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Abstract 
An emerging paradigm analyses in what respect the properties of the nervous system 

reflect properties of natural scenes. It is hypothesized that neurons form sparse 

representations of natural stimuli: Each neuron should respond strongly to some 

stimuli while being inactive upon presentation of most others. For a given network, 

sparse representations need fewest spikes, and thus consume the least energy. To 

obtain optimally sparse responses the receptive fields of simulated neurons are 

optimized. Algorithmically this is identical to searching for basis functions that allow 

coding for the stimuli with sparse coefficients. The problem is thus identical to 

maximising the log likelihood of a generative model with prior knowledge of natural 

images. It is found that the resulting simulated neurons share most properties of 

simple cells found in primary visual cortex. Thus, forming optimally sparse 

representations is the most compact approach to described simple cell properties.  

Many ways of defining sparse responses exist and it is widely believed that the 

particular choice of the sparse prior of the generative model does not significantly 

influence the estimated basis functions. Here we examine this assumption more 

closely. We include the constraint of unit variance of neuronal activity, used in most 

studies, into the objective functions. We then analyse learning on a database of natural 

(cat-cam™) visual stimuli. We show that the effective objective functions are largely 

dominated by the constraint, and are therefore very similar. The resulting receptive 



fields show some similarities but also qualitative differences. Even in the region 

where the objective functions are dissimilar, the distributions of coefficients are 

similar and do not match the priors of the assumed generative model. In conclusion, 

the specific choice of the sparse prior is relevant, as is the choice of additional 

constraints, such as normalization of variance.  

Introduction 
It is important to analyze in what respect properties of sensory systems are matched to 

the properties of natural stimuli (Barlow 1961). Many recent studies analyse 

simulated neurons learning from natural scenes and compare their properties to the 

properties of real neurons in the visual system (Atick 1992; Dong and Atick 1995; 

Fyfe and Baddeley 1995; Bell 1996; Olshausen and Field 1996; Bell and Sejnowski 

1997; Olshausen and Field 1997; Blais, Intrator et al. 1998; van Hateren and 

Ruderman 1998; Van Hateren and van der Schaaf 1998; Hyvärinen and Hoyer 2000; 

Lewicki and Sejnowski 2000; Kayser, Einhäuser et al. 2001; Olshausen 2001; 

Simoncelli and Olshausen 2001; Einhäuser, Kayser et al. 2002). Most of these studies 

follow the independent component analysis (ICA) paradigm: An explicit generative 

model is assumed where hidden, nongaussian generators are linearly combined to 

yield the image I(t) from the natural stimuli. 

( ) ( )( , , ) ,j j
j

I x y t a t x yφ=∑ .         (1) 

The coefficients are assumed to occasionally be nonzero but about zero most of the 

time. This assumption is formulated probabilistically as ( )ip a
and referred to as a 

sparse prior is assumed for the coefficients ( )ia t . The log likelihood of the image 

given the model is very expensive to compute and is therefore typically approximated 

by an objective function Ψ . This objective Ψ is subsequently maximized using 



standard optimisation algorithms. Frequently used options are scaled gradient descent, 

conjugate gradient descent and even faster methods like the fastICA (Hyvärinen 

1999) method. The properties of the optimized neurons are subsequently compared to 

properties of real neurons in the visual system. It is found that these simulated 

neurons share selectivity to orientation, spatial frequency, localisation and motion 

with simple cells found in primary visual cortex. A number of further studies even 

directly addresses sparse coding in experiments and shows that the brain is indeed 

encoding stimuli sparsely (Baddeley, Abbott et al. 1997; Vinje and Gallant 2000; 

Willmore and Tolhurst 2001). Thus, sparse coding offers an approach that leads to 

simulated neurons with properties which compare well to those of real neurons. 

An important property of the ICA paradigm was demonstrated in a seminal 

contribution by Hyvärinen and Oja (1998). Given a known and finite number of 

independent non-gaussian sources the resulting basis functions do not significantly 

depend on the chosen nonlinear objective. Applied to the problems considered here 

this would predict, that the specific definition of sparseness does not have any 

influence on the resulting basis functions.  

However, do natural stimuli match the assumptions of this theorem? Firstly a finite 

number of generators in the real world is not obvious, and their number is definitely 

not known. Secondly, the generators in the real world are combined nonlinearly for 

obtaining the image. Occlusions, deformations and so forth make the generative 

process non-linear, making it intractable to directly invert it. Thirdly objects in natural 

scenes are not independent of each other, the real world is highly ordered and shows a 

high degree of dependence. The real world situation is therefore often different to the 

situation addressed in the paper of Hyvärinen and Oja (1998).  



Nevertheless it is widely believed that the choice of the sparse objective does not 

significantly influence the estimated basis functions. Here we examine this 

assumption more closely. There are two factors that influence the objective to be 

optimised. The first part captures how well the assumed sparse prior on the 

coefficients is met. The second part captures how well the neurons collectively code 

for the image, i.e. how well the image can be reconstructed from their activities. Here 

we investigate the form of the combined effective objective functions. Furthermore, 

we analyse the distribution of activities (coefficient values) and in how far they match 

the specific priors. Finally, we compare the form of the basis functions obtained when 

optimizing different objectives.  

Methods 

Relation of generative models to objective function approaches 
Here we relate probabilistic generative models of natural stimuli to the optimisation 

scheme used throughout this paper. 

Let I be the image, φ  a set of variables describing the model and a(t) a set of 

statistical variables, called coefficients, describing each image in terms of the model. 

The probability of the image given the data is calculated as: 

( )( ¦ ) ( ¦ , )p I p I a p a daφ φ= ∫   (2) 

This integration however is typically infeasible. Olshausen and Field (1997) used the 

idea of maximizing an upper bound of this probability: If the probability of the image 

given φ  and a  is highly peaked at some maximal value we can rewrite (2) and 

obtain: 

( )max max( ¦ ) ( ¦ , )p I p I a p aφ φ≈   (3) 

The log-likelihood is thus: 

( )max maxlog ( ¦ ) log ( ¦ , ) logp I p I a p aφ φ≈ +  (4) 



If we assume Gaussian noise on the image the first term is proportional to the squared 

reconstruction error. The second term contains the (sparse) prior on the distribution of 

the generative model. 

Typically the log likelihood of the data given the model is maximized. This leads to 

an optimisation problem on the following class of objective functions: 

prob square error priorΨ = Ψ + Ψ  (5) 

The latter term represents the a priori information about the coefficients a, the first 

term measures deviations from the models stimulus reconstruction.  

The process sketched above can often be inverted. If Ψ consists of the standard errorΨ , 

and priorΨ  and is sufficiently peaked then we simply obtain ( )( ) error ap a eΨ= . 

The reconstruction error term 
Here we simplify the minimum square error term so that different approaches can be 

compared in a unified framework. 

The reconstruction error is defined as 

2

error j i ij
j i

I aφ Ψ = − − 
 

∑ ∑   (6) 

Assuming unit variance of the input this can be simplified to: 

( )( ),0
, , ,
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Where ,0ia = iIφ is the feedforward activity. If we furthermore assume whitened input 

i j ijI I δ=  and linear activities then we can further simplify the last term: 

,0 ,0 ,0
, ,

1 2error i i i j i j
i j i j

a a a a a aΨ = − + −∑ ∑  (8) 

The system is defined in a purely feedforward way since it does not directly depend 

on the input. In a linear system where each unit has unit variance this simplifies, after 

omitting constant terms, to: 

( )22
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,error i j i j
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Here CC denotes the coefficient of covariation. Thus, if the system is linear, 

decorrelating the outputs is equivalent to minimizing the reconstruction error.  

This formalism also captures methods that constrain the a to be uncorrelated which is 

identical to making the sparseness term small compared to the error term or having a 

noise free model (Olshausen and Field 1996). While most models effectively share 

the same square errorΨ  there is a wide divergence for the sparseness 

objective ( ) ( )( )logprior a p aΨ = .  

Stimuli 
Out of the videos described in (Kayser, Einhäuser et al. 2001) 40.000 30 by 30 

patches are extracted from random positions and convolved with a Gaussian Kernel of 

standard deviation 15 pixels to minimize orientation artefacts. They are whitened to 

avoid effects of the second and lower order statistics that are prone to noise 

influences. Only the principal components 2 through 100 are used for learning since 

they contain more than 95% of the overall variance. Component 1 was removed since 

it contained the mean brightness. 

The weights of the simulated neurons are randomly initialised with a uniform 

distribution in the whitened principal component space. For computational efficieny 

they are orthonormalized before starting the optimisation..  

Decorrelation 
As argued above, the considered models should allow the correct reconstruction of the 

image and thus minimize the squares of the coefficients of covariation CC between 

pairs of coefficients of different basis functions. The standard deviation can 

furthermore be biased to be 1. All optimisations are therefore done with the following 

objective function added. 



( ) ( )( )2
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The first term biases the neurons to have distinct activity patterns while the latter term 

effectively normalizes the standard deviation. In the following we refer to this joint 

term as decorrelation term. If the variances of the coefficients are 1 then it is identical 

to the square error term. If this term is strong and the set of neurons is not 

overcomplete it removes all correlations between neurons. 

Analysed objective functions 
In the literature a large number of different definitions of objective functions can be 

found. Each results from a different way of defining sparseness. Here we analyze 6 

different popular definitions: 
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SkewnessΨ  and KurtosisΨ  usually have higher values than the other objectives and are 

therefore divided by 10 to avoid them being overly strong compared to the 

decorrelation objective. The BCM learning rule (Bienenstock, Cooper et al. 1982) is 

another interesting algorithm that can be put into an objective function framework. It 

is largely identical to the SkewnessΨ objective (Intrator and Cooper 1992).  



Optimization  
The optimisation algorithm uses the above objective functions and their derivatives 

with respect to the weights. These derivatives are often complicated functions 

containing a large number of terms. We found it very useful to verify these 

numerically. The objective functions are maximised using 50 iterations of RPROP 

(resilient backprop Riedmiller and Braun 1993) with 1.2η + = and .5η − = , starting at 

a weightchange parameter of 0.01. We observe a significantly faster convergence of 

the objective function compared to scaled gradient descent. It is interesting to note 

that RPROP, where each synapse stores its weight and how fast it is supposed to 

change, is a local learning algorithm that could be implemented by neural hardware.  

Results 

The effective priors 
Each of the analyzed objective functions is plotted in figure 1. They are divided into 

two groups. AbsΨ , ( )2exp a−
Ψ  and CauchyΨ  punish coefficients that differ from zero in a 

graded manner. SkewnessΨ  and KurtosisΨ  to the contrary reward high coefficients. The 

effective objective that is optimized by the system, however, consists of two terms. 

The first term represents the sparseness objective as plotted in Figure 1. At first sight 

it their wildly divergent properties could be expected to lead to differing basis 

functions, and it is counterintuitive to assume that all these objectives lead to similar 

basis functions. It however is necessary to take into account the term of the objective 

function that biases the neurons to avoid correlations and to have unitary variance (see 

methods). This term turns into a constraint when the neurons are directly required to 

be uncorrelated. This term should therefore be including into the prior. Figure 2 

shows the objective function measured after convergence. The decorrelation term 



DecorrΨ has a strong influence on AbsΨ , the ( )2exp a−
Ψ  and the CauchyΨ objective 

function. All these functions bias the coefficients to have small variance. The 

decorrelation term ensures that the variance does not approach zero. The definition of 

the decorrelation term results in a parabola shaped function that is added to the 

original objective functions. The resulting objective functions are almost identical for 

these three priors for higher coefficient values. After considering this effect they are 

also very similar to KurtosisΨ and the values of SkewnessΨ  for positive activities. All these 

priors punish intermediate activities while preferring activities that are either small or 

very large. The priors are very similar for high values and only differ for smaller 

values.  

The distribution of the coefficients 
We want to investigate in how far the optimisation process leads to a distribution of 

coefficients which actually matches the log prior or the objective function. We 

furthermore want to know if the different objective functions lead to different 

distributions of coefficients.  

Observing the histogram of the coefficients in response to the natural stimuli after 

convergence reveals high peaks at zero for all objective functions. They are thus very 

dissimilar to their priors. The coefficients a in response to different patches are not 

independent from each other. If any of the basis functions is changed then all the 

coefficients change. Since the number of coefficients is only a fraction of the number 

of stimuli used, it is impossible for the distribution to perfectly follow the prior. We 

will therefore consider the logarithm of the deviation of the distribution of coefficients 

divided by the distribution of coefficients before learning:  
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We cannot directly measure p and thus instead use the number of observations 

divided by the number of overall stimuli. Using the relative distribution instead of the 

original distribution automatically corrects for the distribution of contrasts in the 

natural scenes. It thus converts the highly peaked distribution of coefficients into a 

rather flat function. Before learning the basis functions are random and the 

distribution of the coefficients therefore is identical to the distribution of contrast in 

natural scenes. By dividing by the distribution before learning we correct for these 

effects. Similar behaviour could be achieved using nonlinear neurons that feature 

lateral divisive inhibition as in (Schwartz and Simoncelli 2001). Figure 3 shows that 

the relative distribution for large coefficients is well fit by the prior. It is interesting to 

note that the prior for larger coefficients is the decorrelation term that is not directly 

visible in most papers addressing sparse coding. 

To analyze the differences between the different priors, we are interested in the range 

of small coefficients where the specific type of the prior matters most. Figure 4a 

shows that the relative distributions in this region cannot be fit by the prior. The peaks 

of the functions have conserved shape and only the position of their maximal value is 

determined by the objective function (Figure 4b). The distributions are largely 

identical even for coefficient values where the objective functions are considerably 

different. 

Comparison of basis functions 
The optimisation algorithm yields the basis functions that are the analogue of 

receptive fields of real neurons (Figure 5). A number of important similarities and 

differences can be observed. Some of the properties are identical for all the different 



priors. All of them lead to receptive fields that are localised in orientation and spatial 

frequency.  This can be understood from the fact that all analyzed objective functions 

reward high absolute values of the activity. High contrast regions are associated with 

defined orientation (Einhäuser, Kayser et al. 2002) explaining why all learned 

receptive fields are oriented. All of the considered objectives also lead to localisation 

in space if the decorrelation term is strong enough.  

However also a large number of important differences exist between the resulting 

receptive fields: The differences between the functions punishing non-zero activities 

is small, they mostly exhibit small variations in the smoothness and the size of the 

receptive fields. This is not surprising knowing that their objectives only slightly 

differ for small coefficients. KurtosisΨ  is known to be prone to overfitting (Hyvärinen 

and Oja 1997). Due to its sensitivity to outliers, maximising KurtosisΨ leads to basis 

functions that can be expected to be specific to the real natural stimuli chosen in our 

study. Using less natural stimuli such as pictures from man made objects would be 

likely to significantly change the resulting receptive fields obtained from maximising 

KurtosisΨ . While optimising the objective functions that punish non-zero coefficients 

lead to small localised, Gabor-type receptive fields, optimising KurtosisΨ  leads to more 

elaborate filters. Optimising SkewnessΨ  also leads to interesting basis functions. All of 

the basis functions show black lines on bright background. This is a very common 

feature in our dataset since many of the pictures show trees and branches in front of 

the bright sky (observation from the raw data). We attribute the possibility of learning 

from SkewnessΨ  to these properties. It is an interesting violation of contrast reversal 

invariance. It would seem that many statistics of natural scenes are conserved if the 

contrast is reversed. If the statistics is invariant with respect to contrast reversal then 



all distributions of the coefficients a need to be symmetric and SkewnessΨ would not be a 

valid objective. The skewed receptive fields nevertheless share orientation and spatial 

frequency selectivity with the other objectives.  

The methods analyzed in this paper all belong to the class of independent component 

analysis. They are however necessarily only an approximation to statistical 

independence. We therefore compare the receptive fields with another prior that more 

directly measures independence (Comon 1991). If the coefficients are independent 

then the coefficients as well as their squares should also be uncorrelated. We thus 

maximise CorrIJΨ that punishes correlations between the squares. After a much slower 

convergence of 500 RPROP iterations the estimated basis functions are shown in 

Figure 5. They are also localised in orientation and spatial frequency. Their properties 

lie in between those obtained maximising KurtosisΨ and those obtained maximising the 

objective functions that punish non-zero activities. All variants of ICA analyzed here 

lead to basis functions that share some basic properties while having some individual 

characteristics.  

Discussion 
What general approach should be used in studying different systems of coding and 

learning?  Above we shortly described the relation of generative model and objective 

function approaches. There are two obvious ways of comparing such learning 

systems. 1) It is possible to interpret the system as performing optimal regression with 

some a priori information. In this framework a generative model is fitted to the data. 

2) It is possible to interpret that the system’s task is to learn to extract variables of 

relevance from input data. In this interpretation the objective function is central since 

it measures the quality or importance of the extracted variables.  

Both formulations come with inherent weaknesses and strengths.  



1) The generative models used for describing the data are always so simple, for 

example linear, that they can not adequately describe the complexity of the real world. 

When fitting a generative model to data it is furthermore often infeasible to directly 

optimize the log likelihood of the data given the model. Instead it is typically 

necessary to simplify a sparse prior to an objective function that can be optimised 

efficiently (but see Olshausen and Millman 2000). This step can in fact lead to 

objective functions that seem counterintuitive. The objective function used in the 

model proposed by Hyvärinen and Hoyer (2000) for the emergence of complex cells 

derives from a sparse prior. The resulting objective function however can be 

interpreted as minimizing the average coefficient a and thus the number of spikes. 

This is equivalent to minimising the overall number of spikes fired by the neuron and 

thus their energy consumption. This property was not visible from analysing the prior. 

The choice of a prior furthermore is often arbitrary and as shown in this paper often 

far from the resulting distributions. The estimated generative model can however be a 

strong tool for analysing, improving and generating pictures. Image processing tools 

like super resolution (Hertzmann, Jacobs et al. 2001), denoising (Hyvärinen 1999) as 

well as sampling pictures from the learned distribution (Dayan, Hinton et al. 1995) is 

straightforward once such a model is learned. 

2) When optimising an objective function the particular choice might often seem 

arbitrary because it needs to be indirectly deduced from evolutionary or design 

principles. Following these ideas the brains task is to extract relevant information 

from the real world while minimising its energy consumption (Barlow 1961). 

Objective functions can be interpreted as heuristics that measure the value of data and 

the price of computation in this framework. The energy consumption might be 

captured by a variant of the sparseness objective since each spike comes with an 



associated energy consumption (Attwell and Laughlin 2001). The AbsΨ  objective for 

example punishes the average value of the coefficients that can be associated with the 

number of spikes and thus the energy consumption.  One simple heuristic for 

measuring the usefulness of data might be temporal smoothness or stability (Földiak 

1991; Kayser, Einhäuser et al. 2001). It derives from the observation that most 

variables that are important and that we have names for change on a timescale that is 

slow compared to for example the brightness changes of sensors of the retina. The 

advantage of the objective function approach is that hypotheses for the objectives of 

the system can sometimes directly be derived from evolutionary ideas while allowing 

comparison of the results to the properties of the animal’s nervous system. 

In the objective function approach also used in the present study, it is directly visible 

that the decorrelation term strongly influence learning. It ensures the normalization of 

the standard deviation of the coefficients. When designing systems of sparse learning 

it is thus also important to also take into account the way the system is normalized. 

Considering this normalisation makes it far easier to understand similarities and 

differences between objective functions, such as the similarities between the results of 

the Kurtosis and the Cauchy simulations. 

Sparse coding and Independent component analysis are powerful methods that have 

many technical applications in dealing with real world data (c.f. Hyvärinen 1999). 

Their strength is that they do not merely depend on statistics of second order (as does 

PCA) that can easily be created by uninteresting noise sources. Its most impressive 

applications are blind deconvolution (Bell and Sejnowski 1995), blind source 

separation (Karhunen, Cichocki et al. 1997), the processing of EEG (Makeig, 

Westerfield et al. 1999; Vigario and Oja 2000) and fMRI (c.f. Quigley, Haughton et 

al. 2002) data as well as denoising (Hyvärinen 1999). Using heuristics that derive 



from the idea of data value might allow designing better objective functions for ICA. 

It could lead to algorithms that can better replicate physiological data (Kayser, 

Einhäuser et al. 2001) and potentially lead to outputs that are more useful as input to 

pattern recognition systems. 
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Figure Captions 
Figure 1:  

The sparseness objectives are shown as a function of the value of the coefficient. The 

original forms of the objective functions as used in most papers are shown. For better 

comparison all of them are scaled to the same interval. 

Figure 2:  

The full objective functions, including the decorrelation term, are shown as a function 

of the coefficient. The objective function was only evaluated after convergence of the 

network, which is necessary since the decorrelation term is a function of the basis 

functions. For better comparison all objectives were scaled to the same interval. 

Figure 3: 

The relative distribution of coefficients after convergence is shown as solid lines. The 

objective functions are shown as dotted lines. 

Figure 4: 

A) The same graphs as in figure 3 are shown, zoomed into the range -2.5…2.5 to 

depict the details for small coefficient values. The relative distribution of coefficients  

after convergence is shown as solid lines. The objective functions are also shown as 

dotted lines. 

B) The relative distributions are shown, all aligned to their maximal value. 

 

Figure 5: 

Typical examples of the resulting basis functions are depicted, each derived from the 

respective objective function .  
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