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ABSTRACT

The winner-take-all (WTA) circuit is a useful compu-
tational circuit for signal processing and learning tasks. By
adding spatial coupling between pixels, local regions of com-
petition can be delineated. Recently, we described a normal-
ising circuit which enhances Lazzaro’s WTA circuit (1989)
only with the addition of a transistor and a global bias to
each pixel. This new circuit allows the network to transi-
tion between a soft-max and a WTA function through the
global bias. The WTA network of Lazzaro together with
spatial coupling forms the current-mode silicon retina of
Boahen and Andreou (1992). This retina models the center-
surround processing performed in biological retinas to en-
hance responses to spatial contrasts. Here, we show how
our normalising network together with spatial coupling per-
forms as a silicon retina. Results are presented from a fab-
ricated circuit in a 2 � m CMOS process.

1. INTRODUCTION

The winner-take-all (WTA) function is a useful computation
in self-organizing neural networks and signal processing ap-
plications. It selects a single winner out of multiple inputs.
It has been used in various aVLSI systems for computing
stereo,object tracking,and image compression.Lazzaro and
colleagues [1] were the first to implement a hardware model
of a winner-take-all (WTA) network. Their network con-
sists of � excitatory neurons that are inhibited by a global
inhibitory neuron. It computes a single winner, the identity
of which is indicated by the outputs of the excitatory cells.
Localized winners can be obtained by coupling neurons to-
gether through lateral resistive connections. The properties
of this network have been enriched with the addition of lat-
eral connections and positive feedback mechanisms [2, 3, 4,
5]. This network is also the basis of the current-mode sili-
con retina of [7] where the inputs come from photocurrents.
This retina models the center-surround processing found in
biological retinas to amplify high spatial contrasts.

Recently, we described a network that performs either
a soft-max or a winner-take-all function depending on a
global parameter [6]. This circuit is similar to Lazzaro’s
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Fig. 1. Circuitry showing coupling between two excitatory
neurons in an array of � excitatory neurons (in this paper,
� =20). The inhibitory circuit is local to each pixel. The
circuit in each excitatory neuron consists of consists of an
input current source, ��� , and transistors, ��� to �
	 . The
inhibitory transistor is a fixed current source, ��� through �
 .
The input to the inhibitory transistor, ����� is normalized with
respect to �
��� .

WTA circuit except for the addition of a diode-connected
transistor and a global bias. In this work, we describe how
our network together with spatial coupling performs with
normal input currents or with photocurrents. In the latter
case, the network is a silicon retina with a similar architec-
ture to the silicon retina of [7]. Results both from analysis
and from the fabricated chip show that there is a smaller de-
pendence of the smoothing space constant of the network on
background intensity when compared to the space constant
of the retina from [7]. The chip was fabricated in a 2 � m
CMOS technology process.

2. CIRCUIT DESCRIPTION

The circuitry for two of the � excitatory neurons and their
local inhibitory circuit is shown in Fig. 1. Each excitatory
neuron is a linear threshold unit and consists of a pFET that
supplies the input current, ��� , and transistors, ��� to �� .
We ignore the spatial coupling transistors, ��� and �
� in
each pixel for the moment and short all ����� nodes such that
����������� . The circuit in Lazzaro’s pixel is similar to this



circuit but without the transistor, ��� . This transistor, ��� ,
introduces a rectifying nonlinearity into the system since �����
cannot be negative. The inhibition current, �	� � , to each neu-
ron is determined by the gate voltage, 
�� � , which in turn is
determined by the input current, � � through the transistor
�� . In the hard WTA regime, the neuron with the largest � �
sets ��� � for all neurons. Therefore, only the corresponding
transistor � � in the winning neuron is not in cutoff, and its
output current, �	��� is equal to the total bias current, ��	� .

The parameter, 
�� , determines whether the circuit in
Fig. 1 computes the soft-max or WTA function. In the soft-
max regime, more than one � ��� can be positive and the rel-
ative sizes of the � ��� is dependent on � � , 
 � and �� � . We
can compute the “active inputs” that set the common volt-
age, 
�� in each neuron and solve for the output current, � ���
in terms of ��� :

������� � ����� � �
� �������	� �� "!#��� (1)

where �	�$�%�'&)(+*�,�-/.'021 , 3 � is the thermal voltage, and
� & is the pre-exponential constant of the subthreshold cur-
rent equation. In deriving this equation, we assume that the
transistors operate in subthreshold and 4 (the coupling ef-
ficiency of the gate on the channel of a transistor in sub-
threshold) is equal to 1.

Noting that ����� cannot be non negative for “active” in-
puts, we get the condition:

�5�76 ��� � �� � �
�5�8� ��	�:9 (2)

Equation 2 describes the condition under which a neuron
stays “active” or its � ��� is positive.

2.1. Center-surround property

As previously shown [7], this two-layered network in which
the pixels are coupled by diffusors ��; and �< , performs a
center-surround computation. This computation is analo-
gous to a difference of Gaussians operation to extract local
high spatial contrasts. The top layer in Fig. 1 which receives
the current inputs performs spatial smoothing on the inputs
through the diffusors which are controlled by a global volt-
age 
>= . The bottom layer performs spatial smoothing on the
outputs, � ��� of the top layer through the diffusors which are
controlled by a global voltage 
�? . The output of this layer
in return inhibits the top network. By setting the diffusor
biases 
 = and 
�? such that the bottom network has a bigger
spatial spreading constant than the top network, we can ap-
proximate the function of the two-layered network to that of
the difference of Gaussians. The equations for the currents
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Fig. 2. Response of the network in Fig. 1 for an increasing
number of neurons/pixels that receive a higher input cur-
rent (considered the foreground) than the remaining neu-
rons/pixels. The parameter 
�� was set to 0.6V so that the
network operated in the soft-max regime. (a) Responses to
an increasing number of neurons in the foreground. The
traces have been shifted relative to one another for ease
of comparison. The lowermost curve is the network re-
sponse for one neuron that received a larger input current
( 
 �A@ =3.6V) than the remaining neurons ( 
 �B@ =3.7V). The re-
maining three curves are obtained with an increasing num-
ber of neurons in the foreground that received the larger
input current. The topmost curve is the network response
for five neurons in the foreground. (b) Magnified responses
of the foreground neurons. Notice the reduction in the re-
sponse of the initial sole foreground neuron (the solid curve)
as more neurons were added to the foreground. The figures
have been adapted from Fig. 5 in [6] with permission.

in both layers of this network are

� � ���C�5���D� �����CEGF�H � �2I .KJ����L (3)

�����D� �	�M! � F H � �2I .KJ� � L 9 (4)

where E N%( ,�- (/O J�P�Q ISR ,	TUT	Q�J�P	,	V R . The spatial constant
� is proportional to (WO J�P+Q IUR ,�TST�Q�J�P�,�X R . Instead of a bi-
harmonic operator as in Boahen and Andreou’s network,
the smoothing function in the top network is a Laplacian
operator. The spatial smoothing constant, E and � , does
not depend on the input magnitude. Ideally, the space con-
stant should not increase with the input current. However,
in reality, the current through the diffusors depend on the
4 of the corresponding transistor ��; in each pixel. (The
gate coupling efficiency of the transistor, 4 , changes with
the magnitude of the current through the transistor.) When
the input increases, the larger voltages at the nodes on the
top layer lead to an increase in 4 (and hence the lateral cur-
rent). Hence in the network of [7], the spatial smoothing of
the photocurrent inputs increases as the background inten-
sity increases. This dependence is unlike that in biological
retinas where the spatial smoothing of the inputs increases
under low background intensity. In our network, because
of the low impedance of the corresponding node, 
ZY[� , in
each pixel, the change in the voltage at 
ZY[� is smaller for
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Fig. 3. Response of the network with input photocurrents.
The traces have been shifted relative to one another for ease
of comparison. A stimulus with a single bright strip was
placed over the chip such that only one pixel was stimu-
lated. (a) Network response of the silicon retina for 
 � =
0.8V, 0.937V, and 1.2V. The lowestmost trace corresponds
to the response of the network when operating in the soft-
max regime while the uppermost trace corresponds to the
network operation in the WTA regime. (b) Network re-
sponse for different values of the diffusor voltage ( 
 ? =0V,
0.046V, 0.081V, and 1.53V). 
 = =1.28V and 
�� = 0.8V.

the same increase in photocurrent input. Thus, the gain and
the smoothing constant of the top layer does not increase as
much with the background intensity as in the network of [7].

3. MEASURED RESULTS FROM CHIP

A network consisting of 20 pixels as shown in Fig. 1 was
fabricated in a 2 � m CMOS process. We describe results
from the chip using current source inputs to illustrate how
the network can transition between a soft-max function and
a winner-take-all function. We then describe results from
the same network with photocurrents as the inputs.

3.1. Results from current source inputs

We eliminate the center-surround properties of the network
by setting 
 ? ���/
 and 
>= ��� 
 . The output currents, � ��� ,
of the neurons were read through an on-chip scanner.These
currents were converted to a voltage using an off-chip cur-
rent sense amplifier and a 22 M � resistor.

We describe experiments that show the soft-max prop-
erty of the network. The details of the other regimes of op-
eration are given in [6]. We set the parameter 
 � so that the
network operated in the soft-max regime ( 
 � =0.6V). The
input voltages, 
 �A@ of all the neurons (we called them the
background neurons) except for one were set to 3.7V. The
input voltage of the remaining neuron (which we call the
foreground neuron) was set such that the neuron received
a larger input current. The output response of the network
for the sole foreground neuron is shown in the lowermost
trace in Fig. 2(a). The network response for an increasing
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Fig. 4. Response of the network for different light inten-
sities. The traces have been shifted relative to one another
for ease of comparison. (a) Response of the silicon retina
in the WTA regime ( 
�� =0.9V). The uppermost curve was
obtained at the lowest background intensity. Successive
curves were obtained at intensities which are a decade apart.
We can see that the spatial smoothing of the network in-
creased with increasing background intensity. (b) Response
of retina in the soft-max regime ( 
�� =0.814V). The space
constant was almost invariant over the four decades of back-
ground intensity.

number of neurons in the foreground are shown by the re-
maining traces in Fig. 2(a). As more neurons were added
to the foreground, the output current of the initial neuron
in the foreground decreased as shown by the magnified re-
sponses in Fig. 2(b). The response of the network with a
sole neuron (9th neuron) in the foreground is given by the
solid curve. The response of this initial neuron decreased
with the number of increasing foreground neurons. The re-
sponses in Fig. 2 show that the soft-max function of the net-
work. The output currents, � ��� , depend on the relative mag-
nitude of the input currents. There is no single winner as in
a winner-take-all network.

3.2. Results from silicon retina

The inputs to the network now come from photodiodes (the
pFET driven by 
�� in each pixel is now switched off) and the
network acts as a silicon retina with center-surround prop-
erties. By increasing 
�� , we can change the operation of
the network from the soft-max regime to the WTA regime
as shown in Fig. 3(a). In these traces, a stimulus with a sin-
gle bright strip was placed over the chip such that only one
pixel was stimulated. In the uppermost trace where the net-
work operated in the WTA regime, this pixel had the largest
response. In the lower traces, the output of this pixel de-
creased dependent on the relative magnitudes of the pho-
tocurrents. The shape of the center-surround kernel of the
network can be altered through the relative voltage differ-
ence between 
 = and 
�? as described in Sect. 2.1. By de-
creasing 
�? (this corresponds to an increase in the spatial
smoothing in the bottom layer), the inhibitory surround in-
creases as shown in the lowermost trace of Fig. 3(b) and the
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Fig. 5. The network space constant plotted against four
decades of background intensity. The ordinate “0” is the
brightest intensity. The remaining data points correspond to
decreasing background intensity in decades. The space con-
stant was obtained from Fig. 4. The line marked with circles
is derived from the winner-take-all data and the line marked
with asterisks is derived from the soft-max data. The net-
work space constant is the interpolated pixel value where
the retina response drops by 1/e from the peak response.

pixel which saw the bright strip had the largest response.
As we have seen in Fig. 3(a), changing ��� changes the

function of the network. When we set ��� so that the net-
work acts as a WTA, it is equivalent to the network of [7].
As pointed out in Sect. 2.1, the spatial spread of the impulse
response of the network increases with increasing background
intensity. This behavior is shown in Fig. 4(a). The opposite
type of dependence is observed in the biological retina. The
biological retina has a larger spatial spread under low back-
ground intensities because it needs to collect photons from
a larger spatial area to get a good S/N ratio response. How-
ever, the silicon retina shows the largest spatial spread for
the highest background intensity.

By decreasing � � so that the network operates in the
soft-max regime, the spatial space constant is less invariant
over four decades of intensity as shown in Fig. 4(b) because
of the low impedance nature of ����� in Fig. 1. This smaller
invariance is also depicted in Fig. 5 which shows the net-
work space constant over the 4 decades of intensity. This
data was derived from Fig. 4.

4. CONCLUSION

We described the response of a silicon retina that displays
different spatial smoothing characteristics when tuned for

a soft-max computation or a winner-take-all computation.
When the network is tuned for a winner-take-all compu-
tation, the space constant of the smoothing increases with
higher background intensities. This characteristic is unde-
sirable for modelling the smoothing properties of the bio-
logical retina. However, if the network is tuned for a soft-
max computation, the space constant of the smoothing is
almost invariant to background intensity.
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