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ABSTRACT
Selective attention is a process widely used by biological

sensory systems to overcome the problem of limited parallel pro-
cessing capacity: salient subregions of the input stimuli are se-
rially processed, while non–salient regions are suppressed. We
present an analog Very Large Scale Integration implementation
of a building block for a multi–chip neuromorphic hardware
model of selective attention. We describe the chip’s architec-
ture underlining the similarity between the circuits and biological
neurons and synapses. We present experimental results showing
the system’s behavior as a function of its bias settings.

INTRODUCTION
Selective attention is one of the most powerful strategies

used by biological systems, from which robotics and in general
all artificial computation can take advantage. In a biological sen-
sory system, selective attention acts as a dynamical filter that
selects the most salient regions of the input, sequentially allo-
cating computational resources, for analyzing the target. This
strategy limits the computational demand respect to parallel pro-
cessing. The selection of one between possible targets depends
on its ’saliency’; the saliency of a stimulus depends on its phys-
ical and semantic characteristics and on the relevance it has for
the ongoing activity of the subject. There are two main path-
ways that determine the emergence of one ’winning’ stimulus in
the competition for saliency: one is stimulus-driven, bottom-up
and task-independent, the other is goal-dependent, and acts in a
slower top-down manner.

Much of the research focused on modeling the bottom-up as-
pect of selective attention, gave rise to software [1–4] and hard-
ware models [5–8] based on the concept ofsaliency map[9].
Software models based on this concept account for many psy-
chophysical and neurophysiological observations [10] and have
features that could be used in practical applications. Hardware
implementations of selective attention systems have the addi-
tional advantage of real time computation and compactness: they
can be used for building artificial systems that interact with real
world stimuli in real time, and can therefore be a powerful tool
for studying computational properties of different types of selec-
tive attention models.

The concrete physical realization of these models has to take
into account issues such as noise, limited resources and power
availability, as well as fault tolerance, and robustness to varia-
tions in the input, very much like the brain has to. This will
hopefully lead to a better understanding of the physical and com-
putational mechanisms used by the brain to solve these problems,
including details that might be overlooked in abstract models or
computer simulations.

Here we present a VLSI device, the Selective Attention
Chip (SAC), that can be used as a building block for hardware
multi–chip sensory systems, based on selective attention models.
Specifically the SAC represent a hardware implementation of a
saliency-based computational model of the bottom-up dynami-
cal form of selective attention [11]. The SAC was realized with
Very Large Scale of Integration (VLSI) technology using neuro-
morphic circuits that directly map biophysical neuronal proper-
ties onto silicon. It employs a spike-based representation both
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Figure 1. Block diagram of a basic cell of the 32× 32 selective attention

architecture.

for receiving input signals and for transmitting output signals to
further processing stages. Its input signals are expected to ar-
rive from a saliency map, topographically encoding local con-
spicuousness over the entire visual scene. Its output signals can
be used in real time to drive motors of active vision systems or
to select subregions of images captured from wide field-of-view
cameras.

This chip is the evolution of a similar device previously pro-
posed in [12]. This new device augments the previous one by
implementing a larger array (32×32 cells as opposed to 8×8),
by using a novel low-power spiking neuron circuit [13], and by
using more advanced synaptic circuits with realistic dynamics
and adaptation properties [14,15].

In the next sections we describe the chip’s architecture and
its main circuital elements and show both behavioral simulation
results and some preliminary experimental results that illustrate
the effects of the new types of synapses and neurons on the se-
lective attention dynamics.

THE SAC ARCHITECTURE
The SAC was fabricated using a standard0.35µm CMOS

technology; it contains an array of32× 32 cells laid out on a
square grid; a single cell is50.65×32µm2 while the whole array
occupies an area of23447µm2. Each cell in the bidimensional ar-
ray comprises an input circuit that models the dynamics of a bio-
logical excitatory synapse, generating Excitatory Post–Synaptic
Currents (EPSCs), a hysteretic Winner–Take–All (WTA) com-
petitive element [16], an output Integrate and Fire (I&F) neu-
ron [13] and a feedback inhibitory synapse (see Fig. 1).

Input and output signals of the SAC are asynchronous dig-
ital pulses (spikes) that use anAddress Event Representation
(AER) [17]. The AER is inspired by cortical communication: it
is based on asynchronous events (spikes) that encode the address
of the sending neuron and carry the analog information in their
temporal structure. This protocol allows multiple AER chips to

communicate using spikes, just like the cortex, and can be used
in multi–chip systems, with multiple senders and multiple re-
ceivers [18,19]. Using this representation the SAC can exchange
data, while processing signals in parallel, in real time [12]. The
communication protocol used and the SAC’s bidimensional ar-
chitecture make it particularly suitable for processing visual in-
puts coming from artificial spiking retinas or cochleas.

Input spikes arriving for example from a silicon retina [20]
or from a software based vision system [8] are integrated by the
excitatory synapses of the array into excitatory analog current
(seeIex of Fig.1); the effect of a single spike on the integrated
current depends on the synaptic weightVw of Fig. 2(a). The ini-
tial weight of the synapse is set by an external voltage reference
(Vw0 of Fig. 2(a)), then as the synapse receives spikes (voltage
pulsespre) the effective synaptic weightVw decreases, in a way
to model local gain control, reproducingshort time depression
dynamics observed in physiological recordings [21].

The integrated excitatory current is sourced into the corre-
spondent WTA cell that competes with the other cells by means
of lateral excitatory and inhibitory connections. The spatial ex-
tent of the competition can be set by the strength of these lateral
connections; in particular we can set global competition, allow-
ing only one cell to win, or we can have local competition, with
multiple spatially distant winners [16].

As soon as a WTA cell wins the competition it sources a
fixed amount of current into the membrane capacitance of the
adaptive low power I&F neuron. The spiking frequency of the
I&F neuron is monotonic with its input current. The adapta-
tion neuron’s mechanism decreases the neuron’s firing rate with
time [13].

The output spikes go to an arbitration circuit that sends the
address of the winning pixel to the AER bus and, in parallel,
to the corresponding inhibitory synapse that is responsible for
generating the inhibitory currentIior (see Fig.1); this current is
subtracted from the input excitatory currentIex, therefore the net
input current to the winning cell decreases until a different cell
is eventually selected as winner. This negative feedback mech-
anism is known as Inhibition of Return (IOR), it allows the net-
work to deselect the winning cell and switch between inputs with
different salience.

The SAC has been designed with tunable parameters that al-
low to modify the strength of synaptic contributions, the dynam-
ics of synaptic short term depression and of neuronal adaptation,
as well as the spatial extent of competition and the dynamics of
IOR. All these parameters enrich the dynamics of the network
that can be exploited to model the complex selective attention
scan path.
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Figure 2. (a) Excitatory synapse circuit. Input spikes are applied to M1,

and transistor M11 outputs the integrated excitatory current Iex. (b) In-

hibitory synapse circuit. Spikes from the local output neurons are inte-

grated into an inhibitory current Iinh.

BEHAVIORAL SIMULATIONS AND EXPERIMENTAL
DATA

In order to assess the dynamical properties added by synap-
tic short term depression and spiking frequency adaptation, we
simulated the behaviour of2 pixels, using the analytical equa-
tions derived from the circuits. In addition we performed some
preliminary experiments to characterize the chip implemented.

Excitatory Synapse
The current mirror integrator circuit [22] in the excitatory

synapse integrates the incoming spikes, decreasing the gate volt-
ageVm of the output transistor. We can derive the time course
of Vm during the spike from Kirchoff’s current law and from the
transistor’s weak inversion equations:

Isyn=−Cm
dVm

dt
+ I0pe

κ(Vdd−Vm)
UT (1)

WhereI0p is the transistor’s dark current,UT is the thermal volt-
age,κ is the transistor subthreshold slope factor andVdd is the
power supply. Integrating Eq. 1:

Vm(t) =
UT

κ
ln

(
(e

κVm0
UT − I0p

Isyn
e

κVdd
UT )e−

κIsyn
UTCm

t +
I0p

Isyn
e

κVdd
UT

)
(2)

During a spike the voltageVm is decreased by an amount deter-
mined byIsyn that depends exponentially on the synaptic weight
Vw. The short term depressing part of the synapse (transistors
M1−−M4) of Fig. 2(a) decreasesVw with each spike. To a first
order approximation during a spike the synaptic weight decreases
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Figure 3. Short term depression simulations. The synaptic weight Vw
is plotted for input spike trains of different frequency. The higher the fre-

quency, the lower is the steady-state depressed value.

linearly:

Vw(t) = Vw0− Iwstd

Cw
t (3)

During the time interval between spikes transistorsM3 and
M7 in the synapse of Fig. 2 tend to restoreVw andVm respectively.
In this case the synapse has no input andVm can be obtained
integrating Eq. 1, forIsyn= 0:

Vm(t) =
UT

κ
ln(e

κVm0
UT +

κI0p

UTCm
e

κVdd
UT t) (4)

In the same wayVw is obtained integratingdVw
dt = IM1

Cw
:

Vw(t) =
UT

κ
ln

κI0p

UTCw
e

κVa
UT t +e

κVw0
UT (5)

In Fig. 3 we show the variation of the synaptic weightVw

when the synapse is stimulated with constant spike trains for
increasing input firing rates, the steady state of depression de-
creases with spiking frequency of the input. In Fig. 4 we show
the variation of the synaptic weightVw when the synapse is stim-
ulated with a constant spike train for two values of the depressing
biasVwstd, both the steady state and the time course of the synap-
tic weight can be changed.

WTA
The hysteretic WTA cell compares its input current to the

current of the winning cell plus an hysteretic currentIhyst; the

3 Copyright c© 2004 by ASME



0   0.2 0.4 0.6 0.8
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

t(s)

V
w

(V
)

wstd = 300mV
wstd = 500mV

Figure 4. Short term depression of the excitatory synapse. Data ob-

tained from the chip showing Vw for different values of short term depres-

sion settings (Vwstd). The higher Vwstd, the lower is the steady state value

of the synaptic weight

hysteretic current gives to the currently winning cell a compet-
itive advantage, implementing a sort of short time memory that
could be useful for tracking salient patterns. The input current
to the WTA cell is the sum of the positive current sourced by the
excitatory input synapseIex, and the negative current subtracted
by the IOR inhibitory synapseIior .

In Fig. 5 we show the effect of alternatively stimulating two
pixels: the activity of the two output neurons alternates indicat-
ing which pixel is winning the competition for saliency.

I&F neuron
The I&F neuron integrates its input current until the inte-

grated membrane voltage crosses a threshold. At that point the
neuron generates a spike and the membrane voltage is reset. We
can model the subthreshold time course ofVmemby:

Cmem
d
dt

Vmem= Iwta− Ileak+ I f b− Iadap (6)

where the net current in input is given by the current sourced by
the WTA cellIwta, minus a leakage current

Ileak = I0ne
κ

UT
Vlk(1−e−

Vmem
UT ) (7)

a feedback current

I f b = I1e−κ2 Vs f
UT eκ2 Vmem

UT (8)

Figure 5. Experimental data for the WTA circuit:pixel (0,0) and pixel

(1,1) are stimulated with a constant spike train at 100Hz that switches

between the two each second. We show the output screen of the digital

oscilloscope for pixel (0,0): the top trace represents the weight of the

short-term depressing synapse, the second trace is the voltage in the

current mirror integrator of the excitatory synapse (Vm of Fig.3), the third

trace is logarithmically proportional to the total current in input to the WTA

cell, and the bottom trace is the neuron’s membrane voltage. Every time

the pixel (0,0) is stimulated the synapse integrates the incoming spikes,

the weight adapts, the current in the WTA cell increases and the I&F
neuron spikes. When the synaptic weight is sufficiently depressed the

neuron stops firing and the other neuron wins the competition for salience.

and an adaptive current that increases for each spike,

Iadap= I0eκ Va0
UT eκγ Vmem

UT (1−e−
Vmem
UT ) (9)

thanks toIadap the effect of a constant current applied to the neu-
ron decreases with time, resulting in a decrease of the output
firing rate that will affect the dynamics of the IOR mechanism.

Results
Even the when stimulating only two pixels the network

shows an interesting dynamic behaviour enriched mostly by
the introduction of the short term depression in the excitatory
synapse. In the behavioural simulations we stimulated two pix-
els with constant spike trains of different frequencies; the change
in the synaptic weight depends on the input frequency as shown
in Fig. 3. This effect is a useful feature that equalizes the in-
puts coming from noisy sources as spiking retinas [20]. This be-
haviour enhances responses to stimuli that change in time rather
than to constant or slow stimuli. In Figure 6 and 7 we show the
change in the synaptic weight and in the synaptic output current
respectively for a4 seconds simulation, where the frequency of
the input spike trains changes every second: Pixel one is stim-
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Figure 6. Synaptic weight of the two pixels. Pixel one is stimulated

at 100Hz, then at 150Hz, 100Hz, 120Hz, pixel two receives 60Hz,

120Hz, 60Hzand eventually 150Hz. Vw depends on the absolute value

of the frequency.

ulated at100Hz, then at150Hz, 100Hz and120Hz, while pixel
two receives60Hz, 120Hz, 60Hz and eventually150Hz. The
value of the synaptic weight depends on the absolute value of
the frequency. The current peaks in correspondence to relative
changes in the input: the synapse can be seen as an high pass
filter, since it enhances the input’s temporal variations. In this
experiment the network shows an even behaviour: after a transi-
tory, due to the stimulus variation, it starts to switch between the
most salient and the second most (less in our case) salient input,
thanks to a balance between IOR and hysteresis.

A similar experiment has been performed on the chip and
the result is shown in Fig. 5, in this case the IOR was switched
off and the dynamics of the WTA depends only on the short term
depression of the synapse.

CONCLUSIONS
In this paper we presented a neuromorphic device imple-

menting a Winner–Take–All network. This device is designed to
be a part of a multi–chip system for Selective Attention: via AER
communication system it can be interfaced to silicon spiking reti-
nas and to software implementations of associative memories.

We have shown that the new synaptic circuits can equalize
the input to the competitive network, therefore it can cope with
noisy inputs.

The prohibitive CPU simulation times for larger networks
simulations didn’t allow us to explore the possible additional fea-
tures introduced by short term depression and spike frequency
adaptation. The real time measurements allowed by the physical
realization of the chip are certainly a more powerful method to
explore the network behaviour by changing its parameters. The
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Figure 7. Synaptic output current, for the same simulation as in Fig. 6.

The current shows peaks in correspondence of the stimulus variations,

the amplitude of the peak is related to the value of the input frequency

step.

preliminary experiments confirmed the simulation’s results and
will be extended with the introduction of IOR, adaptation and
lateral coupling among the nearby cells.
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