integral, is a
dimension. Thizoordinate-delay constructiois standard in  more sensitive indicator of clusters. For smalheighbor-
nonlinear dynamics. Its purpose is to reconstruct the comboods, the log-log plot is affected by strong statistical fluc-
plete underlying(in general: high-dimensiongldynamics tuations. These regions, however, are easily identified and
from partial, generally scalar, measuremefi4—19. From  excluded from the analysis.
the embedded data, tlwerrelation integralis calculated as

Ill. SMEARED LOG-LOG STEPS

(m) _; _ 1M _ m)
(9= Qg = Xl =",

In natural systems, the steps are smeared. We investigated
three causes. The first is noise, which is naturally present in
where 6(x) is the Heaviside functiofig(x)=0 for x<O and  measured ISI series. This can be modeled by adding uniform
6(x)=1 for x>0] andN is the number of embedded points noise to our ISl seriefl ,2,4,1,2,4. ... Added noise causes
(N=<L-m+1). Different norms can be used to compute the point clusters in the embedding space to become more
Cﬁ\lm)(e). In most cases, the maximum norm is advantageoug]ispersed. Consequently the effects of small amounts of
as this choice speeds up the computation, and allows an easgise will only be visible at the step boundaries. As the noise
comparison of results obtained for different embedding diincreases, its effects penetrate towards the centers. This is
mensions. Degeneracies introduced by this choice are reisible in Fig. Xb) where the horizontal parts of the steps
moved by adding a small amount of noise. Alternatively, thehave become narrower, and the vertical parts less steep.
Euclidean norm is often used. Second, the generator of the IS series could be chaotic in

The connection betweeﬁﬁ\,m)(e) and patterns is surpris- nature. In this case, a distance from a given unstable periodic
ingly simple: For the calculation oC(Nm)(e), an embedded orblt_ grows ate™, wheret denotes the .t|me.and s the
point §ém) is chosen at random. Then, the number of points(posmva Lyapunov exponent of the orbit. This implies that

entering itse neighborhood is evaluated, ass enlarged. If merref’/etr'“gn of amt/hseguem?r Ifnlizss I|rI:etbetIhe Ir:;?tg(iar ..

the point belongs to a cluster, many points will join the ?meirc:is?ié aegggzﬁa esesgayorbci)ts WiIEI3 gmseﬁ1 ee izcreaz- °

neighborhood. Once the cluster size is reached, fewer poinfg ’ (p 0 : g€,

are recruited, leading to a slower increase(:ﬁ‘?)(e) When Ing the number of steps. Recently, a S|mple chaqs cpntrol
. ' S ' ' .method has been found, that has the potential of being imple-

as required by the correlation integral, an average over dif

S . : . mented in biological neural network0,21. We can simu-
ferent points is taken, pieces of fast increas€fft(e) inter- late this situation with a simple series composed as follows:

change with pieces of slow increase. This leads to auih probability p,=0.5 we take the whole sequence
staircaselike graph of the correlation integral. The denser th§1,2’4}, with p,=0.31 the subsequendd,2}, and with p;
clustered regions, the more prominent the stepwise struc=g 19 the subsequencgl! (this choice leads top,/p,
tures. PlottingCy"(¢) on a log-log scale not only preserves = p,/ps). The resultgFig. 1(c)] show five instead of three
these structures but enhances the representation of smadkeps, indicating that additional orbits have been generated.
scale steps. A third option is that patterns occur within a noisy back-
To show the emergence of steps, we constructed a seriggound. In this case, the pattern only appears intermittently.
from a repetition of the sequencgl,2,4;, where the se- As a consequence, the fraction of points belonging to clus-
quence numbers can be interpreted as ISI durations measurggs in the embedding space is diminished, implying that the
in ms. The embedding of this series fior=2 leads to three  steps in the log-log plot become less prominent. To simulate
clusters, represented by the poifts={1,2}, P,={2,4}, and  this situation, we took with probabilitp=0.5 the sequence
P;={4,1}. Calculating the correlation integral and plotting {1,2,4, otherwise three interspike intervals were randomly
|OgC§\|m)(e) against loge does indeed lead to a clean-cut stair-drawn from the interval0,4]. The resultgFig. 1(d)] show

case structur@Fig. 1(a)]. Throughout the paper we use loga- that the number of steps indeed remains unaffected, but the
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0 -3.2 TABLE I. Maximum number of steps(m,n) as a function of
0.3 the embedding dimensiam and pattern size.
. 0.2 é@ ’g‘i Pattern sizen Embedding dimensiom
o =2 O
=4 (@]
= 2 8 1 2 3 4 5 6 7
01 - 1 o 0o 0 0 0 0 0
. s N M\J“”\ . 2 1 1 1 1 1 1 1
(a) 5 10 3 3 2 1 1 1 1 1
03 0 3.2 4 6 4 3 2 2 2 2
5 10 8 6 4 2 2 2
S 02 o 2 6 15 12 9 7 5 3 3
= 5 S
04 g g
: - < 2(b), respectively shows that stepgpeaks in the quotient
plot) emerge only if patterns are present. Thus we conclude
8 5 10 15 0 that our method is able to reliably indicate the presence of
-3 0 atterns
(b) Is| log e P :
FIG. 2. Series composed of patter@s and series constructed IV. PATTERN LENGTH ESTIMATION
by a random selection of interva{b), with identical I1SI distribu- _
tions (left). Stepsy-axis: logc?(e), thick line] only emerge in the Once the presence of patterns has been established, an

presence of patterns. Steps are reflected by peaks in the differenestimate of the pattern length can be given. That this is pos-
quotient plot[y-axis: A logC'9(e), thin line], respectivelym=10;  sible is motivated by the following argument. Using the
Euclidean norm; loglog,). maximum norm, the distance between two points is defined
as the largest coordinate difference. An increase of the em-
steps themselves have become much less pronounced. bedding dimension yields ever more coordinate pairs, caus-
In natural systems, more than one pattern may be presering the presence of a particularly large difference to domi-
To analyze this situation, we assembled a series by randomiyate. Consequently, the number of steps calculated for
choosing among sequenc¢®,6,10, {8,2,1}, {2,7,5. To  pattern lengtm decreases with increased embedding dimen-
contrast this with random firing, we assembled a second sesionm.
ries by randomly selecting intervals from the concatenated The maximum number of step&m,n) can be numeri-
set{2,6,10,8,2,1,2,7,)5 Thus both series are based on iden-cally computed as follows. We start from a series generated
tical probability distributions. Our analysig-igs. 4a) and by a repetition of a sequence of lengthAdditionally, we

0

log C{" (¢)

4 (d) (o) )

log & log € log €

FIG. 3. (@) The number of steps decreases as the embedding dimension indreases .., 8; sequence length: 5; ledog,). At m
=1 there are ten steps, in agreement with Tab{b)k(f): Behavior in the presence of additive noigmise levels 8%, 32%, 128%, 512%,
and 1024%, see textThe number of steps fam=1,...,4 decreases for increased noise. The clearest step always emerges for
indicating a sequence of length 5.
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FIG. 4. Pattern-length indicatom=n: Sequences of length in a homogeneous Poisson backgrouethbedding dimensionm
=1,...,8; log=log,). (a) n=4: most pronounced step at=4; (b) n=6: most pronounced step at=6. () Sequences ofi=3 andn’=4
included with different ratiog3:1 solid lines, 1:3 dashed linesmost pronounced step where equals the length of the dominating
sequence.

require that the elementg, ... ,x,} yield distinct coordinate the number of steps decreases in accordance with Table I,
differences|x;—xj|. After choosing an embedding dimension remaining constant fom>>5.

m, n distinct embedded points are generated. On this set of The behavior reported in Table | only holds if the series
points, the maximum norm induces classes of equal interdre created by repeating a pattern based on distinct interco-
point distances. The number of these classes eg(als). ordina}te differences. In more general cases, the exact dlet_er-
The actual calculation a§(m,n) can be done using a com- mination of the pattern length is hampered by a basic diffi-

puter programwhich, however, exhausts ordinary computerCUIty: Ifttone smgllet'step f(?[merges, th'st. car;ST’lther ?e d“ue tto
capabilities very quickly, or by an unexpectedly involved one ea erm consisting of two consecutive 151, or two “pat-

analytical calculation. The closed expression m,n) is terns _of one ISI each. A greater number of steps further
beyond the scope of .this paper ’ complicates this problem. As a consequence, Table | can only

. : serve as a rough guideline.
The lowest numbers(m,n) are given in Table I. They Fortunately, a helpful indicator for the pattern length ex-

clearly confirm the anticipated decrease of the number ofsts. A pattern will emerge in the embedded ISI series in its
steps as a function ah. For the series generated from the most genuine forn(it is neither cut into pieces, nor spoilt by
sequence(5, 24, 37, 44, 59, our correlation integral ap- foreign points, if the pattern length equals the chosen em-
proach is able to reproduce the predicted decreasénon)  bedding dimensiofm=n). In Fig. 3a), the most pronounced
[Fig. 3@]: In embedding dimensiom=1, all ten possible steps appear ah=5, correctly indicating a pattern of length
nonzero differences are visible. As increases towards 5, n=5.

0.08 @ (b) {c) p=0
. h\
0.08 e ———— g ——————— w r .......................... p = 003
% N . _—
o 0.08 =0.09
Vg ” ,|P
< Ly ' »
0
0.08 “, sy ¥ slp=0.15
0
10 0 -10 0 -8 0
log e

FIG. 5. Detection of sequences injectesith p=0,0.03,0.09,0.15into random backgrounds based on the difference quot{ant:
Homogeneous Poisson backgrouiid), inhomogeneous Poisson background), “white noise” background. Already at a low injection
probability of p=0.03, a hump emergegslashed boxgs At p=0.09, smaller peaks indicate the statistically significant accumulation of
pattern-induced distancém=3; log=log,).
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FIG. 6. Cat V1 ISI-data, in millisecond&) Neurons based on bimodal ISI distributiaiteft panel$ display distinct firing classes: Class
I: noisy; class IlI: patterns in a random or incoherent background; class lll: pattess, ..., 8; log=l0g,). (b) Neuron of class II: The most
pronounced steps appearrat2 andm=3, indicating patterns of length 2 and @) Optimal stimulation of a class Ill neuron leads to a

pattern sharpening effect.

011901-5



CHRISTENet al. PHYSICAL REVIEW E 70, 011901(2004)

TABLE II. Ratio of the flat slopgf,,,) over the steep slopes,,) 12
of a step, as a function of the embedding dimensprof the data Bvi I .oGN
shown in Fig. @b). 10
m 1 2 3 4 8

[0
frn/ Sm 0.27 0.19 0.20 0.30 z 6
g

To investigate the reliability of the criterion in natural 4
settings, noise was added to the series generated from the
sequence5, 24, 37, 44, 59. For the following, we define 2
the noise strength as the ratio of the noise sampling interval 5

over shortest sequence interval. The resiifigs. 3b)-3(f)]
demonstrate that the pattern length can be reliably estimated
up to a noise level of 512%Fig. 3€)], where the most FIG. 7. Histogram of LGN and V1 data based on classes
pronounced step still appearsmt5. The number of steps |-,

for m<5 is affected by the noise: Fan=1, for example,

nine steps are present at 8% nofise. 3b)], seven steps at ks indicate the pattern-generated statistically significant

32%[Fig. 3©)], and three steps at 128%ig. Id)]. The step  o-umulation of particular distances.
structure disappears if the noise level reaches the size of the

largest sequence elemejkig. 3f)]. Thus the observation
that the most pronounced step appearsah, yields a valu- V. APPLICATION TO NEURONAL DATA
able criterion for estimating the pattern length.

We found that this criterion also extends to less ideal set- The method has been app“ed to extracellular field poten-
tings. To illustrate, we injected the sequen¢s25,10,2  tial measurements of anesthetized cat neurons from striate
and{5,25,10,2,17,3g each with probabilityp=0.06, into  cortex(V1) and lateral geniculate nucledsGN) (for details
a noisy background generated by a homogeneous Poissgae Refs[3] and[23]). Seventeen time series from four neu-
process with refractory period. The Poisson distribution wasons of V1 and 17 time series from six neurons of LGN were
tuned to produce a mean identical with that of the patternsanalyzed.

The clearest steps emerge at the embedding dimensions 4 Earlier investigations of V1 datg8,24] suggested the ex-
and 6[Figs. 4a) and 4b)], showing that also in this case the jstence of three essentially stimulus-independent neuron
pattern length can be estimated. We refined our investigatioplasses(l) the class of randomly firing neuror@l) the class

by varying the injection probabilities. Using the sequencesf neurons where simple patterns are injected into a random
{4,17,12 and{5,25,10, 2, the first sequence was chosen or incompatible background, ard!) the class of neurons
with p=0.12 and the second wif=0.04. We compared this that preferentially fire in patterns. In Fig.(&, the three
series with a series based on interchanged probabilities. Thtasses are illustrated by one V1 neuron each. Whereas bi-
outcome is that the clearest steps emergarfon, where the  modal ISI histograms emerge in all cases, the corresponding
pattern with the higher probability dominatgsig. 4(c)]. If log-log plots indicate clear differences in the associated fir-
the two probabilities are similar, the estimation may be haming behaviors.

pered by effects of interference. A means of quantifying the Whereas neurons of class | show straight-line correlation
“clarity” of a step is to calculate the ratio between the slopedlots whose slope fails to saturate, neurons from class I
of the flat and of the steep part of the steps. Consistently, thehow a dependence of the slope-ratio on the embedding di-
embedding dimension for which the slope ratio reaches @ension(cf. Fig. 2. The detailed analysis of the second
minimum coincides with the pattern length. neuron[see Fig. @) and Table I] reveals ratio minima at

Currently, alternative models of noisy backgrounds exisim=2 andm=3, indicating that patterns of length 2 and 3 are
[4,22]. To show that our results hold regardless of whichpresent. The class Ill neuron’s behavior is compatifate
model applies, we injected the sequer@3,14,22 into  Fig. 1) with the earlier finding3] that members of this class
backgrounds generated lt)) a homogeneous Poisson pro- are generally associated with twexceptionally: ongclearly
cess with refractory periodji) an inhomogeneous, sinusoi- positive Lyapunov exponents, and with fractal dimensions
dally modulated Poisson process with refractory period, anthat saturate as a function of the embedding dimension.
(ii) a uniform random process on the inter¢@l 46], using  These indicators hint at unstable periodic orbits generating
injection probabilitiesp € {0,0.03,0.09,0.15 The results these responses, and imply that the data are essentially deter-
show that the nature of the noisy background has a negligiblginistic in nature. Furthermore, representatives of class llI
influence on the pattern detectability. Instead, the injectiorhave been found, where the optimal stimulus displayed
probability is decisivgFig. 5). Whereas two sharp peaks are pattern-sharpening effecfgig. 6(c)].
obtained forp=0.15 andp=0.09 (arrows, only one large The results obtained for the LGN data are compatible
hump emerges fop=0.03. A single broad peak indicates a with the above classification, but the class properties are less
reduced frequency of short intervals, which is the first indi-well exhibited. An overview on the classification of investi-
cator of patterns at lowest injection probability. Two narrow gated neuronal LGN and V1 data is shown in Fig. 7.

Class | Class I Class Il
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VI. DISCUSSION oretical framework wherein both extreme classes | and Il
gain a straightforward functional justification. When LGN is
Our method provides an unbiased test for pattern occurcompared to V1, an increased level of noise appears to be
rence, even in nOisy environments. It is Simple to implementpresent_ This property could indicate a Simp'er type of com-
and use. Although the method does not directly deliver theyytation formed in the LGN. Correlation integral-based pat-

patterns, robust indicators for their lengths are provided. Totern detection provides an appropriate tool to further address
gether with the locations of the steps, this can be used tghjs, and related, questions.

substantially minimize the set of templates to be tested. As
multltraln patterns often imply smgl_e-traln patterns, our find- ACKNOWLEDGMENTS
ings are also of interest for analysis of the former.
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