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“Simple limiter control” of chaotic systems is analytically and numerically investigated, proceeding
from the one-dimensional case to higher dimensions. The properties of the control method are fully
described by the one-parameter one-dimensional flat-top map family, implying that orbits are
stabilized in exponential time, independent of the periodicity and without the need for targeting.
Fine-tuning of the control is limited by superexponential scaling in the control space, where orbits of
the uncontrolled system are obtained for a set of zero Lebesgue measure. In higher dimensions, simple
limiter control is a highly efficient control method, provided that the proper limiter form and placement

are chosen.
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Chaos is composed of an infinite number of unstable
periodic orbits of diverging periodicities. In order to
exploit this reservoir of characteristic system behavior,
methods to stabilize (or “control’”) such orbits using
only small control signals have been developed [1-4].
Practical applications often require that the orbits be
quickly targeted and stabilized. As an example, the use
of unstable orbits for signal transmission in telecommu-
nications would demand a very fast computation of the
control signal, as the signal frequency is in the GHz
range. In biology, where control of low-dimensional cha-
otic firing of neurons [5] is a potential candidate for
cortical information encoding, a very efficient control
mechanism is required as well. This is implied by a
comparison between typical cortical reaction and
neuronal interfiring times (~ 100 ms vs ~20 ms).

For the classical Ott-Grebogi-Yorke [1] and for feed-
back control, this is a problem. Recently, Corron and co-
workers [6,7] introduced a new control approach (termed
‘“‘control by simple limiters”) and suggested that it could
overcome the limitations of the previous methods. The
general procedure can be summarized as follows: An
external load is added to the system, which limits the
phase space that can be explored. As a result, orbits with
points in the forbidden area are eliminated. The authors
also observed that modified systems tend to replace pre-
viously chaotic with periodic behavior. The authors tested
their approach successfully in different experimental set-
tings, but gave very little explanation of the phenomenon.
In our contribution, we provide the theoretical analysis
of the method, and we uncover underlying principles
that are of relevance for applications. In particular, we
address the following main issues: (1) Localization of
orbits of prechosen periodicity. (2) Convergence proper-
ties of stabilization. Our theoretical analysis will focus
on the experimental situation in which the limiter is too
heavy to be lifted (““hard limiter”). In this case super-
stable orbits are generated, expressing the fact that opti-

154101-1 0031-9007/03/90(15)/154101(4)$20.00

PACS numbers: 05.45.Gg, 02.30.Yy, 05.10.Cc

mal control has been achieved. Softer limiter control will
share the properties derived, with only a reduced degree
of stability [8].

Simple limiter control can also be applied to discrete-
time systems. Hard-limiter control (HLC) is particularly
simple to implement in any dimension, by restricting the
phase space with a rigid boundary that cannot be crossed.
Figure 1(a) shows the application of this method to the
Hénon map {x,11, V,+1} = {1 — ax? + y,, bx,}, by reset-
ting all values x < h to h. Likewise, for Fig. 1(b), all
values x > h were reset to 4. Both figures show bifurca-
tion diagrams with differing amounts of stabilized orbits.
In addition to stable behavior, we find smeared bifurcation
structures, whose occurrences are found to strongly de-
pend on the placement of the limiter. Based on the analy-
sis of the one-dimensional (1D) variant of this problem,
we will show that these structures are the result of sub-
optimal limiters and that they can be removed by a more
careful implementation. Simple limiter control in 1D
leads to maps whose tops are deformed in order to yield
stable periodic orbits. The most efficient control method
is obtained for “flat-topped” maps, which corresponds to
the HLC case [8]. As their simplest example, we will
analyze the flat-topped tent map.

Flat-topped tent maps are obtained by replacing the
peak region of a symmetric fully developed tent map by a
horizontal straight line at height s, which yields the
equation

wi=1-—[2(x; — 0.5)],

forw = h,
F:xi+1 = {h

otherwise.

D

Figure 2(a) shows the map and the bifurcation diagram as
a function of the natural control parameter A. It is ob-
served that the controlled map undergoes a period-
doubling bifurcation cascade, leading to long, seemingly
chaotic orbits. However, in this system, there are no
chaotic orbits: Each orbit will eventually pass by the
control segment, from where on the orbit is periodic.
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FIG. 1. Straightforward HLC on the Hénon map, showing
dependence of bifurcation diagrams on limiter placement. (a) x
values smaller than /4, are set to &,, and (b) x values larger than
h, are set to h,. The wild structures in the bifurcation diagrams
are due to chaotic orbits. Inset: Local emergence of chaos.

The observed period-doubling bifurcation cascade differs
in scaling from the Feigenbaum cascade [9]. Because of
the constant absolute slope of the map, all branches in the
bifurcation diagram are straight lines. Given an orbit of
length 2", the slope of the bifurcation branch that con-
tains x = 0.5 can be written as s, = 22" . The sequence
of period-doubling bifurcations can now be calculated as
the intersections of this branch with the lines correspond-
ing to the end points of the flat top. For n > 1 this leads to

l—[n 2(22/‘
ﬂ‘+1

where 2", n > 1, denotes the periodicity of the cycle,
from which /Ay ~ 0.82490806728021 is obtained.
Note, however, that beyond 4, there is no chaos. The
convergence towards &, is very fast. In fact, the behavior
871 ~27?" emerges [10]. Constant a can be obtained
from the renormalization equation g(x) = Tg(x) =
—ag(g(—12)), yielding a = 1. The obtained & and «
apply for all hard-limiter controlled one-dimensional
maps. The ratio of the bifurcation fork openings within
forks of the same periodicity, however, depends on the
derivative of the map, and is therefore nonuniversal. A
complete investigation of the scaling properties of hard-
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FIG. 2. (a) Bifurcation diagram of the flat-topped tent map.

Broken line: inverted map. (b) Relation between the n-fold
iterates of F (graphs F”", n = 1,2,3 shown by dash-dotted,
dashed, and full lines) and the scaling of the “stars” (large
circles): Back iterations of x = 2/3 (see arrows) yield succes-
sive locations of the stars. A similar observation applies for the
“windows” (centers indicated by small circles).

limiter control should also contain an explanation of the
additional repetitive structures in the bifurcation dia-
grams [see Fig. 2(b)], which we will call “stars” (indi-
cated by the large circles) and “windows” (the adjacent
empty bands). As the locations of the stars are found by
back iterating x = 2/3, the asymptotic scaling of the stars
is given by F’(0). The approximate center of the windows
coincides with the outermost maximum of the map F”
(the nth iterate of the map). Subsequent locations can
therefore similarly be found by back iterating the neigh-
borhood of point x = 1. This shows that the asymptotic
scaling of these structures is also determined by F/(0). As
a consequence, both scalings are nonuniversal.

With the classical methods, unstable periodic orbits
can be controlled only when the system is already in
the vicinity of the reference orbit. As the initial transients
can become very large, targeting algorithms have been
designed to speed up this process [11,12]. HLC makes
targeting algorithms unnecessary, as the control-time
problem is equivalent to a strange repeller escape (control
is achieved, as soon as the orbit lands on the flat top). As a
consequence, the convergence onto the selected orbit is
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exponential. This is corroborated by the escape rate of the
map, whose values can be obtained from simulations or
via the cycle expansion method [13,14]. As an example of
the latter, at A = 2/3 the dynamical zeta function is given
by 1/{=1-— z%, and only the cycle at x = 0 has to be
taken into account. The escape rate x = In(2) shows that
for arbitrary initial conditions, the probability to land on
the period 1 orbit within 5 iterations is p = 0.95.

To summarize, 1D HLC systems exclusively exhibit
periodic motion, with exponential convergence onto con-
trolled orbits. In the control space, a fast scaling 6~ !(n) ~
272" emerges. Controlled orbits are true orbits, in terms of
the original system, only at bifurcation points of the
controlled map. For generic one-parameter families of
maps all bifurcation points are regular, and isolated in a
compact space. As a consequence, their Lebesgue mea-
sure is zero. Questions that emerge in higher dimensions
are the following: (1) How should the limiter be imple-
mented, and how should the control be fine-tuned, so as to
drive the orbits towards the target orbit? (2) Which of the
observed one-dimensional properties will still apply? In
Figs. 1(a) and 1(b), the limiter was placed parallel to the y
axis, and considerably differing bifurcation diagrams
emerged depending on the half-plane that we prohibited.
As in the 1D case, controlled orbits are original system
orbits only when the action of the controller is marginal,
ie., at bifurcation points of the controlled map, and
convergence onto controlled orbits again is exponential.
Away from the bifurcations, orbits generally contain
points that are distant from the attractor. Their distance
is an indicator of the control strength needed to maintain
the “artificial” orbit. This can be used experimentally to
drive artificial towards true system orbits.

The apparent lack of periodic behavior in Fig. 1(b)
indicates that the quality of the control is strongly influ-
enced by the limiter implementation. If we investigate the
nature of long orbits in the controlled Hénon systems of
Fig. 1, we find that after visiting the limiter, some orbits
remain unstabilized, which is in stark contrast to the 1D
case. Such orbits are the origin of the smearing of bifur-
cation diagrams, especially prominent in Fig. 1(b). The
reason for this becomes evident if the Hénon system is
written as a two-step recurrence equation, e.g., y3 = b —
5 y5 + by;. Control on the x coordinate alone will not
necessarily prevent the existence of chaotic orbits.
Consider two generic points {xj, y,}, {x5, yo}. After an
encounter with the controller, their x coordinates will
be identical, but their y coordinates will differ. If the
limiter is not encountered two successive times, this
difference will persist and may lead to a positive
Lyapunov exponent. An elementary inspection shows
that points with large positive [Fig. 1(b)] and, likewise,
large negative x coordinates [Fig. 1(a)] have this property.
Note, however, that hitting the controller two successive
times is only a sufficient, but not a necessary, condition
for control. In the corresponding bifurcation diagrams,
chaotic orbits thus overlay the simple structure of
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stars and windows known from the flat-topped tent
map. Chaotic orbits that densely surround bifurcation
points are a hindrance for control. To prohibit their gen-
eration, it is sufficient to control x and y simultaneously.
This can be done in various ways, resulting in bifurcation
diagrams that may differ between adjacent bifurcation
points. For the generation of Fig. 3(a), we used a controller
in the x direction as in Fig. 1(a). After the encounter with
the limiter, we controlled the y coordinate by reinjecting
the orbit on the lowest foliation of the attractor, at the
given x coordinate. Using this technique allows in prin-
ciple the stabilization on any periodic orbit and removes
chaos completely. A close inspection of the recovered
bifurcation structure reveals identical scaling properties
as encountered in the 1D case.

Continuous-time systems can be treated along the same
lines. These systems are even simpler to control than the
Hénon map, as their attractors can generally be reduced to
almost 1D curves by means of suitable Poincaré sec-
tions. We used Hénon’s method to compute the standard
Poincaré section of the Roessler system. In this section,
the application of a straightforward HLC yields identical
problems as initially encountered with the Hénon system.
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FIG. 3. (a) Bifurcation diagram of the Hénon map for an

optimal limiter. Even the smallest areas of chaotic orbits are
removed (see inset). The characteristic 1D bifurcations are
clearly visible. (b) Details of the bifurcation diagram of the
Roessler system [periodicities p = 4, 8, (16)], exhibiting the
typical 1D bifurcations.
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If, however, we interpolate the section by a smooth mani-
fold, onto which we project when control is required, we
are able to control all coordinates. Using this approach,
HLC works very well and exhibits the properties pre-
dicted by the 1D analysis [see Fig. 3(b)].

Despite the fast scaling in the control space, the bifur-
cation diagram retains rich structures that can be ex-
ploited for the selection of orbits with particular
properties. It has been shown above that a simple scaling
leads from periodic orbits of order 2" to periodicity of the
order 2"*!. More generally, stripes between windows
contain whole sets of orbits with particular periodicities
(e.g., periodicities of the form {3 X273 x 2"+ 1),
which greatly simplifies their localization. For the stabi-
lization of orbits of high periodicity, similar observations
apply as for the conventional control approaches. In gen-
eral, orbits become more difficult to stabilize with in-
creasing periodicity. We found it effective to first target an
orbit of suitable periodicity, and then to move the limiter
carefully towards the optimal control position, until the
controlled orbit is sufficiently close to the target orbit. In
this way, the stabilization on a period-8 in the Roessler
system poses no problems [see Fig. 3(b)]. Once the correct
controller placement is known, the time needed to stabi-
lize the orbit is essentially independent of the periodicity.
The results of a switching experiment among periodic
orbits of the Hénon system are shown in Fig. 4, where a
list of correct limiter placements has previously been
established. All the experimental procedure further in-
volves is reading off the position corresponding to the
desired orbit, and placing the limiter accordingly (for a
similar approach, see [15]). The results exhibit a very fast
switching time between periodic orbits (extending up to
periodicity p = 16) that is unaffected by an increased
periodicity. Clearly, the extension to hyperchaotic sys-
tems is possible along the same lines, if a Poincaré
section sufficiently close to 1D can be found.

Compared to the classical approach, where targeting in
a high-dimensional space and stabilization is performed
consecutively, HLC results in a significant improvement
in the time needed to achieve the desired orbit. The
combination of targeting and stabilization also is advan-
tageous in the presence of additive noise, as sporadically
escaping orbits are automatically recaptured. Although
true orbits exist only on a zero Lebesgue measure set of
limiter placements, the “correct” locations can be ap-
proached with ease. Optimal efficiency in higher dimen-
sions requires the correct implementation of the limiter.
The results presented in [8] show that the neighborhood
of HLC systems is sufficiently large and general, imply-
ing that our theoretical explanation can serve as a general
guideline to simple limiter control. Based on our analysis,
we conclude that control by simple limiters has the
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FIG. 4. Fast switching of the Hénon system between perio-
dicities p = 1, 2,4, 8, 16, using HLC. x coordinates are shown
over ¢t = 250 periods each, a slightly thickened line indicates
the position of the limiter. Control of high periodicities is at
least as fast as that of low periodicities.

potential to become a powerful tool for the control of
unstable orbits.
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