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We construct a complexity measure from first principles, as an average over the
‘‘obstruction against prediction’’ of some observable that can be chosen by the
observer. Our measure evaluates the variability of the predictability for charac-
teristic system behaviors, which we extract by means of the thermodynamic
formalism. Using theoretical and experimental applications, we show that
‘‘complex’’ and ‘‘chaotic’’ are different notions of perception. In comparison to
other proposed measures of complexity, our measure is easily computable, non-
divergent for the classical 1-d dynamical systems, and has properties of non-
overuniversality. The measure can also be computed for higher-dimensional and
experimental systems, including systems composed of different attractors.
Moreover, the results of the computations made for classical 1-d dynamical
systems imply that it is not the nonhyperbolicity, but the existence of a conti-
nuum of characteristic system length scales, that is at the heart of complexity.

KEY WORDS: Complex systems; thermodynamic formalism; complexity
measures; entropy; prediction.

The notion of complexity of dynamical systems is common and widely
used. However, there exist many such notions. (1–8) On the one hand, this
variety reflects the fact that dynamics of systems contain many aspects,
each of which can be characterized by a complexity of its own. On the
other hand, the still growing number of complexity measures demonstrates
the lack of a notion that could be considered universal, and yet practical at
the same time. We argue, that this problem can be effectively addressed
and solved by a new measure of complexity for dynamical systems.



Our measure is based on the concept of neighborhoods of orbits rather
than on individual trajectories. It measures the complexity of the predict-
ability of the temporal behavior of some variable on these sets. As such,
our measure integrates the complexity of the dynamics itself with the com-
plexity of the time evolution of an observable. The classical Kolmogorov
complexity (1, 2) deals with the prediction (computability) of individual
orbits. Our measure, in contrast, is statistical in nature; it is extracted by
means of the thermodynamic formalism. It does not require explicit hier-
archical analysis and is non-divergent by construction. These two proper-
ties particularly distinguish our measure from previous approaches. We
demonstrate its applicability and usefulness in different examples, which
include some of the most studied families of dynamical systems, as well as
experimental data.

The most important practical problem in dealing with any system is to
predict its evolution, i.e., the next state. By posing this problem, one
already assumes that the current state of the system is known, i.e., can
be measured (or computed). This aspect deals with the Kolmogorov
(algorithmic) complexity. However, the current state of a natural system is
practically never exactly known (e.g., there is always noise present). This
suggests considering the problem of prediction on whole sets of neighbor-
ing trajectories. The prediction of the next value of an observable for given
exact initial states, is a different problem. This complexity is related to the
degree of chaoticity of the underlying dynamics. The most chaotic dynam-
ical systems are considered to be the ones that behave like the most random
stochastic processes, i.e., sequences of independent identically distributed
(i.i.d.) random variables. However, i.i.d. random processes are not the most
complex random processes, but rather the simplest ones (although non-
predictable). Such processes correspond to uniformly hyperbolic dynamical
systems, which are also, in a sense, the simplest among all chaotic systems.

Complexity of dynamics is reflected as a variability of predictability in
the following sense: In order to obtain the next value of a process, one
needs to perform some experiment. It is the complexity of this experiment
that should be taken as the definition of the complexity of the system. For
instance, to obtain the next value of an i.i.d. random process, one needs to
throw a generalized die. However, if we consider a slightly more general
random process, which is a mixture of i.i.d. random variables, then to
obtain the next value one needs to throw two dice: The first determines
which random variable is chosen, whereas the second die determines the
next value of the process. From this, one can see that the key feature of
complex processes (both random and deterministic ones) is their nonho-
mogeneity. This nonhomogeneity means that the behavior of a dynamical
system is quite different in different parts of the phase space, and therefore
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predictability should be averaged over an appropriate measure in the phase
space. Such an appropriate measure is obtained via the thermodynamic
formalism. (9–11)

For the derivation of such a measure, let us consider a dynamical
system with discrete time, defined by a map f on some set M in the Eucli-
dean space Rn. Pick an arbitrary point x0 in the phase space, take some
neighborhood U=U(x0) and consider the orbits {f(n)U}, n ¥ N. We are
interested in observables that relate to measures that are multiplicative
along the orbit, i.e., for which the n-step average is evaluated as
(<n − 1

k=0 m(f (k)(x)))1/n, where x ¥ U is the initial state of a particular orbit.
Examples of such measures are derivatives, probabilities, etc. Take such a
measure m(x) and define our observable n as m(x)=: exp(n(x)). Our goal is
to study the problem of prediction of the next values n(f (r)(x)), r > n,
along the orbits, and to evaluate the complexity of this task. We claim that
this prediction problem is the one that defines an intrinsic complexity of
dynamics. Because the initial conditions of the orbits are not perfectly
known, the outcome of a measurement is not constant (when we deal with
chaotic processes) and the exact value of the observable is not known (no
measurement is exact), it is clear that this prediction should be probabilistic
in nature.

For the decay of the probability P of retaining a particular measure-
ment value of the observable during a system evolution of n steps, we
employ the large deviation ansatz (9)

P(n, n) dn ’ e−ng(n) dn. (1)

The thermodynamic formalism implies (10) that

g(n)=n − S(n), (2)

where S(n) is an entropy function. In more detail, the thermodynamic
formalism departs from a partition function Z(n, b, n), where n is the level
or depth of the partition and b can be viewed as an inverse temperature.
With Z(n, b, n), a free energy F(b)=limn Q .

1
n log(Z(n, b, n)) is associated,

where in F(b) we suppressed the dependence on the observable. In the
absence of phase transitions, an entropy function is obtained by means of
the Legendre transform

S(n)=nb − F(b). (3)

Requirements that apply to entropy functions are strict convexity with
infinite derivatives at the two end-points of the curve (in the absence of
phase transition effects).
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Fig. 1. (a) Unit interval partition into lengths li(n), for increasing partition levels n=1, 2.
(b) Dashed lines: Entropy functions of the asymmetric tent map, for two values of asymmetry.
Filled circles: results for the natural entropy measure (Lyapunov exponent), open circles:
topological entropy measure (topological entropy). Solid lines: Entropy functions of the
parabola at a=4, for increasing n, where asymptotically, the Lyapunov and the topological
characterization coincide (star).

Entropy functions S(n) are at the heart of the construction of our
measure of complexity. To provide simple leading examples, we will essen-
tially restrict ourselves to 1-d systems and focus on the finite-time Lyapunov
exponents of n steps 1

n log |(f (n))Œ (x)|. Consider, for the map shown in Fig.
1a, a partition element lj(n). Then, for all x ¥ lj(n), we have

1
n

log |(f (n))Œ (x)|=−
1
n

log lj(n)=: ej(n). (4)

This definition justifies calling e the scaling exponent of the support of the
associated probability measure. (9–11) Letting n Q ., generally creates a
continuum of values e. Corresponding relationships can be established for
more general nonlinear maps. The entropy function S(e) of scaling expo-
nents can easily be calculated by writing the partition function in terms
of the lengths li(n) of the partition of depth n, obtaining Z(n, b, e)=
; i lb

i(n), where the summation index i runs over the members of the
partition. (9–13, 15–16)

As examples, we show the calculated entropy functions for two
asymmetric tent maps of varying skewness (see Fig. 1b, dashed lines). Two
particular function points deserve explicit mentioning. The point with the
property S(e)=e (filled circles) characterizes the long-time properties of
the natural invariant measure (e.g., ref. 9); its abscissa value gives the
Lyapunov exponent of the system. Similarly, the point of maximal entropy,
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denoted by (e0, S(e0)) characterizes the topological entropy (open circles),
where e0 is called the topological length scale exponent of the system. The
results obtained for the fully developed parabola (i.e., a=4) are also
displayed. Solid lines indicate finite-partition-level entropy functions of this
system. They slowly converge towards a triangular graph with corner
points {log 2, 0}, {log 2, log 2}, {2 log 2, 0}. In this case, the topological
and the Lyapunov characterization of the system coincide (marked by a
star), and strict convexity is violated.

It is important to realize that the obtained entropy functions do not
only depend on the chosen system, but also on the chosen observable. If
another observable is taken for the same system, the associated entropy
functions will usually be different. When, e.g., the local finite-resolution
fractal dimension a(x) (11) is the observable, for symmetric as well as for
asymmetric tent maps, the corresponding entropy functions are trivial
(i.e, for a=1, S(a)=: f(a) — 1, and zero otherwise). For the fully developed
parabola, a nontrivial entropy function f(a)=2a − 1 is obtained. It will be
shown that the entropy function is a sufficient basis for the calculation of
our complexity measure. Unfortunately, the historical notations of entropy
functions associated with different observables hide their common origin
(Eq. (3)) (see refs. 12, 13, and 15). The generation of fractals by means of
strange repellers (9) provides explicit examples of how local dimensions
can be related to dynamical processes. The task of predicting a(x) upon
partition refinement, defines the ‘‘fractal complexity.’’

1. MEASURE CONSTRUCTION

Our complexity measure is defined as the variability of the predict-
ability of the observable, averaged over all system behaviors. The choice of
the particular observable e, instead of the dummy variable n, will simplify
the illustration of the general construction of our measure. Equation (2)
implies that the probability for observing trajectories with a specific value
of e, as a function of n behaves as

P(e, n) de ’ e−n(e − S(e)) de. (5)

As e \ S(e), the smaller e − S(e), the better the prediction based on the past
of the orbits will be. Orbits with e=S(e) will yield perfect long-time pre-
diction. Indeed, this situation characterizes the long-time average of the
natural invariant measure (expressed by the Lyapunov exponent of the
system in the case of the observable e). However, we seek a measure able to
quantify the difficulty of making correct predictions, over all length scales.
How this task relates to the Eq. (5) is motivated by the following thought
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experiment. Suppose—as in the previous discussion on throwing dice—that
l > 1 invariant measures satisfy ej=S(ej), j=1,..., l. Then, firstly, the sys-
tem’s future is obviously more difficult to predict, and, secondly, the diffi-
culty added by a particular measure j should be independent of the size ej.
The difficulty of making good predictions is also substantially increased by
invariant measures for which e − S(e) is sufficiently close to zero. Inversely,
the larger this difference, the lesser the extent to which the corresponding
invariant measures will contribute to the difficulty of making good predic-
tions. The simplest candidate for a complexity measure reflecting these
properties is the ratio S(e)/e. (15) To account for all system orbits, the average

F
S(e)

e
de (6)

is defined as the measure of complexity. In order to facilitate the comparison
of systems with different topological entropies, we may rescale e and S(e) as
ẽ=e/e0 and S̃(ẽ)=S(e)/e0, where e0 is the topological length scale expo-
nent. Geometrically, this corresponds to a similarity transformation of the
entropy function’s graph at (0, 0), which maps the topological length scale
exponent e0 to unity. In this case, our complexity measure assumes the form

Cs(e) :=e2
0 F

S̃(ẽ)
ẽ

dẽ (7)

where on the left-hand side, e refers to the chosen observable.

Extensions. The measure can be modified to embrace repellers. To
chaotic repellors the same complexity should be attributed as to the corre-
sponding chaotic attractors. Compensating for the escape rate o (9) which
distinguishes between the two system classes, yields for our measure the form

Cs(e)=e2
0

e1

e1 − o
F

S̃(ẽ)
ẽ

dẽ. (8)

Note that for all non-fixedpoint systems, we have automatically e1 > o. To
refine the distinction of dynamical systems according to their complexity,
we may exponentiate the front factor and the integrand independently.
Then the most general form of our measure is obtained as

Cs(c, b)(e) :=e2b
0

e1

e1 − o
F 1 S̃(ẽ)

ẽ
2c

dẽ, (9)

where c and b are weightening exponents. To avoid divergence, we require
c > − 1.
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2. MEASURE APPLICATIONS

To retain simplicity and focus, we will mainly restrict our discussion to
Cs(1, 0). From this quantity, the equally significant quantitiy Cs(1, 1) is
obtained by multiplication with the square of the topological length scale
exponent (i.e., in case of the scaling of the support, by e2

0). This quantity is
generally slowly varying, as a function of the system parameters.

Exact Results. In special cases, Cs(1, 0) (and Cs(1, 1)) can be
evaluated analytically. If the support of the specific entropy function only
consists of one point (trivial spectrum), then complexity 0 is obtained. As a
prominent example, zero complexity is obtained for the dynamically
generated 1/3 Cantor set, for observables a and e alike. As another
system, the fully developed parabola has a ‘‘fractal complexity’’ Cs(1, 0)(a)=
1 − log(2), whereas its ‘‘dynamical complexity’’ evaluates to Cs(1, 0)(e)=1/2.
Intermittent systems with intermittency exponent z ¥ Iz=(3

2 , 2), constitute
the most complex class of 1-d dynamical systems, since in this case the
contribution by length scale exponents e [ e0 is already close to 1. Their
fractal complexity can be evaluated from the fact that the whole family is
characterized by a singularity at the intermittent point of the order of 1/z.
This leads to the result that the fractal complexity increases monotonously
on Iz, from 1 − 2 log(3/2) to 1 − log(2), i.e., Cs(1, 0)(a) is considerably
smaller than Cs(1, 0)(e).

Numerical Results. In most cases, the complexity measure needs to
be calculated numerically. In Fig. 2 we show the dynamical complexities
Cs(1, 0)(e) obtained for typical representatives of classical classes of 1-d
dynamical maps: (a) hyperbolic systems (tent map, order parameter a:
skewness), (b) nonhyperbolic systems with slopes bounded away from zero
(bungalow tent map, (16) a: position of the point on the diagonal), (c)
nonhyperbolic systems with slopes not bounded away from zero (parabola,
a: opening), (d) intermittent maps (see ref. 14, order parameter: z). The
obtained results are based on finite Markov partitions (17) (a and b), on
numerical interval partitions (c, partition level n=15), and on grand-
canonical partitions (d, partition level n=2000). The first two classes nicely
demonstrate how the complexity vanishes when the maps become symme-
tric (a=1/2 and a=1/6, respectively). For the parabola, the dependence
of Cs(1, 0)(e) on the order parameter a is fractal. At fully developed chaos,
our numerical result based on an n=15 partition level yields Cs(1, 0)(e)=1

2 ,
which can be verified by an analytical approach. At parameter values
leading to attracting periodic orbits, slow convergence to zero complexity is
observed. The numerical results for the intermittent map family corro-
borate our expectations that this family should have maximal complexity.
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Fig. 2. Complexity Cs(0, 1)(e). (a) Tent map paradigm, parameter a: location of peak.
(b) Bungalow tent map paradigm, parameter a: location of right diagonal point. (c) Logistic
parabola paradigm, parameter a: opening of parabola. (d) Intermittent map family (1+e) x
+xz Mod 1, where e is small. The result for z=1.25 is affected by numerical inaccuracy.

We also evaluated our complexity measure for experimental neuron
data. In an in vivo experiment of cat visual cortex V1, inter-spike intervals
(‘‘ISI’’) between firing events were recorded and analyzed, for two distinct
stimulation paradigms (18) (stimulation by noisy patterns moving into the
neuron’s preferred direction and square-wave stimulation as the optimal
stimulus). Well-separated density humps characterize the ISI distribution of
the latter, which are also detectable in the much smoother ISI distribution
of the noise-driven neuron. This fact allows a natural partition in the space
of embedded ISI. Using a matrix representation, the thermodynamic anal-
ysis could be performed (similarly to ref. 16).

3. DISCUSSION

Thus, we are able to measure the difficulty of making predictions of
system behavior in a way directly applicable to the most studied classes of
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dynamical system. Our measure takes into account that the difficulty of the
prediction task is increased if the number of distinct persistent system
behaviors is higher (in addition to the infinite-time limit behavior). The
objects of the prediction are sets of neighboring trajectories, rather than
individual trajectories. The rescaling S(e)

e of the entropy S (see Eq. 5) is the
essential ingredient for our measure’s boundedness on classes for which
other measures diverge. From the measure construction, it follows that the
system is more complex with respect to the observable n, if the measure
Cs(1, 1)(n) is increased. Cs(1, 1)(n)=0 or Cs(1, 0)(n)=0 implies a non-
complex system. Infinite complexity could only be expected if S(n)=S(n0)
for n Q .. However, due to the factor 1/n, our measure Cs(1, 0)(n)=0 will
be finite even in this case.

As another example of the fundamental difference between Lyapunov
exponents and our complexity measure, let us compare the fully developed
parabola with the symmetric tent map. These systems can be transformed
one into the other, by means of a conjugacy preserving two points of S(e)
(the natural measure and the topological measure). For an observer
making predictions on e, they appear as very distinct instead. This is
captured by our measure, which yields complexities Cs(1, 0)(e)=1

2 and
Cs(1, 0)(e)=0, respectively,

Among the numerically investigated systems, the parabola has a lower
overall complexity than may be intuitively expected. However, this expec-
tation is caused by the property of the system to vary its complexity as a
function of the order parameter in a non-smooth way. Our measure is not
designed to account for this aspect. As nonhyperbolicity contributes to a
nonhomogeneity of the phase space of systems, it could be expected, that
nonhyperbolicity is a major source of complexity. This view is only par-
tially supported by our results. Nonhyperbolicity generally gives rise to
phase-transition phenomena in dynamical systems. (19–20) Written in terms of
the general observable n, if over a given range [nmin, nmax] a convex entropy
function is replaced by a straight line, the complexity will decrease. Often,
however, phase transitions are generated from the superposition of
separated systems. This case is described by a convex-hull construction of
the individual entropy functions that correspond to the different phases.
For the combined system, Cs(1, 1)(n) necessarily increases. Cs(1, 0)(n) also
increases, except when an initially nearly pure intermittent system is
‘‘diluted’’ in a specific manner by a hyperbolic phase.

In an application of our measure to experimental neuron data we
obtained a more coherent characterisation of the biological data than what
is provided by traditional entropy measures. In particular, optimal sti-
mulation of the neuron led to smaller complexity of the response if
compared to non-optimal stimulation. This can be interpreted as follows:
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Optimal stimulation leads to an improved computation that is expressed by
a reduction of the associated complexity. The details of this analysis will be
reported elsewhere.

To conclude, starting from the variability of predictability, using the
thermodynamic formalism of dynamical systems, we constructed an
observable-dependent measure of complexity. The range of applications of
our method extends to a very broad class of systems. The evaluation is
particularly simple, if a generating or approximate generating partition is
available. More generally, our measure can be calculated, whenever an
entropy function of scaling exponents can be evaluated. These cases include
experimental time series (see, e.g., ref. 9). Our measure provides three main
insights. First, the numerical results for 1-d maps point out that nonhy-
perbolicity per se is not a strong ingredient of complexity. Second, the
logistic parabola family shows that our perception of complexity often
includes two separate aspects: Complexity as defined in our approach (at
fixed order parameter a), and the difficulty to infer such a value from the
complexity at neighboring values of a. Third, at the significant parameter
values b=0 and c=1, our measure emerges to be largest for intermittent
systems, at the border between chaos and order. This finding is in agree-
ment with insights from theoretical biology. (21–22)
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