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Abstract

To understand the rules by which axons lay down their synaptic boutons we analyzed the linear bouton distributions in 39
neurons (23 spiny, 13 smooth) and 3 thalamic axons, which were filled intracellularly with horseradish peroxidase (HRP)
during in vivo experiments in cat area 17. The variation of the total number of boutons and the total axonal length was large
(789–7912 boutons, 12–126 mm). The overall linear bouton density for smooth cells was higher than that of spiny cells and
thalamic afferents (mean ± sd, 110 ± 21 and 78 ± 27 boutons per mm of axonal length). The distribution of boutons varied
according to their location on the tree. Distal axon collaterals (first and second order segments in Horton-Strahler ordering)
of smooth neurons had a 3.5 times higher, spiny cells and thalamic afferents a 2 times higher bouton density compared to the
higher order (more proximal) segments. The distribution of interbouton intervals was positively skewed and similar for cells
of the same type. In most cases a γ -distribution fitted well, but the distributions had a tendency to have a heavier tail. To a first
approximation these bouton distributions are consistent with both diffuse and specific models of interneuronal connections.
Quite simple rules can explain these distributions and the connections between the different classes of neurons.

Introduction

The complexity of the cortical circuits led early inves-
tigators to see only tangled thickets, a random mesh of
connections in which no specific cortical circuits were
to be found (Cajal, 1989). Theories were developed
based on the assumption that the patterns of connec-
tions of individual neurons were irrelevant and that the
mass action of an aggregate of neurons was the key to
understanding cortical function (Sholl, 1956; Freeman,
1975). Modern studies, beginning with Hubel and
Wiesel (1962, 1972) have largely overturned this view
in favour of highly specified and stereotyped con-
nections between cortical neurons that are repeated
over and over to generate a crystal-like cortical ar-
chitecture (Szentágothai, 1975; Rockel et al., 1980).
In the most recent models, the circuit has evolved
such precise wiring that the specificity extends be-
yond simply connections between different types of
neurons to the actual position of the connection on
the postsynaptic neuron. On this view, the surface of
each neuron is an intricate mosaic of specific synap-
tic connections made with select presynaptic partners
(Somogyi et al., 1998; Dantzker & Callaway, 2000;
Kozloski et al., 2001; Silberberg et al., 2002). The
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hope is that when all these synapses are mapped,
and their stereotyped and specific ‘weights’ known,
then the role of the different neurons in the cir-
cuit will be plain. Impressive as the achievements
have been in deciphering the cortical circuits, there
is far from unanimity as to whether one can de-
fine a ‘canonical’ cortical circuit. This is most evi-
dent in the cat visual cortex, where there has been
a long-standing debate as to the form of the ba-
sic functional circuit. Following Hubel and Wiesel
(1962, 1965), one view is that the cortical layers con-
stitute levels of a feedforward pathway within which
there is some elaboration of receptive field prop-
erties between input and output. Another view is
that the circuits within and between layers are re-
current, and that this is an essential part of their
function (Nó, 1949; Creutzfeldt, 1977; Douglas et al.,
1995). However, in most cortices, the debate over
the precise form of the circuits has yet to begin.
Even in very intensively studied circuits of the rat
barrel cortex, or cortical areas 3 and 17 of mon-
key, only fragments of the cortical circuit have been
assembled.
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The discussion of the specificity of connections is
pursued at quite different levels. The oft-cited epit-
ome of specificity is the chandelier cell, which forms its
synapses exclusively on the initial segment of pyrami-
dal cells (Freund et al., 1983). Specificity of location is of
course typical for all cell types: the chandelier cell is per-
haps more extreme. However, at the next level the ques-
tion remains unanswered as to whether the chandelier
cell specifically ‘selects’ particular pyramidal cells or
simply forms multiple synapses with the axon initial
segment of any pyramidal cell it comes across. Clearly,
there are aspects of cortical function, e.g. gain control, at-
tentional modulation, where diffuse rather than specific
connections may be necessary. Without knowing the
computation, one cannot simply assume that all con-
nections have equal specificity, in the sense in which it is
usually meant. The axo-axonic cell is also at one extreme
in selecting a single (albeit broad) class of neurons—the
pyramidal cells. All axons have preferred targets, but in
general they form synapses with many different types
of neurons. For example, in early studies in the cat
we discovered that thalamic afferents formed synapses
with all types of neurons whose dendrites lay within
the axonal field (Martin & Whitteridge, 1984; Freund et
al., 1985b). The same is true of the thalamic afferents in
the mouse barrel cortex (White, 1989).

Most neurons do form synapses with multiple types
of neurons and multiple sites: with spines, dendritic
shafts and somata and some non-chandelier cells also
form synapses with the axon (Gonchar et al., 2002).
However, the strongest case that can be made for the ‘se-
lective’ targeting of synapses comes not from anatom-
ical studies but from physiological studies of simple
cells in layer 4 of cat primary visual cortex. Here cross-
correlation studies indicate that the On and Off sub-
fields of the simple cells reflect the input from On and
Off center X-type thalamic afferents (Tanaka, 1983; Reid
& Alonso, 1995). This spatial precision of the inner-
vation of these axons must be very high in order to
preserve the spatial resolution of the receptive field.
To appreciate the problem of achieving such precision,
one must realize that each point in layer 4 is covered
by between 400–800 X-type afferents, half of which are
On and half are Off center (Freund et al., 1985a). What
is even more remarkable is that each neuron receives
only between 1–8 synapses from each thalamic afferent
(Freund et al., 1985b). Since each layer 4 neuron has sev-
eral hundred thalamic synapses, this means that there
is considerable convergence of the thalamic input to
the individual cortical neuron. This is reflected in the
scatter of LGN receptive fields that cover subfields of
simple cells (Reid & Alonso, 1995). Nevertheless the
spatial precision of On and Off subfields of the simple
cells is impressive.

Discovering the rules by which neurons interconnect
with such precision has very important consequences
for models of the development of cortical networks.

Although much effort has been devoted to studying
cortical connectivity, we are still far from understand-
ing the rules that generate these circuits. It is clear that
the formation of any particular synapse requires that an
axon grows to a particular target and forms a synaptic
bouton at the appropriate location. The literature on the
axon branching patterns of cortical neurons is largely
anecdotal and the mechanism of the actual placement
of boutons along the axon is not well understood. Anal-
yses of fragments of Golgi-stained axons in the rodent
neocortex have given the rather surprising result that
the placement of boutons along individual axon col-
laterals is random, i.e. the interbouton intervals ap-
proximate an exponential distribution (Braitenberg &
Schüz, 1991; Hellwig et al., 1994). The authors interpret
this as indicating that the cortical wiring is ‘essentially
random’. Measurements of interbouton intervals in the
cat (Martin & Whitteridge, 1984; Kisvárday et al., 1985,
1987; Friedlander & Martin, 1989) also give positively
skewed distributions reminiscent of the rodent, but no
attempts were made to identify the underlying gen-
erative process. Here we have attempted to define the
type of process that generates the position of individual
boutons along a branch of an axon and in so doing have
extended the work pioneered by Braitenberg and Schüz
(1991) in the rodent. In addition, we consider the issue
of how specific connections can be achieved if boutons
are laid down randomly along the axon collaterals.

Material and methods

PREPARATIONS AND MAINTENANCE OF ANIMALS

The neurons examined in this study were obtained from
anesthetized adult cats that had been prepared for in vivo
intracellular recording (see Martin & Whitteridge, 1984;
Douglas et al., 1991, for details). All experiments were car-
ried out by KACM and colleagues under the authoriza-
tion of animal research licenses granted by the Home Of-
fice of the U.K. and the Cantonal Veterinary Authority of
Zürich. We first recorded from each cat extracellularly and
mapped the receptive field orientation preference, size, type,
binocularity and direction preference by hand. The map-
ping was repeated intracellularly and horseradish peroxidase
(HRP) was then ionophoresed into the cell. Thalamic affer-
ents were classified as X or Y-type using a battery of tests
(Friedlander & Stanford, 1984; Martin & Whitteridge, 1984).
After appropriate survival times, the brains were fixed and
processed to reveal the HRP and osmicated and embedded
in resin to eliminate differential shrinkage. Shrinkage of the
tissue was estimated to be 11%. The block of tissue containing
the intracellularly filled neurons was serially sectioned in the
coronal plane at a thickness of 80 µm. This processing allowed
the material to be examined at both the light and the electron
microscope level.

CELL RECONSTRUCTIONS

Neurons were reconstructed in three dimensions with the aid
of a light microscope (Leitz Dialux 22) with drawing tube
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attachment magnified to ×400 attached to an in-house 3D re-
construction system (TRAKA). TRAKA was written in PAS-
CAL by RJD and Danie Botha. The reconstructions were char-
acterized by a list of data points and stored for further usage.
Each data point consists of a code describing the digitized
structure (axon or bouton) and its three spatial co-ordinates
and thickness (where relevant). The axonal arborisations are
complex and often extend through many histological sections.
The measurement error of the digitized structures was esti-
mated by measuring four boutons ten times. The standard
deviation was smaller than 0.6 µm in all 3 dimensions. The
data was rotated in order to bring all reconstructed cells into
the same coordinate system.

AXON AND BOUTON REPRESENTATION

For technical reasons occasional axonal collaterals of a given
cell could not be connected to the main tree and were ignored
in this analysis. Each data point consists of a code describ-
ing the structure digitised, its three spatial co-ordinates and
its thickness. The boutons are assumed to represent the ma-
jor presynaptic location of synapses. They are represented by
points in the 3D space, and the axonal and dendritic collat-
erals by open polygons. The locations of the boutons were
digitised together with the axons. So each bouton is linked to
its source collateral, and this data organisation permits us to
study the distribution of the boutons along the collaterals.

The boutons do not always lie exactly on the route of the
axon as represented by the digitised polygon. Trivially, the
boutons may lie away from the polygon because physically
extended structures such as the axon are digitised as points
and lines, which have no thickness. Moreover, there are small
measurement errors in the digitisation process. The third, and
biologically relevant, reason for displacement of the boutons
away from the axon is the existence of terminaux boutons.
These are spine-like boutons connected by a small stalk, or
neck, to the axonal shaft. In order to analyse sequences of
boutons on axonal branches projected the measured points
(boutons) onto the axonal polygon (Fig. 1).

Fig. 1. Representation of an axon. The reconstruction of an
axonal branch is represented by a polygon in the 3D space.
Boutons on the axon are represented by filled circles. En pas-
sant boutons (bte) sit directly on the axon, while terminaux
boutons (btt) are displaced and had to be projected onto the
axon (btt’, open circles). We analysed the sequence of bte and
btt’ along the axon.

DENDROGRAMS

A dendrogram of a tree is a 2D diagram that represents the
branching behaviour of the tree. Each branch point is repre-
sented by a horizontal line, which links the parent branch to
its daughter branches. The length of this line is arbitrary and
is chosen to be long enough to avoid intersections with other
branches. The branches (also axon collaterals) themselves are
represented by vertical lines and their length is proportional
to the measured length of the branch. We also superimposed
the locations of boutons (projected onto the branches) onto
the dendrogram. It is a property of the dendrogram that all
its intersections with the same horizontal have the same dis-
placement from the origin of the tree, when the distance is
measured along the shortest axonal path from an intersection
to the origin of the tree.

Horton-Strahler ordering scheme
In order to investigate the distribution of boutons on different
parts of the axonal tree, we assigned each axonal collateral an
order. We used the method proposed by Strahler (Strahler,
1957, see Fig. 2). Each collateral in a binary tree is given an
order in the following way: the end collaterals (i.e. the collat-
erals with no children) have all order 1. If the two children
of a collateral have order k, the collateral is assigned order
k + 1. If one child has order k and the other an order smaller
than k, the collateral is assigned to the larger order k. Each
maximal path formed by consecutive collaterals of the same
order k is called a segment of order k. This ordering scheme is
intuitively best understood in terms of pruning. If all order
1 collaterals (the end-collaterals) are removed, a tree remains
whose end-collaterals are the order to segments of the old
tree.

Interbouton interval
For each bouton of the first or second order segments the
length of the interbouton interval (‘ibi’) to the neighbouring

Fig. 2. Ordering scheme used to describe the collaterals of a
binary tree. Each number indicates the ‘Horton-Strahler or-
der’ of a collateral. By definition each end collateral (one is
indicated in bold) has order 1. Collaterals with children of
similar order k have order k + 1. Collaterals with children of
different orders k1 and k2 have order max(k1, k2). A ‘segment’
of order k is a maximum chain of collaterals of this order. A
segment of order 2 is indicated with a bold line.
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bouton closer to the root was determined. If no such neigh-
bour existed, the interval to the beginning of the point of
the segment was taken. Histograms of interbouton intervals
(bin size 1.5 µm) were fitted by a γ -distribution fα,ν with
‘scale’ parameter α > 0 and ‘shape’ parameter ν > 0, defined
by fα,ν(x) = 1

�(ν) α
ν xν−1e−αx , where �(ν) =

∫ ∞
0 tν−1e−x dt is

the gamma function. For the fit with the histograms only dis-
tances were used that were smaller than d = i · 1.5 − 0.75,
where i is the first bin for which the bins i and i + 1 con-
tain no distances. The best fit was found by minimising the
least square error with the Levenberg-Marquardt method (e.g.
Press et al., 1997). The quality of the fit was assessed using the
Kolmogorov-Smirnov test (significance level 0.01). Two sets
of ibi’s were tested to be significantly different (significance
level 0.01) by comparing their median using the bootstrap
method (Efron & Tibshirani, 1993, p. 221).

Poisson process with dead zones
A stationary Poisson process with dead zones (Cox & Isham,
1980) was used to explain the interbouton interval distribu-
tions (Fig. 11A). First a Poisson process with rate λ (λ > 0)
was created. The increments of this point process follow an
exponential distribution hλ with mean 1/λ. A distance τ > 0
(dead zone) from a distribution gd was chosen. Then begin-
ning with the first point of the Poisson process, all following
points of the Poisson process were deleted until the result-
ing interbouton interval was larger than τ . With the selection
of a new τ and going on with the next point of the Poisson
process, this procedure was repeated many times. It can be
shown (Cox & Isham, 1980) that the increments of the new
point process are independent of each other and have a com-
mon distribution fo which is the convolution of gd with hλ.
For simplicity we use gd = fλ,νd with arbitrary νd > 0. In this
case it is fo = fλ,νd+1 (Feller, 1971, p. 47).

Results

An analysis was made of 39 neurons whose axons ar-
borized in area 17 of the cat. Figure 3 shows the position
and type of these neurons, whose arborizations were
found in all layers. Figure 4A shows a reconstruction of
a layer 4 spiny stellate neuron, which forms its princi-
pal axonal arborization in layer 4. Its axon formed five
distinct clusters of boutons, including a cluster around
the dendritic arbor. In the dendrogram of this (Fig. 4B)
and the following axons, the thin vertical lines indicate
the length of the axon collaterals, the branches, and the
position of each bouton is indicated by a dot. The hor-
izontal lines are drawn only to connect the collaterals
and represent the branch points.

For comparison with the spiny stellate neuron shown
in Figures 4A and B, we illustrate the arbors and
dendrograms of the major types of neurons that also
made their principal arborizations in layer 4. The lat-
eral geniculate neurons arborise mainly in layer 4. One
such arbor of a Y-type thalamic neuron is illustrated in
Figure 4C with its associated dendrogram in Figure 4D.
It formed 7 clusters of which all were contained in
layer 4.

The thalamus provides about 5% of the asym-
metric synapses in layer 4 (Garey & Powell, 1971;
Winfield & Powell, 1983; LeVay, 1986; Ahmed et al.,
1994). By comparison with the thalamic afferents, the
layer 6 pyramidal cells provide almost 10-fold more ex-
citatory synapses in layer 4 (Ahmed et al., 1994). The
axonal arborization of one of these layer 6 neurons is
shown in Figures 5A and B. Unlike the Y-axon, which
had an additional small collateral projection to layer
6, this layer 6 neuron arborised exclusively in layer 4
where it formed six distinct clusters of boutons.

The axons of the spiny stellate, layer 6 pyramid and
thalamic neurons all form asymmetric synapses in layer
4. The symmetric synapses in layer 4 are provided by
the smooth GABAergic neurons, which are typically
small basket cells (Fig. 5C and D). The axon arbors of
the small basket cells of layer 4 are quite different from
the axon arbors of the excitatory neurons in being very
much more compact and in being nearly confined to a
single cluster. The change in the scale of the illustration
of the basket cell also indicates that compared to the
three types of excitatory axon illustrated in Figures 4
and 5, the inhibitory axon formed many short branches,
densely studded with boutons.

BOUTON DENSITY

Global density
The total number of boutons varied greatly for the dif-
ferent cells, between 789 and 7912 (mean ± std: 3554
± 1729, Fig. 6A). Even for cells of the same type the
bouton number can vary by a factor of at least three (i.e.
the pyramidal cells of layer 2/3 or layer 6). In contrast,
other cell-types, such as the basket cells in layer 2/3,
have very similar bouton numbers.

The total length of an axon has a similar variation for
the different cells (41 mm ± 21 mm, range 12–126 mm,
Fig. 6B). It seems likely that the variation in bouton
number and that of the axonal length are correlated: the
more axon a cell has, the more boutons can be formed
on it. A regression analysis shows that this is indeed the
case for the smooth cells (r = 0.90), Fig. 6B). The corre-
lation is worse for the spiny cells and thalamic afferents
(r = 0.79). For example the layer 6 pyramidal cells that
project to layer 4 (p6(L4)) have as high a number of bou-
tons as the pyramidal cells in layer 2/3 (p2/3), but their
total axonal length is much shorter.

For a given total axonal length the smooth cells typi-
cally have a higher number of boutons on the axon than
the spiny cells and thalamic afferents (Fig. 6B). As a con-
sequence the ratio of the two numbers (i.e. the ‘overall’
bouton density) is higher for the former group (110 ±
21 boutons per mm) than for the latter (78 ± 27 boutons
per mm).

Bouton density on different tree segments
Inspection of the dendrograms in Figures 4 and 5 shows
that the boutons are not uniformly distributed on the
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Fig. 3. Schematic representation of soma position and vertical range of axons and dendrites of reconstructed cells. Soma is
indicated by a dot (smooth cell), triangle (pyramidal cell) or square (spiny stellate cell). For the thalamic afferents no soma
was drawn. Thick vertical lines indicate dendrites, thin vertical lines axons. Horizontal lines indicate the lamina borders. The
position of the somata within a layer reflects the approximate true position. Similarly, the extent of the vertical lines within a
layer reflects the true vertical range that was covered by the axonal and dendritic trees. wm: white matter. Top labels indicate
the cell-types. b2/3, b4, b5: Basket cells in layer 2/3, 4 and 5. db2/3: double bouquet cell in layer 2/3. sm2/3: An unclassified
smooth cell in layer 2/3. p2/3, p4, p5, p6: pyramidal cells in layer 2/3, 4, 5 and 6. Pyramidal cells in layer 5 and 6 were further
distinguished by the preferred layer of the axonal innervation (p5(L2/3), p5(L5/6), p6(L4) and p6(L5/6)). ss4: spiny stellate
cells in layer 4 with major axonal projection to layer 2/3 (ss4(L2/3) or to layer 4 (ss4(L4)). lgnX and lgnY: thalamic afferents of
type X and Y.

axonal tree. The axons tended to have their boutons
located on the first and second order segments (i.e. on
the distal collaterals), while the higher order segments
were often only sparsely dotted with boutons. In fact,
the overall bouton density of the first and second order
segments was on average 127 ± 23 boutons per mm
for the smooth cells and less for the spiny cells and
thalamic afferents (86±28 boutons per mm). The overall
bouton density for the higher order segments was for
the smooth cells 36± 27 boutons per mm and higher for
the spiny cells and thalamic afferents (43 ± 27 boutons
per mm).

From now on we will consider the boutons on the first
and second order segments only. This is only a minor
restriction because these segments carry most boutons
and form most of the total axonal length (Fig. 6A). On
average they form 92% ± 5% (the first order segments
alone 66% ± 8%) of the boutons and 82% ± 6% (the
first order segments 55% ± 7%) of the axonal length.

The typical number of boutons on the first order seg-
ments was smaller for the smooth cells than for the
spiny cells, while the relation was reversed for the typ-
ical bouton density (Fig. 6C and D). This is possible
if the first order segments are smaller for the smooth

cells than for the spiny cells. Comparison of the den-
drograms in Figures 4 and 5 and inspection of the
dendrograms of the other cells confirms this is so (not
shown).

For the smooth cells, the typical bouton density of the
second order segments tended to be smaller than that of
the first order segments, although the total number of
boutons on the segments was roughly similar (Fig. 6C
and D, e.g. b2/3 and b4). In contrast, the typical bouton
number for the spiny cells tended to be bigger for the
second order segments than for the first order segments,
but in many cases the typical bouton density was equal
(Fig. 6C and D, e.g. p2/3 or p6L(5/6)). Again, both
patterns are possible if the second order segments are
longer than the first order segments.

INTERBOUTON INTERVALS

Median of interbouton intervals
The analysis of a large number of axon branches from
the major morphological classes of cortical neurons
and LGN afferents, indicated that there was consider-
able variation in the length of the interbouton inter-
vals (‘ibi’). However, in some cases the distributions
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Fig. 4. Coronal view of reconstructed neurons and the dendrogram of their axonal trees. For this and the following figure the
axon is indicated in black, axonal boutons in green, dendrites in red and cortical layer borders in gray. A: Spiny stellate cell in
layer 4. Receptive field (RF) type, ocular dominance (OD) and size were as follows. Directional S1 (‘simple’) RF, OD 1, size 0.8
× 0.5 deg. B: Dendrogram of the spiny stellate cell shown in A. C: Y-type thalamic afferent. D: Dendrogram of the thalamic
afferent shown in C. Scale bars: 500 µm.

correlated with the cell type. Median values of ibi varied
considerably for the first and second order segments,
between 3.6 µm and 10.6 µm (Fig. 7A), depending on
the cell class. Smooth cells, with the exception of the
double bouquet cell in layer 2/3 had small median ibi,

on average 5.9 ± 0.9 µm. The spiny cells and thalamic
afferents tended to have larger median ibi, on average
7.4 ± 1.6 µm. However, the bouton density can change
along the axonal tree (Fig. 6C and D). We also wanted
to know if the distributions of ibi are different for
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Fig. 5. Coronal view of reconstructed neurons and the dendrogram of their axonal trees. A: Pyramidal cell in layer 6. Directional
S1 RF, OD 7, size 0.5 × 1.1 deg. B: Dendrogram of the pyramidal cell shown in A. C: Basket cell in layer 4. OFF-center RF, OD
7, size 0.2 × 0.2 deg. D: Dendrogram of the basket cell shown in D. Scale bar in A and B: 500 µm, in C and D: 250 µm.

different parts of the axon. First we compared the me-
dian values of ibi between boutons located either on the
first or second order segments (Fig. 7A). In general the
medians are rather similar (absolute difference <2 µm)

and only for 10/39 cases the difference was significant
(gray bars in Fig. 7A). In particular the median ibi of the
second order segments of smooth cells (7/13) showed
a tendency to be significantly bigger. Smooth neurons
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Fig. 6. Absolute number and density of boutons along the axonal trees. A: Each bar indicates the number of boutons on the axon
of a reconstructed neuron. The contribution of the first order segments is shown in black, of the second order segments in gray
and the higher order segments in white. B: Correlation between the total number of boutons and the summed length of the tree
collaterals for each neuron. Stippled line indicates regression line through the smooth neurons (open dots, correlation coefficient
r = 0.90, slope b = 113.54), solid line through the spiny neurons and thalamic afferents (closed dots, r = 0.79, b = 64.36).
C: For each neuron the mean number of boutons on segments of order 1 (circles) and order 2 (squares) were computed. D: For
each neuron the mean bouton density on segments of order 1 (circles) and order 2 (squares) were computed. C and D: Open
symbols indicate smooth neurons, filled symbols spiny neurons and thalamic afferents.

also showed a tendency to have a lower bouton density
on the second order segments (Fig. 6D).

Next we compared the median values of ibi on dif-
ferent subtrees of an axon. We considered all subtrees
whose new root is segment order 4 in the tree. These
subtrees correspond to the major branches of the axon.
Each cell have between 2 and 21 of these subtrees,
corresponding to the number of dots in Figure 7B. The
number of ibi investigated for the different subtrees
ranged between 39 and 1723 (331 ± 280). For each
subtree we determined the median ibi of the order 1
segments, which are also the order one segments of

the tree. The medians were scattered around the me-
dian of the whole tree. The range of the subtrees me-
dian ibi was typically smaller for smooth cells (1.5 ±
2.5 µm) than for spiny cells and thalamic afferents
(2.1 ± 2.4).

For 19/39 neurons, the were at least two subtrees
with significantly different ibi, 8/13 smooth cells and
10/23 spiny cells and one of 3 thalamic afferent. Because
many subtrees contributed all their boutons to a single
cluster, we were able to compare the ibi’s of subtrees
that formed either proximal or distal clusters. No clear
pattern emerged.
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Fig. 7. Median of interbouton intervals (ibi) on different parts of the tree. A: Median ibi for boutons located on first order
segments (circles) and on second order segments (squares), shown for each neuron. Filled segments indicate spiny neurons and
thalamic afferents, open symbols indicate smooth neurons. Gray bars indicate neurons with significant differences of median
ibi. B: Median ibi of first order segments which were all connected to the same order 4 segment. Each dot in a vertical column
indicates the median ibi for the different subtrees of a neuron. Gray bars indicate neurons for which at least two subtrees had
significant differences of median ibi.

Histogram of interbouton intervals
The histograms of ibi (bin size 1.5 µm) were positively
skewed for all cells (Fig. 8). The distributions within a
class tended to be similar and we therefore grouped the
histograms by their cell-types. Cell types with similar
distributions were pooled again and we finally came
up with four distinct groupings of the histograms of
ibi. The main difference between the distributions of
the different groups is the location and height of the
peak. The first group (Fig. 8A) is made of layer 4 pro-
jecting pyramidal cells in layer 6. Typically, the distri-
bution of these cells had their maximum in the first bin.
The layer 6 pyramidal cell whose axon was restricted
to layer 6 had a totally different distribution. Like the
remaining spiny cells, which formed a second group
(Fig. 8B), this cell had a flatter distribution. The cells in
this second group had a tendency to have fewer very
small ibi, so that the peak of the distribution was not
in the first bin but in the second or third. For the third
group (Fig. 8C), the thalamic afferents, the lack of small
ibi is even more pronounced for all three members. The
last group (Fig. 8D) was formed by the smooth cells. For
these cells (except for the double bouquet cell and one
of the basket cells in layer 4, indicated by thin lines in
the inset), the lack of small distances was pronounced
and the distributions were very steep.

Fit of exponential and γ -distributions to the histograms
In fitting of the histograms, extreme distances were
taken as outliers and were eliminated from the

analysis of the histograms. Specifically, ibi greater than
a threshold distance d were not included, where d was
the value of the first bin in the histogram of ibi for which
the bin and its successor contained no entries.

We attempted to fit the histograms with a γ -
distribution with shape parameter ν and scale para-
meter α (see Methods). Examples of fits to histograms
of ibi on first order segments which did not deviate
significantly are shown in Figure 9A. The fit deviated
significantly only for 8/39 neurons for (3 smooth cells,
3 spiny neurons and 2 thalamic afferent). Even if the
deviation was significant, the fit was still a reasonable
approximation (Fig. 9B). For many of these worse fits
the number of small ibi (between 3 and 4.5 µm) was
underestimated by the fitted curves (i.e. black dots in
Fig. 9B).

Figures 9C and D show the estimated parameters for
the histogram of ibi on first order segments. The shape
parameter ν of the γ -distribution was for many cells
close to 1 (Fig. 9C) which suggests that an exponential
distribution could be fitted as well (an exponential dis-
tribution with mean m is a γ distribution with ν = 1
and m = 1/α). This was indeed the case for 5 of the 6
layer 4 projecting pyramidal cells in layer 6, and also
for a spiny stellate cell, a layer 4 pyramidal cell and the
deep projecting layer 5 pyramidal cell.

A comparison of the estimated parameters for the fit-
ted γ -distributions to the ibi on second order segments
shows little variance. The average absolute differences
of the ν values was 0.2 ± 0.2, for the α values it was
0.03 ± 0.03. Only 4 spiny cells had a fit that deviated
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Fig. 8. Histogram of interbouton intervals of axonal trees grouped by cell-type and similarity. Four groups were formed
corresponding to the four histograms in A–D. The bold solid line indicates the histogram of the pooled ibi of first order
segments of each group. The upper border of the shaded area indicates the bin-wise maximum and the lower curve the bin-
wise minimum of the individual histograms of ibi on first order segments. The bold stippled line indicates the histogram of
the pooled ibi of second order segments of each group. Bin size was 1.5 µm. A: Pyramidal cells in layer 6 with an axonal
projection to layer 4. Median of pooled ibi is 5.0 µm (first order segments) and 4.7 µm (second order segments). B: Remaining
spiny cells in area 17. Median of pooled ibi is 7.9 µm (first order segments) and 7.8 µm (second order segments). C: Thalamic
afferents. Median of pooled ibi is 7.1 µm (first order segments) and 6.6 µm (second order segments). D: Smooth cells. The thin
lines indicate a basket cell in layer 4 and a double bouquet cell in layer 2/3. These two cells were excluded from the following
statistics. Median of pooled ibi is 5.5 µm (first order segments) and 5.8 µm (second order segments).

significantly from the histogram. For 7/13 smooth cells
the fitted γ -distribution of the ibi on the first order seg-
ments were significantly different from the histogram
of the ibi on the second order distribution. Two of the
3 thalamic afferents had significant differences in me-
dian ibi, but only 5/23 spiny neurons showed this dif-
ference. This demonstrates again that the spiny neurons
are more similar in their bouton distribution between
first and second order segments.

If the exponential distribution fitted well to the ibi
on first order segments (discussed above) it also fitted
well to the distribution of ibi on the second order seg-
ments. There were 4 additional neurons which had a
significantly good fit on the second order segments but
not for the first order segments.

A MODEL FOR BOUTON PLACEMENT

Poisson process

The analysis of mouse axons by Braitenberg and Schüz
indicated that boutons are placed randomly along ax-
onal branches, i.e. that the boutons on all collater-
als are placed according to the same (homogeneous)
Poisson process (Braitenberg & Schüz, 1991; Hellwig
et al., 1994). The model was applied to cells of the mouse
and rat cortex, but they supposed it to be a general rule
for cortex. Our analysis of the axonal trees indicates
that the bouton density and the interbouton intervals
change with the location of the collateral on the tree
(Figs. 6 and 7). Randomness, by contrast, implies that
all collaterals form about the same density of boutons.
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Fig. 9. Fit of γ -distribution with shape parameter ν and scale parameter α to the histogram of ibi on first order segments.
Gray bars indicate neurons for which the fitted curve deviated significantly from the histogram. A: Three representative
examples of histograms and the fitted γ distributions (solid lines), a basket cell in layer 2/3 (open dots, estimated parameters
ν = 2.25, α = 0.35), a pyramidal cell in layer 6 (closed dots, ν = 0.83, α = 0.11) and a pyramidal cell in layer 2/3 (stars,
ν = 1.31, α = 0.13). The fit did not deviate significantly. B: Examples of histograms of ibi on first order segments for which the
fitted curves (solid lines) deviated significantly. Open dots indicate a basket cell in layer 4 (fitted parameters ν = 1.34, α = 0.23,
closed dots a thalamic afferent (ν = 1.82, α = 0.19). C and D: Estimated parameters ν (C) and α (D) of the fitted γ -distributions
to the histograms of ibi on first order segments. Closed dots indicate spiny cells and thalamic afferents, open dots smooth
cells. A–D: In fitting the histograms, large distances were ignored. Specifically, ibi greater than a threshold distance d were not
included, where d was the value of the first bin in the histogram of ibi for which the bin and its successor contained no entries.
Bin size 1.5 µm.

However, the Poisson model could be true for certain
sub-regions on the tree.

We can test the random hypothesis by modeling
bouton placement by a Poisson process. We can place
the first bouton on the collateral and then ask, at
what distance from this bouton is the next bouton
to be formed? This distance is drawn from an ex-
ponential distribution. After the second bouton is
formed, another distance is drawn from the exponen-
tial distribution to place the third bouton and so on.
By construction, the interbouton intervals have to be

exponentially distributed. Based on the Kolmogorov-
Smirnov test, some of the distances of boutons on
first and second order segments in our samples
were indeed distributed in that way. However, most
(70–80%) were not. An obvious reason for mismatch
with the exponential distribution is the lack of small
distances.

Most spiny cells have a mix of terminaux and en pas-
sant boutons along their axons. The relative proportions
of each bouton type are shown in Figure 10, which indi-
cates that most spiny cells have less then 30% boutons
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Fig. 10. Proportion of terminaux boutons on an axonal tree.
Open dots indicate smooth cells, closed dots spiny cells and
thalamic afferents. Boutons located at the end tips of the first
order segments were not counted as terminaux boutons.

terminaux on the axonal tree. The exceptions are the
layer six pyramidal cells that project to layer 4 that
bear many bouton terminaux (59 ± 8%, range 48–71%).
A similar observation for the layer 6 pyramidal cells
was previously made (McGuire et al., 1984; Martin &
Whitteridge, 1984). In addition it was found that en
passant boutons were most common for the thalamic
afferents and star pyramidal cells (McGuire et al., 1984;
Martin & Whitteridge, 1984; Freund et al., 1985a;
Ahmed et al., 1997) and that for a layer 3 and layer 5
pyramidal cell the axon bore with both types of boutons
(Martin & Whitteridge, 1984; Kisvárday et al., 1986).
We found that individual cells have small variations
in the distributions of the two bouton types. For ex-
ample the absolute percentage differences of boutons
en passant is smaller than 15% for first and second
order segments. The terminaux boutons could form
small ibi, because their spine-like necks can curve to
bring the boutons themselves in close proximity to
one another (Fig. 1). However, our method of plot-
ting the boutons would tend to produce small ibi
artificially.

It is easy to see how the Poisson process could be
modified to allow for a lack of small distances in the
ibi distribution and still maintain the notion of random
placement of boutons. A very simple example of such
a model is shown in Figure 11A. It is assumed that the
boutons are produced by a Poisson process so that the
ibi are distributed by an exponential distribution with
rate λ > 0. For simplicity of the argument we assume
that the length of the dead zones is a γ -distribution
with scale parameter λ and shape parameter νd . When
the first bouton is produced, a length of a dead zone is
randomly selected from the γ -distribution. All boutons
which were created by the Poisson process within that

Fig. 11. Poisson process with dead zones. A: Illustration of
a Poisson process with dead zones. Shown is an axon (hor-
izontal line) on which boutons (open and closed circles) are
formed, starting from the left. The open circles indicate bou-
tons which would have been formed by the Poisson process,
but were prevented from being formed by the introduction
of a dead zone (arrows). The sample of closed circles are the
boutons that are finally observed on the axon. Dead zones
are drawn from a γ -distribution. B: Estimated average length
of dead zones. Open dots indicate smooth cells, closed dots
spiny cells and thalamic afferents. Cells for which the esti-
mated dead zone is negative are not shown.

dead zone are ignored (Fig. 11A). The distribution of
ibi of the resulting process is a γ -distribution with scale
parameter λ and shape parameter νd +1 (see Methods).
Thus, based on the estimated parameters α and ν for
the histogram of ibi (Fig. 9C and D), we get for the
parameters of the dead zone λ = α and νd = ν − 1.
We applied this dead zone model to cells with ν > 1
(Fig. 9C) and computed the average dead zone length
νd/λ (Fig. 11B).

If we identify the dead zones with bouton diameters,
the predicted average bouton diameter is, ignoring the
layer 6 pyramidal cells that project to layer 4, between
0.9 and 4.5 µm (Fig. 11B). For cells in cat V1 and thalamic
afferents, estimated bouton diameters range between
0.5 µm and 3 µm (Kisvárday et al., 1985; Gabbott et al.,
1987; Ahmed et al., 1994, 1997).

Long tails
In the analysis of the ibi distributions and variations
across the axons, we noted the existence of large
ibi, which we designated as outliers according to a
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threshold distance d (see above). For the different cells,
d ranged for first and second order segments between
21 µm and 83 µm. The number of intervals discarded
was less than 10% of the total number of ibi on either
the first or the second order segments. In previous stud-
ies of basket cells (Kisvárday et al., 1985, 1987) large ibi
were also noted. In order to determine the mean of the
layer 4 basket cells, all ibi larger than 20 µm (8% of
all ibi) were ignored and for the layer 5 basket cell ibi
larger than 30 µm (7%) were ignored. The large ibi were
mainly placed on the main axonal trunk where the bou-
tons are sparsely distributed. However, we also found
large ibi on first and second order segments. The max-
imal ibi for each cell on these segments was between
31 µm and 1315 µm.

We investigated the nature of the large ibi more
closely by means of the empirical survivor function,
S(x), which is defined as the proportion of ibi larger
than x (abscissae in Fig. 12). One such distribution is
shown (in log-log space) in Figure 12A. The ibi were
taken from the pooled sample of second order segments
pooled from the 5 basket cells in layer 2/3. The survivor
function Sγ (x) of the best fit to the pooled ibi is shown as
a comparison. As can be observed, for large ibi the em-
pirical survivor function is above the survivor function
of the γ -distribution, indicating that the γ -distribution
underestimates the probability of the occurrence of
large ibi. This is also true for most ibi on first and
second order segments of individual cells. For smooth
cells, the two survivor functions (S(x) and Sγ (x))
started to separate for ibi larger than 10 µm (15.4±
4.0 µm), for spiny cells and thalamic afferents it is for
ibi larger than 13 µm (25.0 ± 7.6 µm). The proportion
of ibi larger than this threshold ranges between 0.8%
and 36% (10.9 ± 7.4%) of all the ibi either on first or on
second order segments.

The empirical survivor function of the ibi in
Figure 12A approximates in log-log space a straight
line indicated by the approximately constant slope for
values of 15 µm < x < 50 µm in Figure 12B. This
means that for large ibi the survivor function is propor-
tional to x−β for soma positive β(β = 2.6 in Fig. 12B)
and for large x. A linear region could also be found for
other neurons. However, in general the linear part was
smaller and the variance of the slope within the linear
region was higher than for the basket cells illustrated
in Figure 12.

Discussion

The question posed by Hellwig et al. (1994) is whether
the boutons are distributed randomly along the axons.
The question was answered by them in the affirmative:
‘We may not be too far from the truth when we say
that the distribution of synapses along the axons looks
as if it had rained synapses on the axons’ (Braitenberg
& Schüz, 1991, p. 58). Similar metaphors were used in

Fig. 12. The long tail behaviour of the bouton distribution of
basket cells in layer 2/3. A: The empirical survivor function
S(x) (in log-log space) of the pooled ibi of second order seg-
ments. In addition we fitted a γ -distribution to the histogram
of ibi (ν = 2.1, α = 0.3). Its survivor function Sγ (x) is in-
dicated (continuous line). For the fit large ibi were ignored.
B: Estimated local slope of S(x) as a function of x. The local
slope was estimated by moving a window of size 0.5 along
the x-axis in log-log space and calculating the slope of the
regression line through the piece of curve S(x) determined by
the window.

their analysis of Golgi-stained axons of pyramidal cells
in mouse cortex (Hellwig et al., 1994). They claimed
that a single Poisson process described the distribution
of interbouton intervals. Similar long tailed distribu-
tions appear in previous descriptions of individual ax-
ons from thalamic afferents and various cell types in cat
visual cortex (Martin & Whitteridge, 1984; Kisvárday
et al., 1985, 1987; Tettoni et al., 1998; Friedlander &
Martin, 1989). In the present study we explored in a
far larger sample of different neurons, the suitability of
applying a Poisson process to our data. Our analysis
indicates that this is at best an approximation, which
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in some cases is quite poor. Tettoni et al. (1998) fitted
their distributions of ibi in callosal axons after eliminat-
ing distances >25 µm, to extract the maxima. Their fit-
ted function was proportional to a γ -distribution with
shape parameter ν = 2, but they did not report on the
goodness of the fit.

Different axonal segments
At the present time we have little idea what controls the
size of axonal arbors or the number of synaptic boutons
they form. However, evidence for changes in the bou-
ton density for different parts of the axon was detected
for all cell types studied. The changes can often be cor-
related with the location of the bouton in the cortex.
Obvious examples are the lamina specificity of the ax-
onal arbors, e.g. the layer 6 pyramidal cells that project
to layer 4 and tend to avoid forming synapses in layer
5 and 6 (Fig. 5A). But also within a layer the formation
of boutons can change. Boutons formed infrequently
on an axon before it branched to form a distal cluster
(Fig. 4A). This last observation can also be seen as the
prominent preference of the boutons to be located on
the end collaterals (first order segments) of the axonal
tree. The end collaterals, which make up 55% of the to-
tal length of the axonal tree, bear, on average, 66% of
the total number of boutons. Similar trends were re-
ported for the callosal axons in the cat (Tettoni et al.,
1998) where the end collaterals of callosal axons formed
33% of the total axonal length but bore 71% of the bou-
tons. Hellwig et al. (1994) (see also Braitenberg & Schüz,
1991, p. 55) found no evidence that the bouton den-
sity was higher on the peripheral parts of the axonal
trees of mouse pyramidal cells. However, they recon-
structed the segments of axons in 2-dimensions and se-
lected only some of the longest collaterals (>150 µm) or
those that carried more than 30 boutons for analysis. It
is clear that the entire tree should be analysed because
of the variations in density that occur within a single
tree.

Influence of cell type
Cells of similar type tend to have similar bouton density
and interbouton interval distributions. Median ibi on
distal collaterals (i.e. first and second order segments)
covered a range between 3 µm and 11 µm (Fig. 7A),
which presumably reflects some rule governing the
connection of the different cell types to their targets.
Spiny cells and thalamic afferents tend to have larger
median ibi than smooth cells. A basket cell axon in layer
4 forms a bouton about every 5 µm , whereas for the
spiny stellate cells it is only about every 8 µm. There are
two previous studies in which typical ibi of smooth cells
in cat area 17 were determined. For a layer 4 basket cell
the mean ibi was 6.4 µm (Kisvárday et al., 1985), which
is in agreement with our findings (mean ibi between 5.4
and 7.7 µm on first and second order segments) and for

Fig. 13. Correlation between median length of ibi on an ax-
onal tree and the proportion of spines that the tree contacted.
Estimates of the proportion of spines contacted were taken
from the literature (Kisvárday et al., 1986; Freund et al., 1986;
Tamás et al., 1997, 1998; Somogyi & Cowey, 1981; Anderson
et al., 1994; Somogyi et al., 1983; Kisvárday et al., 1985, 1987;
McGuire et al., 1984; Somogyi, 1989; Garey & Powell, 1971;
Freund et al., 1985a).

a basket cell in layer 5 the mean was 9.4 µm (Kisvárday
et al., 1987). For this cell we found a mean ibi of 7.5 µm
on first order segments and 11.3 µm on second order
segments. For interbouton intervals of thalamic affer-
ents of the cat (or kitten) visual cortex (area 18, layer
4A) the mean ibi was 11.2 µm (Friedlander & Martin,
1989). Again, this is in good agreement with our val-
ues (mean ibi between 9.5 µm and 12.8 µm on first and
second order segments).

The basket cells, spiny stellate cells and thalamic af-
ferents all have layer 4 spiny cells as their major tar-
gets. The basket cells, which have small ibi, form many
synapses with cell bodies and proximal dendritic shafts,
whereas the spiny stellate cells and thalamic afferents
target dendritic spines and have larger ibi. The corre-
lation of median ibi with target type was supported by
other cell types in our sample, as Figure 13 shows. From
the same figure one can also see a tendency for the inter-
bouton intervals to correlate with the layer of the soma.
Layer 6 pyramidal cells have a smaller ibi than the spiny
stellate cells in layer 4 or the pyramidal cells in layers
2 and 3. However, the same correlation does not seem
to hold for smooth cells. There is clearly large variance
even within the same cell class and for boutons within
the same layers. For example, in layer 4 the median ibi
for one layer 6 pyramidal cell was 3.6 µm while for an-
other it was 6.7 µm. The study of Hellwig et al. (1994)
of the ibi of 20 different pyramidal cells in the mouse
cortex indicated a similar variance. The mean ibi varied
between 2.2 to 7.0 µm. The source of the variation has
not yet been identified.
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Form of distribution

The distribution of ibi reveals a further difference in
bouton formation. All ibi distributions are positively
skewed, but display differences for very short dis-
tances. Some cells show a lack of small ibi while others
do not. The lack of small ibi was especially pronounced
for the smooth cells and the thalamic afferents, while
it was less pronounced for superficial pyramidal cells
and was absent for layer 6 pyramidal cells which project
to layer 4 (Fig. 8). A lack of small distances was also re-
ported in the study of the basket cells in layer 4 and 5
(Kisvárday et al., 1985, 1987) and for spiny cells (Mar-
tin & Whitteridge, 1984). Tettoni et al. (1998) found that
the maxima of their fitted function occurred at 4.3 µm,
which makes them more similar to thalamic afferents.
In the mouse (Braitenberg & Schüz, 1991; Hellwig et
al., 1994) the shortest distances are the most frequent,
whereas the intrinsic axons across the visual areas V1,
V2, V4 and 7a in the monkey lack small distances (Amir
et al., 1993).

A lack of small distances can be interpreted as the ex-
istence of a ‘dead zone’, i.e. a small neighbourhood that
is formed on the axon around each bouton in which no
other bouton can be formed. The existence of a dead
zone can be understood if one remembers that the bou-
tons are physical objects of about 0.3 to 3 µm in di-
ameter on an axonal branch of about 0.1 µm diameter.
En passant boutons form beads along the trajectory of
the axons, whereas the terminaux boutons are located
on spine-like process that project a few microns from
the axis of the axon. In the case of the en passant bou-
tons, which are the most common, it follows that the
centre of two boutons can never be closer than their
diameter. Indeed, the estimated dead zones are of this
order (≤5 µm). However, other effects such as limita-
tions given by the growth mechanisms for boutons, or
some metabolic constraints could also play a role.

The large ibi in the distribution of neurons (Fig. 12)
indicate the occurrence of large gaps between neigh-
bouring boutons. These large gaps are not captured
by the Poisson process with dead zones and show
the limitation of this model. There are many possible
sources large gaps, one being that neurons that are
to be contacted by an axon collateral are spaced by
a distance corresponding to these gaps. For example,
it is evident from reconstructions of thalamic axons
(Gilbert & Wiesel, 1983) that there exist different pe-
riodicities of clustering. The large patches of boutons
that form the ocular dominance columns are spaced
at approximately 0.5 mm intervals. However there are
also smaller clusters within these larger patches. These
microclusters, which are also seen in the axonal arbors
of the small basket cells of layer 4, are spaced about
100 µm apart (Kisvárday et al., 1985). Clusterings of
different repeat intervals are also common in neurons
lying outside layer 4 (Gilbert & Wiesel, 1983; Martin &

Whitteridge, 1984) and these would contribute to the
large interbouton intervals.

Neurons form mainly en passant boutons in making
their synapses. The exception is the type of layer 6
pyramidal cell that projects to layer 4, which have a
high proportion of terminaux boutons (62 ± 8%, see
also McGuire et al., 1984; Martin & Whitteridge, 1984).
Compared to other spiny neurons, the layer 6 neurons
make smaller ibi on average. Although this may be
partially an artifact of the method of projecting the
bouton onto the shaft of the axon in order to make the
interval distribution, it might also in part be due to
the geometry of the spine-like stalks that can bring the
terminaux boutons in close proximity to each other.
A similar correlation was observed by Martin and
Whitteridge (1984). They compared the interbouton
intervals between rows of en passant boutons and
rows of boutons terminaux (at least 5 in a row). Their
study showed that the terminaux boutons formed
more small distances than the en passant boutons. The
reasons for this remain unclear, particularly as a recent
study (Anderson & Martin, 2001) found no difference
in the target type (spine vs. dendritic shaft) for the two
bouton types.

An active role of the postsynaptic targets themselves
are rarely considered in discussions of bouton forma-
tion. However, it is clear that the targets could them-
selves contribute to forming specific connections. We
now know that dendritic spines can be generated de
novo (Muller & Connor, 1991; Maletic-Savatic et al., 1999;
Engert & Bonhoeffer, 1999) and thus they could provide
a means whereby the dendrites themselves can be ac-
tive in capturing specific passing axons. Such specificity
would be largely invisible from the presynaptic side.
The actual site of the synapse on the target cell may
also have some influence on axonal morphology and
bouton density. From reconstructions of layer 4 spiny
stellate and basket cells, we know that basket cells pro-
vide a strong synaptic input to the soma and proxi-
mal dendritic shafts of spiny stellate cells, while the
synapses from spiny cells are located more distally on
the dendritic spines and shafts. If individual basket cells
have to make their multiple synapses with a spatially
restricted domain of their target neurons (e.g. the soma
and proximal dendrites), this may require either more
branches or the ibi interval to be as small as possible.
Among the spiny cells, the layer 6 pyramidal cells also
have small ibi. However they do not form multiple
synapses with their targets (McGuire et al., 1984) so the
close proximity of their boutons does not reflect mul-
tiple inputs to single cells, but may reflect the density
of suitable targets in the neuropil. These observations
remind one that we know very little about the environ-
ment within which axons are distributing their boutons.
Studies of the ultrastructure of a volume of neuropil are
totally lacking. It is also clear that a knowledge of the
three dimensional distribution of the boutons of single
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cortical cells is also an essential part of solving the puz-
zle of cortical circuits.

IMPLICATIONS FOR RULES OF CONNECTIVITY

The analysis of these axons shows the rich variety of
ways in which the different cell types distribute their
synaptic boutons along the axons. In seeking for the
underlying rules one central consideration has been
the manner in which the boutons distribute themselves
along the axon. The strong claim made by Braitenberg
and Schüz (1991) is that the concept of a ‘terminal ar-
bor’ is meaningless because cortical pyramidal cells dis-
tribute their synaptic boutons diffusely over the whole
tree. Braitenberg and Schüz (1991) observed that the ab-
sence of periodicity in the spacing of synapses implied
that the axon has no rule whereby it decides where and
when to form a synapse with possible targets in the sur-
rounding neuropil. They supposed that the location of
synapses was decided by the surrounding dendrites in
the neuropil, which offer the axons postsynaptic sites.
They argue that because the network of dendrites is ‘to
all intents and purposes ‘random’ the wiring of the cor-
tex is also essentially random. The alternative, as they
saw it, is that the cortical wiring is complicated beyond
reason (Braitenberg & Schüz, 1991).

The data and analysis presented above, leads us to a
rather different interpretation. Different cell types have
characteristically different bouton distributions, even
when they form their boutons in the identical volume
of neuropil, as in the case of the axons projecting to layer
4 for example. Multiple factors were found to correlate
with the bouton distribution, such as the layer of ori-
gin of the axon, the layer of termination, whether the
parent cell was smooth or spiny, and even whether the
boutons were en passant or terminal. The axons do not
have a diffuse distribution of boutons over the whole
tree, but instead have specific laminar targets and form
clustered projections within those target lamina. This
means that significant lengths of axon do not bear bou-
tons or only sparsely. Thus, the appealing notion offered
by Hellwig et al. (1994) that the distribution of boutons
can be characterized by a single Poisson process with
one rate parameter (synapses per unit length), does not
apply to the present data.

However, even when reasonable fits to a Poisson pro-
cess are found, this implies nothing about the specificity
of the connections, as Braitenberg and Schüz (1991) ac-
knowledged. A simple illustration of how the same
axon with boutons distributed by a Poisson process
could generate either random or specific connections
is illustrated in Figure 14. In this example, the axons
take a straight trajectory through the neuropil, as is
observed in many axons of spiny cells. In the case of
random wiring, a given axon traverses the neuropil
and probabilistically forms synapses with any dendritic
tree it encounters in the neuropil. If the location of the

target neuron is distributed by a Poisson process, the
interbouton intervals will be exponentially distributed
(Fig. 14C, filled dots). In the converse case, where the
axon forms its synapses selectively with a specific class
of cells, the same exponential distribution of interbou-
ton intervals will be achieved if the class of target neu-
rons is distributed by a Poisson process. In the example
illustrated, the axon still travels in a straight trajectory
and forms synapses whenever it encounters a member
of the specific class of neurons. Thus despite the speci-
ficity of connections, the resultant histogram of inter-
bouton intervals is indistinguishable from the random
case.

Although this is a hypothetical example for the
purposes of illustration, it points out some important
issues. One is whether different classes of neurons are
distributed by a Poisson process. The answer is a clear
‘yes’ in the only instance where it has been examined.
Winfield et al. (1981) examined the form of distribution
of the Meynert cells of monkey area 17. The Meynert
cells are a particularly convenient example for this
purpose, because the cells are readily distinguishable
with conventional histological methods, they occur
in a single monolayer, and are of low enough density
that the position of every cell can be plotted. Winfield
et al. found that the nearest distance distribution of the
Meynert cells was similar to that of a spatial Poisson
process. It is thus not unreasonable to suppose that
different classes of cortical neurons are distributed in
the same manner. It is as if the different classes of cells
lie suspended in a sea of neuropil, each class forming
different densities of Poisson distributions at different
depths.

Our hypothetical example shows that if the rule re-
quired any neuron to connect to specific individual
neurons, rather than any member it encountered of a
specific class, then the axon could not take a straight
trajectory, but would have to twist and turn to make
connections with specific neurons even if the neurons
were organized in a geometric grid. Axons of cor-
tical neurons (including the Meynert cells, Rockland
& Knutson, 2001) are not highly contorted in gen-
eral, which is consistent with our proposal that the
specificity lies in connections between classes of neu-
rons rather than between specific individual neurons.
By allowing the axons to take relatively straight trajec-
tories, such a rule of connectivity greatly contributes
to optimizing the length of axon required to make a
given set of connections (Peters & Kaiserman-Abramof,
1970; Swindale, 1981; Mitchison, 1991; Cherniak, 1992;
Anderson & Martin, 2001).

The relatively short median interbouton intervals
we observe implies that if an axon forms its synapses
with only one class of neurons, then the members of
that class must occur at relatively high density. The
experimental evidence, however, indicates that most
neurons form synapses with multiple classes of neurons
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Fig. 14. Connectivity models showing that random and specific connectivity rules can both result in an exponential distribution
of interbouton intervals. A and B: Formation of synapse between an axon and the dendritic field of a cells. The axon is indicated
by a straight line, the cell-body by an open rectangle and the borders of the dendritic field by a large circle. The synapse is
located on a bouton (filled circle). The possible locations of the bouton are restricted to the axonal segment that lies within the
dendritic field and we assume that each of these locations is equally probable. For clarity the diagrams of A and B do not show
the realistic densities of neurons used in C, hence the large interbouton interval. A: Random wiring. An axon (straight line)
forming synapses with cells in a patch of cortex. Cell bodies in the patch are indicated by rectangles, their dendritic fields by
large circles. Whenever an axon traverses a dendritic field, there is a probability p that the axon formed a synapse only with
this cell. In this case the axon formed two boutons. Depicted is the situation with p < 1, i.e. the axon formed a single synapse
only with some (2) of the possible 4 targets. B: Specific wiring. An axon (straight line) forming synapses with a predefined
subgroup of cells (bold rectangles and large circles) in a patch of cortex. Whenever the axon traverses the dendritic field of a cell
of this subgroup, a synapse is formed. The axon does not form synapses with the remaining cells in the patch (indicated by thin
rectangles and large circles). C: Simulation of the distribution of interbouton intervals for the two wiring scenarios described
in (A) and (B). A three dimensional patch of cortex in layer 4 of cat V1 with volume 3003 µm3 was modelled. The total number
of cells in this patch is 1485 (Beaulieu & Colonnier, 1983). We assumed the location of the cell-bodies to be distributed by a
Poisson process within this patch. The dendritic field was modelled as a sphere with radius 100 µm. 100 straight axons were laid
through the patch, the formation of boutons was simulated, the interbouton intervals determined and pooled. In scenario (A),
we assumed a selection probability of p = 0.1. The histogram of interbouton interval is indicated by closed dots. Also shown
is the fitted exponential distribution to the data (continuous line, parameter α = 6.4). In (B) we assumed that the subgroup
contained 148 cells which were also distributed by a Poisson process. The histogram of interbouton intervals is indicated with
open dots.

(Kozloski et al., 2001). If these classes are all distributed
by a Poisson process, then the resultant bouton distribu-
tion would still be exponentially distributed. The num-
ber of synapses made by one neuron on another will de-
pend on the density of the axonal boutons and the target
cells. Estimates based on random connectivity give bi-
nomial distributions whose means lie within the ranges
seen experimentally (Freund et al., 1985b; Braitenberg
& Schüz, 1991; Douglas et al., 1995; Feldmeyer &
Sakmann, 2000).

The simple rule of specificity for classes of neurons
rather than particular neurons would not exclude speci-
ficity at a finer grain. For example a rule could be that
the synapses be formed with spines rather than den-
dritic shafts. The hypothesis also allows for a coarser
level of specificity, as is evident in the vertical inter-
laminar connections or the horizontal eye-specific clus-
ters of thalamic afferent boutons that create the ocular
dominance columns, for example. Thus, quite simple
rules of connectivity could generate the circuits that
display the exquisite functional organization seen with
the microelectrode and optical imaging.
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