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Abstract. We present a VLSI device comprising an array of leaky integrate–and–
fire (I&F) neurons and adaptive synapses with spike–timing dependent plasticity
(STDP). The neurons transmit spikes off chip and the synapses receive spikes
from external devices using a communication protocol based on the “Address–
Event Representation” (AER). We studied the response properties of the neurons
in the array to uniform input currents, and measured their AER outputs. We char-
acterized the properties of the STDP synapses using AER input spike trains. Our
results indicate that these circuits can be reliably used in massively parallel VLSI
networks of I&F neurons to simulate real–time complex spike–based learning al-
gorithms.

1 Introduction

A growing interest in pulse–based neural networks [10] has recently lead to the de-
sign and fabrication of an increasing number of VLSI networks of integrate–and–fire
(I&F) neurons. These types of devices have great potential, allowing researchers to
implement simulations of large networks of spiking neurons with complex dynamics
in real time, possibly solving computationally demanding tasks. However, there are
still a few practical problems that hinder the development of large–scale, massively
parallel distributed networks of VLSI I&F neurons. The three main ones are: (1) how
to program or set each individual synapse (synaptic weight) in the network; (2) how to
access the individual neurons in the network both for providing input and for reading
output signals; (3) how to (re)–configure the network topology and/or connectivity.

In this paper we present a VLSI device with a one dimensional array of I&F neu-
rons, and a 2–D matrix of adaptive synapses with spike–timing dependent (STDP)
plasticity, in which synapses receive input spikes and neurons transmit output spikes
using an Address–Event Representation (AER) [3, 6]. The STDP circuits in the synapses
allow us to solve problem (1) cited above, by setting the synaptic weights using a
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Figure 1: I&F neuron circuit.

spike–timing based learning algorithm. The use of the AER communication proto-
col allows us to simultaneously solve problems (2) and (3): This protocol allows the
chip to exchange data while processing signals in parallel, in real time. Input and out-
put spikes (events) are transmitted as real–time asynchronous binary data streams that
carry analog information in their temporal structure. Each event is represented by a
binary word encoding the address of the sending node. On–chip arbitration schemes
are used to handle event “collisions” (cases in which sending nodes attempt to trans-
mit their addresses at exactly the same time). Systems containing more than two AER
chips can be constructed by implementing additional special purpose off–chip arbi-
tration schemes [5, 6]. Once in the digital domain, address–events can be remapped
from multiple sending nodes to a single receiving node, or from a single sending node
to multiple receiving nodes, allowing the user to arbitrarily reconfigure the network
connectivity.

In the next sections we describe the chip architecture and show experimental data
demonstrating the response properties of the I&F neurons using both constant in-
put currents and AER synaptic inputs, and show the learning properties of the STDP
synapses.

2 The VLSI device

The device, implemented using a standard AMS 0.8µm CMOS process, comprises a
linear array of 32 low–power I&F neurons, a 2–D array of 32×8 synaptic circuits, and
Input/Output AER interfacing circuits. Each neuron is connected to 2 inhibitory and
6 excitatory synapses. The synapses are divided into two groups with independent
bias settings for maximum and minimum synaptic weights. The other bias parameters
(time constants, bi-stability threshold, etc.) are global. The neuron circuitry occupies
an area of 83 × 31µm2, while the inhibitory and excitatory synapses measure 55 ×
31µm2 and 145 × 31µm2 respectively.
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Figure 2: Excitatory synapse circuit.

2.1 The I&F neuron circuit

The circuit implementation of the I&F neurons is shown in Fig. 1. Input current
is integrated onto the membrane capacitor Cmem. Once Vmem reaches the spiking
threshold the neuron generates a fast digital pulse (Vo1 is set to 0 and Vspk to Vdd),
Vmem is reset to zero and the capacitor begins integrating the input current again. The
four bias control voltages Vlk, Vsf , Vrfr, and Vadap allow the user to specify a desired
leak current, a spiking threshold voltage, an absolute refractory period, and the gain of
a spike–frequency dependent adaptation current respectively. A detailed description
of this circuit has been presented in [9].

2.2 The synaptic circuits

The circuits that model the inhibitory synapses are implemented using a cascoded
n–type current–mirror integrator [7], and do not exhibit learning properties. The exci-
tatory synapses contain circuits that implement bi-stability, STDP type learning, and
short–term depression (see Fig. 2).

Bi-stability is used to implement storage of learned states (potentiated or depo-
tentiated) on long time scales [2]; STDP is used to implement learning, updating the
synaptic weight on short–term scales [12]; and short–term depression is an adapta-
tion mechanism, also acting on short time scales, that implements dynamic gain con-
trol [1].

The bi-stability circuit slowly drives the (non–adapted) synaptic weight V w0 to one
of the two asymptotic states Vhigh or Vlow at a rate set by Vleak . The STDP circuit up-
dates Vw0 on short time scales with each occurrence of pre– and post–synaptic spikes,
increasing the weight if there is a causal relationship (the pre–synaptic spike pre-
cedes the post–synaptic one), and decreasing it otherwise. The time–window within
which the STDP can occur and the maximum increase and decrease of the weight
can be independently controlled by V tp, Vtd, Vp, and Vd respectively. The short–term
depression adaptation circuit decrements the effective synaptic weight Vw with each
pre–synaptic spike, from its steady state value Vw0, by an amount set by Vwstp, and
with a rate controlled by Vtaupu.
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Figure 3: (a) Mean response of all neurons in the array to increasing values of a global
input current, for four different refractory period settings (set by biasing V rfr of Fig. 1
to 0.30V, 0.35V, 0.40V, and 0.45V respectively). The error bars represent the standard
deviation of the responses throughout the array. (b) Raster plots showing the activity
of the whole array in response to the input current set by V gs = −0.575V , for the same
four increasing values of Vrfr (counterclockwise from the bottom left quadrant).

The detailed response properties of the bi-stability and STDP synaptic circuits
have been described in [8], while the characteristics of the short–term depression cir-
cuits have been presented in [11, 4].

3 Experimental results

We tested the response properties of the array of I&F neurons by injecting a constant
current to each neuron (bypassing the synapses) and measuring their firing rates. To
measure the activity of the array of neurons we used a custom PCI–AER board, capa-
ble of monitoring and time–stamping address events on the AER bus [5]. We biased
the p–FET M21 of Fig. 1 in weak–inversion to generate the neuron input current and
measured the activity of the array for different refractory period settings (V rfr). Fig-
ure 3(a) shows the mean firing rates of the neurons in the array as a function of V gs

on a semi–logarithmic scale. Given the exponential relationship between V gs and the
injected current, Fig. 3(a) shows how the firing rate increases linearly with the input
current, saturating at higher asymptotic values, for increasing values of V rfr (decreas-
ing refractory period duration). Figure 3(b) shows four raster plots of the activity of
all neurons in the array in response to uniform input current, for different refractory
period settings.

The learning characteristics of the STDP circuits at a single synapse level are de-
scribed in detail in [8]. To evaluate the properties of the synaptic circuits in the whole
array we stimulated the STDP synapses with Poisson AER spike trains while injecting
constant current into the I&F neurons, and measured their spiking activity via the AER



output circuits. We set the Long–Term–Depotentiated (LTD) value of the synapses
(Vlow of Fig. 2) to 1V , and their Long–Term–Potentiated (LTP) value (V high) to 3.6V .
Using these values for the asymptotic synaptic weights, a depressed synapse has no
measurable effect on the spiking frequency of a post-synaptic neuron. Conversely, for
a potentiated synapse pre–synaptic spikes affect the post–synaptic firing rate.

Figure 4(a) shows the coefficient of variation (CV) of one post–synaptic neuron
measured while stimulating the STDP synapse. If the average value of the synaptic
weight is low the regular firing rate of the neuron driven by a constant current is not
altered. High values of CV indicate that the synaptic weight on average is high and the
Poisson pre–synaptic spikes alter the firing rate of the post–synaptic neuron. This is
only an indirect measure of the average synaptic weight of one synapse and does not
reflect its true probability of LTP or LTD. To assess these probabilities over the whole
array, we separated the learning phase from the weight readout phase, exploiting the
weight’s bi-stability. During the learning phase we set the mean pre–synaptic firing
rate of a row of synapses to 140Hz, either applying a Vgs = −0.63V to induce LTD,
or a Vgs = −0.67V to induce LTP. After 10s of stimulation we “froze” the leaned
synaptic weights by increasing Vleak of Fig. 2 appropriately. In the readout phase we
stimulated the synapses using 40Hz Poisson spike trains and the neurons by setting the
Vgs to 0.55V. By comparing the mean frequency of the post–synaptic neurons to the
baseline (obtained in absence of synaptic stimulation) we determined which synapses
were potentiated. Figure 4(b) shows the estimated LTP probabilities obtained after
repeating the experiment described above 250 times, for each of the two V gs settings
used in the learning phase. Despite the variability observed across the array (due
to device mismatch), the synapses behave as expected: The synaptic weights can be
independently driven to a high or low state using appropriate pre- and post-synaptic
stimuli.

4 Conclusion

We presented a VLSI array of I&F neurons with plastic adaptive synapses that use the
Address–Event–Representation to receive and transmit spikes. We used a PCI–AER
board [5] to stimulate the synapses with address–events and monitor the activity of the
neurons in the array. We showed that the I&F neurons respond to constant currents in a
consistent and reliable way, and demonstrated the possibility to change the individual
synaptic weights in the array by driving their STDP learning circuits with pre– and
post–synaptic spike trains with appropriate frequencies. Our results indicate that these
circuits can be reliably used in massively parallel VLSI networks of I&F neurons to
for real–time simulation of complex spike–based learning algorithms.
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Figure 4: (a) CV of post–synaptic inter-spike interval (ISI) as a function of pre– and
post–synaptic firing rates, measured for one plastic synapse. (b) Probability of induc-
ing LTP measured over the whole row of synapses. Upward triangles correspond to
the stimulation experiment that was expected to induce LTP while downward triangles
correspond to the stimulation experiment that was expected to induce LTD (see text
for details).
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