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Abstract- In insects we can find very complex and compact 
neural structures that are task specific. These neural structures 
allow them to perform complex tasks such as visual navigation, 
including obstacle avoidance, landing, self-stabilization, etc. 
Obstacle avoidance is fundamental for successful navigation, 
and it can be combined with more systems to make up more 
complex behaviors. In this paper we present a model for 
collision avoidance based on the Lobula Giant Movement 
Detector (LGMD) cell of the Locust. This is a wide-field visual 
neuron that responds to looming stimuli and that can trigger 
avoidance reactions whenever a rapidly approaching object is 
detected.  Here we present result based on both an offline study 
of the model and its application to a flying robot.    

I. Introduction   

For collision avoidance some times it is wrongly thought 
that the distance to objects should be exactly known, 
extracted from the visual flow or assessed using other 
techniques. Less obvious is to avoid obstacles without 
information on distances to surfaces, ego motion or without a 
previous knowledge of the environment. However, collision 
avoidance does not require explicit information about 
distances. In other words, there should be some way to 
extract relative distances, sizes and orientation of the 
different objects in the environment to accomplish this task. 
All this information can be directly assessed using optic flow 
[6,8,11]. Therefore, there should be specific connections 
from the visual receptor cells to the motor system (optomotor 
connections) to perform this task. For this reason some 
learning methods and genetic algorithms had been used 
before to learn this mapping [5].  

The visual system of insect shows a very particular 
hierarchical structure where the receptive fields progressively 
expand. At the top of this hierarchy we find, so called, 
matched filters tuned to one particular feature of the visual 

world. The most important layers in this architecture are the 
Lamina (pre-processing of the input signal) and the Lobula 
layer (wide-field neurons including those for the detection of 
expansion within the visual field) [3-4][14-16].   

An approaching object, such as a predator, is characterized 
by an increasing retinal size.  A wide-field visual neuron 
called LGMD is located in the Lobula layer of the Locust 
nervous system, and this cell responds to approaching 
stimulus by increasing its firing rate [3-4][14-15]. Neurons 
detecting looming stimuli have been characterized also in 
moths [17], and flies [7]. Two models have been used to 
explain the behavior of these cells, one making use of a pre-
synaptic competition between excitation and inhibition [9-8]; 
and one that involves a multiplication within the neuron itself 
in order to explain the non-linearity of some of the responses 
of this cell to different stimuli [3].   

Here we present an alternative model based on our earlier 
simulation studies [9-8]. In recent publications [3] it has been 
suggested that the behavior of the LGMD neuron cannot be 
explained in terms of the interaction between pre- and 
postsynaptic excitation and inhibition as proposed in [9-8]. 
As a consequence the authors suggest that the LGMD neuron 
itself is capable in performing a non-linear operation. 
However, one problem of neuronal non-linearities is that a 
biophysical implementation of it has so far not been 
identified. Hence, the question is how we can account for 
these nonlinear response properties without assuming them to 
be mirrored in the LGMD neuron. We solve this problem by 
assuming that the detection of expanding objects results from 
the integration of the inputs of correlators as opposed to a 
pre-synaptic competition between excitatory and inhibitory 
inputs. We show that our model can account for the reported 
nonlinear response properties of the LGMD neuron and can 
perform reliable obstacle detection when embedded in the 
control structure of a flying robot.   



II.  Model  

The model is implemented on a P.C. under Linux O.S., 
using the IQR421 neural simulator software. This software 
environment allows the user to define complex biologically 
realistic neuronal models that can be interfaced to real-world 
devices.  

Our collision avoidance system is insect based, and 
consequently, it models several processes performed in 
different layers of the insect visual system. Some important 
processes for our purpose occur in the first layers of the 
insect visual system (lamina) and involve the normalization 
of the image (logarithmic compression of the response of the 
photoreceptors) and a subsequent contrast enhancement 
(center/surround antagonism) [16]. This first process 
provides the system with robustness to dynamic changes in 
the luminance level and it also reduces the redundancy in the 
input image due to the contrast or edge enhancement.    

A. Reichardt Correlation  

Looking at the behavior shown by insect optomotor 
responses, the formal correlation model of the local 
movement detectors located in the fly visual system was 
proposed long ago [12]. These elementary motion detectors 
are located in the Lobula Plate layer of the insect visual 
system (VS and HS Tangential Cells). They are tuned to 
respond to motion in one preferred direction and their output 
is proportional to the optical flow perceived in that direction 
[1-2]. Just a few further elaborations have to be performed in 
order to allow the correlation model to reflect the specific 
features of the fly s motion detection system [2].   

 

Fig. 1.  Basic structure of the Reichardt correlation detector, where  
represents a delay, X the multiplication operation and 

 

the subtraction 
operation. 

The Reichardt correlation is the core of our model (fig. 1) 
[12]. It takes two input signals with a fixed angular 
separation. Each of these time-independent inputs passes 
through a linear delay filter 

 
before being multiplied by the 

other non-delayed signal. The results of the two correlations 
are subtracted to produce a single output. In this example an 
object moving to the right will produce a positive output 
whereas an object moving to the left will produce a negative 
output.   

B. LGMD model   

The LGMD cell is a wide-field neuron that responds to 
looming stimuli and is a well studied feature of the locust s 
nervous system [3-4][14-15]. The LGMD increases its firing 
rate in response to both the velocity of the approaching 
object and the distance to this object. In earlier work we have 
presented a model of the LGDM that was tested on wheeled 
robots exploiting the motion of the visual stimuli. Here we 
present a further elaboration of this model that is based on 
the Reichardt correlation detector and that is able to work in 
real 3D environments.   

Recent studies have suggested that the LGMD can perform 
a multiplication of different inputs, in particular the angular 
velocity, , and angular size,  of an approaching object [3]. 
This implies that these features are extracted in real time in 
the lobula or previous layers of the visual system of the 
Locust. Hence, this hypothesis implies a much more complex 
structure in the visual system of the Locust than has so far 
been observed and assumes that the LGMD can perform non-
linear operations. In contrast our implementation is based on 
correlation in the layers pre-synaptic to the LGMD neuron 
(Reichardt correlator based EMDs) and only requires the 
LGMD to integrate these inputs. In addition, our model 
represents a totally different approach respect to the one 
proposed some time ago by Rind and Blanchard [9-8] that 
solely relies on the competition between pre-synaptic 
excitation and a delayed inhibition.   

In our model (fig. 2), the input image is expanded and 
passes through a delay filter, generating what is going to be a 
prediction of the next input image. This prediction is 
multiplied by a new input image in the next time step. The 
correlation between the prediction and current image give us 
a parameter of the expansion of the image whereas on the 
other branch, the correlation will give a parameter of 
contraction. Both values will be subtracted and calculated for 
every pixel in the image. The addition of all the results of 
these correlations will be proportional to the expansion in the 
visual field.  

Since more activity in the input image implies a higher 
probability to have random noise in the image resulting in the 
detection of spurious correlations, the overall activity level of 



the input image is taken into account with a feed-forward 
inhibition. Also the LGMD is subject to such an inhibition, 
where this inhibitory projection seems to signal the overall 
motion activity in the visual field [3]. At this point in our 
model the LGMD integrates these different feedforward 
components. When this integrated input exceeds a threshold 
the LGMD will signal a looming stimulus, i.e. pending 
collisions, and can trigger an avoidance reaction.  

 

Fig. 2. Implementation of the LGMD model, making use of Reichardt 
correlator [12] , where  represents a delay, X the multiplication operation 

and  the subtraction operation. This model responds to looming stimulus in 
the visual field taking into account that the strength of the response will 

depend on the global activity level of the image (feed forward inhibition), 
and then this response is integrated over time and thresholded.   

After the offline characterization of the model, we have 
applied it to a blimp-based robot in order to evaluate the 
performance in the real world. For these tests, two cameras 
are mounted on the front part of the robot providing input to 
two visual processing streams both feeding into their own 
LGMD neuron. This allows the model to detect the looming 
stimulus on each side of the visual field. Whenever a train of 
spikes is produced by one of the simulated LGMD neurons, 
either left or right, it triggers an avoidance reaction in the 
opposite direction, performing a turn over an angle that is 
defined by the strength of the response of the LGMD. If both 
LGMD neurons respond at the same time to an approaching 
stimulus, as it can happen in corners, the avoidance reaction 
involves a straight reverse movement.     

III. Results   

Some experiments and test have been performed in order 
to characterize the performance and sensitivity of the model. 
In a first stage, a stand-alone camera approaching a wall has 
been used to test and characterize the model. The wall is 

presented with random black-filled squares on a white 
background as visual cues, and a distance of 3.5 meters is 
chosen for the approaching maneuver.  Five successive tests 
are performed for a range of speeds. 

 

            

 

Fig. 3. Responses of the LGMD model to five approaching and releasing 
maneuvers at 0.25 m/s.  

The responses of the model (fig. 3) shows strong activity 
and high firing rates during the approaching maneuvers 
whereas no activity is shown during releasing. This trace is 
similar to real recordings of the LGMD and it shows that this 
model can be used to prevent collisions, but probably its 
responses vary depending on the speed of approach.  

 

Fig. 4. Mean activity of the LGMD responses relative to the duration of 
the stimulus. Five tests are performed for every speed.  

Looking and the mean activity time (spikes/second) of the 
response at different speeds (fig. 4), an exponential increase 
of the activity is observed when increasing the speed. 
However, the total amount of spikes occurring during the 
approaching maneuver is reduced for higher speeds (fig. 5). 
This implies that the firing rate  (spikes/seconds) of our 
model increases with speed of approach as is observed in the 
real LGMD cell. Recordings of this neuron show the same 
exponential pattern, which is the main argument in favor of 
the multiplicative hypothesis [3]. However, here we have 



presented a model that does not need to calculate either the 
angular size (

 
or the angular velocity ( ) of the 

approaching object in order to explain its non-linear 
behavior. In this case it can be explained as an emergent 
property arising from the integration of EMD inputs with an 
global image derived gain control signal.  

 

 Fig. 5. Mean of the absolute occurrences of spikes during the approaching 
maneuver. Five tests are performed for every speed.       

The last test before applying it to our robot was to look at 
the distance at which the collision could be detected, and 
therefore, successfully avoided. For the same range of 
speeds, the responses have been analyzed to find out the 
distance at which the first event of spike occurred (fig. 6). 
This analysis shows a later response for high speeds, being in 
the worst case at a distance around 1.75 m away from the 
wall at 1 m/s, a velocity unreachable for a normal ground 
robot.   

 

Fig. 6. Time To Contact (TTC) with the wall at which the first event of spike 
occurred. Five tests are performed for every speed.  

To test the robustness and performance of the model in a 
real 3D environment, we have applied it to a blimp-based 
robot. This model of the LGMD cell is used to trigger the 
avoidance reactions whenever our flying robot is 
approaching an object or a wall [4][14-15]. Thus, using a pair 
of cameras pointing to both left and right sides, and using 
two identical processing streams dedicated to each camera, 
the avoidance reaction can be triggered in the opposite 
direction of the looming stimulus.    

As observed in the LGMD cell of the Locust, our model 
responds as a wide-field visual neuron that starts to spike 
whenever it is stimulated by a looming stimulus, but it is 
spiking more often, increasing its activity as it gets close to 
the object. Therefore, the avoidance maneuver is triggered 
when the model responds with high activity.  

The flying robot showed a successful avoidance behavior 
in our test room (4 x 4 meters) where a number. of random 
black squares were placed on the walls to provide visual 
cues. The collision is detected within 1 m. and 2.7 m., being 
far enough from the wall to perform a successful avoidance 
maneuver.  

IV.   Conclusions   

A new model for the LGMD is proposed using a new 
approach [7-9][17-18] that is based on the Reichardt 
correlators. This model responds with high activity to 
looming stimuli and shows a null response for contraction of 
the image. This property makes it highly appropriate to 
prevent collisions. 

The model has been characterized for a range of speeds, 
detecting an imminent collision for all the cases, and at least 
1.75 meters away from the object at the highest speed (fig. 
6). This behavior allows us to detect collisions at a prudent 
distance from the obstacle, being a good candidate to be 
applied in relatively fast robots or where the environmental 
conditions do not permit a fast response (underwater or aerial 
vehicles, etc). 

An important aspect of our model is that it explains key 
features of the LGMD while not assuming that it performs 
non-linear operations on high-level features of the imag such 
as angular size (  or the angular velocity ( ) [3]. Given that 
our model is simpler we would argue that provides a better 
reflection of biological reality.   

This version of our model can, however, not explain 
all behaviors of the LGMD such as its independence from 
source position and direction of the looming stimulus [3-4]. 
However, we belief that this problem can be addressed by 
expanding the front-end processing of our model. Other 
behaviorally similar models have been recently proposed [7], 
but never applied, in order to explain the behavior of the 



saccades of the fruit fly Drosophila Melanogaster, that are 
triggered in order to avoid collisions and a similar approach 
has been followed using a terrestrial robot [13]. However, 
our model is unique in the sense that we have shown that the 
principles underlying the LGMD detection system can both 
match the physiology of this system and reliably control a 
flying vehicle providing further support for this approach. 
The presented model is consistent with the current fly and 
locust physiology an behavior studies [7,13].    
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