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Abstract 

Many biological and artificial neural networks require the parallel extraction of multiple 

features, and meet this requirement with distinct populations of neurons that are selective to 

one property of the stimulus while being non-selective to another property. In this way, 

several populations can resolve a set of features independently of each other, and thus achieve 

a parallel mode of processing. This raises the question how an initially homogeneous 

population of neurons segregates into groups with distinct and complementary response 

properties. Using a colour image sequence recorded from a camera mounted to the head of a 

freely behaving cat, we train a network of neurons to achieve optimally stable responses, that 

is, responses that change minimally over time. This objective leads to the development of 

colour selective neurons. Adding a second objective, de-correlating activity within the 

network, a subpopulation of neurons develops with achromatic response properties. Colour 

selective neurons tend to be non-oriented while achromatic neurons are orientation-tuned. The 

proposed objective thus successfully leads to the segregation of neurons into complementary 

populations that are either selective for colour or orientation. 



Introduction 

A striking feature of the visual system is the existence of cells that are selective to one 

property of the visual input while being non-selective to another. An important example of 

this coexistence of selectivity and invariance are complex neurons in primary visual cortex, 

which are selective for spatial frequency and orientation, but are insensitive to small 

translations of the stimulus (Hubel & Wiesel 1962). Another example of this feature can been 

seen in inferotemporal cortex, where neurons respond selectively to complex objects like 

faces, but are invariant to translation, rotation, scaling and to changes in contrast and 

illumination (Rolls 1992, Hietanen et al. 1992, Ito et al 1995). Experimental evidence 

suggests that neurons with comparable response properties are organized into distinct 

functional pathways (Livingstone & Hubel 1984, DeYoe & VanEssen 1985, Zeki & Shipp 

1988, Livingstone & Hubel 1988). The notion of a distinct neural pathway implies that a 

group of neurons will be selective to one stimulus dimension, but invariant to other 

dimensions. It is generally agreed that within a given sensory processing level, neurons can be 

segregated according to their selectivity to a particular stimulus dimension. However, this 

segregation may not be strictly maintained across multiple processing levels in the brain 

(Merigan & Maunsell 1993). At higher processing stages, selectivity to a given stimulus 

property may be increased following exposure to that stimulus (Logothetis et al. 1995, Sigala 

& Logothetis 2002), suggesting that selectivity may be established through experience, and 

depend on properties of the sensory input. 

Recently, several learning schemes have been proposed that link the response 

properties of visual neurons to statistical properties of the visual input. The principle of sparse 

coding, for example, can predict how visual experience gives rise to the receptive field 

properties of simple (Olshausen & Field 1996, Bell & Sejnowski 1997, van Hateren & van der 

Schaaf 1998) and of complex (Hyvärinen & Hoyer 2000) neurons in primary visual cortex. At 



the highest level of the visual system, neurons in inferotemporal cortex also appear to form 

sparse representations (Rolls & Tovee 1995). Thus, sparse representations may be ubiquitous 

in the visual system. 

Another learning scheme able to predict response properties of neurons in the visual 

system is the principle of temporal coherence. This learning scheme favours responses that 

change minimally (i.e., are stable) over time. Originally based on the trace rule proposed by 

Földiak (1991), neuron simulations using temporal coherence as an objective function display 

response properties characteristic of simple (Hurri & Hyvärinen 2002) and complex (Kayser 

et al. 2001, Einhäuser et al. 2002) cells, as well as response-invariant behaviour characteristic 

of higher levels of the primate visual system (Stone 1996, Wallis & Rolls 1997, Wiskott & 

Senjowski 2002). Thus, the principle of temporal coherence explains response-invariant 

behaviour at different levels of the visual hierarchy. 

However, the question as to how an initially homogeneous population of neurons 

could segregate into subpopulations that are selective to one particular stimulus property 

while being non-selective to another, remains unresolved. Here we address this question by 

training a network of simulated neurons with natural, colour image sequences using a learning 

scheme derived from the principle of temporal coherence. This scheme leads to the 

emergence of neurons that are selective to the colour of the stimulus while being non-

selective to stimulus orientation, and to a complementary group of neurons displaying the 

opposite stimulus preferences. 

Methods 

Stimuli 

We recorded natural image sequences using a removable lightweight CCD-camera attached to 

the head of a freely behaving cat, as described in detail elsewhere (Einhäuser et al. 2002). The 

cat is accompanied by an animal handler, but is otherwise free to explore an outdoor 



environment as it chooses. All procedures are in compliance with Institutional and National 

guidelines for experimental animal care. 

A total of 4900 consecutive frames from this sequence is then digitised into the RGB 

format at a colour depth of 24 bits. From each frame, we extract 20 patches (30 x 30 pixels) at 

random locations. Patches are then extracted at the same locations from the following frame 

in the sequence, yielding 20 separate stimulus pairs per frame pair (Figure 1). As using the 

square patch as such would introduce an orientation bias, each colour channel from the 

images is smoothed with a Gaussian kernel (12 pixels in width). This ensures a smooth 

isotropic aperture. For computational efficiency, a principal component analysis (PCA) is 

performed on the patch to reduce its dimensionality. As the absolute luminance of a visual 

stimulus is filtered out at the retina and cortical responses are mostly independent of the 

global illumination level, we discard the mean intensity by excluding the first principal 

component. Unless otherwise stated, principal components 2 to 200 are used in the subsequent 

analysis. 

Neuron models 

The activity of each neuron is computed as  
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where I is the input vector and W the weight matrix; ϕ(x) defines the neuron model. In this 

study we adopted two different neuron models that are in common use: the linear-threshold 

model (ϕ(x) = max(x,0)) and the full-wave-rectifying model (ϕ(x) = |x|). In each case the 

output of a neuron cannot be less than zero, reflecting the fact that real neurons cannot spike 

at negative rates. 

Objective functions 

The objective function used in this study is known as temporal coherence, which we 

implement by minimising the squared temporal derivative of the neurons’ activity. To avoid 



the trivial solution of a neuron whose weights are all equal to zero, this squared derivative is 

normalized by the variance of a neuron’s output over time, yielding:  
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where <.>t and vart denote the mean and variance over time, respectively. The derivative is 

implemented as a finite difference Ai(t+∆t) - Ai(t), where ∆t is the inter-frame interval, which 

in this case was 40ms. As this objective favours neurons whose output varies slowly over 

time, we will hereafter refer to it as the “stability” objective. The neuron specific value 

stable
iψ will be referred to as the individual stability of neuron i. 

The stability objective depends exclusively on the properties of the stimulus input 

(akin to a feed-forward mechanism in biological systems) and does not include interaction 

between neurons in the network. Thus, optimising Ψstable alone would lead to a population of 

neurons with identical receptive fields. We introduce interactions between neurons in the 

network by adding a de-correlation term. This forces neurons to acquire dissimilar receptive 

fields:  
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≡  denotes the coefficient of correlation and N, the number of neurons 

(N=200). 

The total objective to be optimised is then defined as  

 total stable decorrβΨ = Ψ + Ψ  

where β scales the contribution of the de-correlation term. 



Optimization 

At the beginning of the optimisation process, the weight matrix W is initialised to random 

values drawn from a normal distribution of mean 0 and unit variance. W is then normalized 

such that the variance corresponding to one input dimension over all neurons equals 1/N. 

Starting from these conditions totalΨ is maximised using the gradient ascent method: For each 

iteration of the optimisation process the function totalΨ  and its analytically determined 

gradient totald
dW
Ψ are computed over the entire set of natural stimuli. The weight matrix W is then 

updated in the direction of this gradient. The magnitude of this change is defined by the 

adaptive step-size procedure, as used in the implementation of Hyvärinen & Hoyer (2000). 

We regard the optimisation process to have converged when the relative change in the value 

of the objective function between successive iterations falls below 0.1%. We additionally 

perform a control analysis in which we disrupt the original temporal ordering of the image 

sequence used to train the network. The two frames making up a stimulus pair in this case are 

selected at random from the original set of frames. 

All computations are performed using MATLAB (Mathworks, Natick, MA). 

Analysis 

We analyse the properties of the receptive fields in the network after convergence. First, the 

neuron’s receptive field representation in input space is obtained by inverting the PCA on the 

weight matrix, W. Then, each receptive field is scaled individually such that the values of 

each pixel fall between 0 and 1. The scaling is the same for each colour channel and thus does 

not bias either the chromatic or the spatial properties of the optimised receptive field. To 

analyse colour and spatial content independently, the receptive fields are transformed from a 

colour channel representation (RGB format) into a representation separating hue, saturation 

and brightness channels (HSV format), achieved using a standard function in MATLAB 

(‘rgb2hsv.m’). 



We characterise the chromatic selectivity of a receptive field by calculating the mean 

saturation across pixels. Neurons with a mean saturation greater than 0.2 are classed as 

chromatic neurons, while the remaining neurons are classed as achromatic. Spatial properties 

of the receptive field are assessed by measuring the anisotropy of the receptive field using 

standard methods (Jähne 1997). Briefly, the tensor of inertia is computed on the values from 

the brightness channel. Anisotropy is defined as the ratio of the difference between the 

tensor’s long and short principal axis, divided by their sum. This measure is 0 for an isotropic 

(non-oriented) receptive field and approaches 1 for a perfectly oriented receptive field. 

Neurons with an anisotropy value less than 0.2 were considered to be non-oriented. 

Results 

Under all conditions analysed here, the optimisation process converges rapidly and reaches 

steady state after less than 60 iterations (Figure 2a). The optimised receptive fields are 

analysed in input space (by inverting the PCA on the weight-matrix, see Methods). As a 

starting point, we chose the following parameters values: 200 neurons, using PCA 

components 2-200, β=5 and full-wave rectifying neurons. Using this as a baseline, 

approximately 80% of the neurons exhibit colour selectivity. Figure 2b shows a complete set 

of receptive fields, sorted by the individual stability value ( stable
iψ ). 

The stability objective ( stableΨ ) does not include interactions between neurons in the 

network. The de-correlation term ( decorrΨ ) force neurons to acquire different receptive fields. 

As stability and de-correlation are competing mechanisms being added into a single objective 

function, neurons with sub-optimal stability emerge as well as neurons with suboptimal de-

correlation. As one expects, activities of neurons with high stability values stable
iψ  , tend to be 

more correlated than those with low stability values (Figure 2c).  



Visual inspection of the neurons in figure 2b already suggests that chromatic neurons 

tend to have higher values of stable
iψ  than achromatic neurons. Quantitative analysis reveals 

that chromatic neurons indeed have higher stability (mean stable
iψ , -0.0041) than achromatic 

neurons (mean stable
iψ , -0.0053). There is a pronounced relation between a neuron’s 

chromaticity and its individual stability (correlation coefficient: r=0.70, Figure 3a). This 

demonstrates that chromatic neurons have optimally stable responses to natural stimuli, while 

the achromatic stimuli are a consequence of sub-optimal stability due the de-correlation 

objective. 

We also investigate the spatial properties of the neurons in the optimised network. 

Orientation selectivity was estimated from the degree of anisotropy in the receptive field (see 

Methods). In the simulation using the baseline parameter values described above, 66% of the 

neurons are non-oriented. In the simulations using the linear-threshold model, 81% are non-

oriented. These results suggest that there is a relationship between spatial and chromatic 

properties of our model neurons. We find a strong correlation between chromaticity (mean 

saturation) and isotropy (defined as 1 minus anisotropy), both for the linear-threshold model 

(correlation coefficient: 0.72, Figure 3b) and full-wave rectifying model (correlation 

coefficient: 0.79, Figure 3c). Thus, colour selective neurons tend to be non-oriented, while 

achromatic neurons tend to be tuned for orientation.  

Our results show that achromatic neurons emerge as a consequence of adding a de-

correlation term ( decorrΨ ) to our objective function. The de-correlation objective permits 

interactions between neurons in the network, and results in receptive fields that are sub-

optimal with respect to the stability objective alone. We went on to test whether increases in 

the relative contribution of the de-correlation objective (using the term β, see Methods) would 

further increase the fraction of achromatic neurons in the network. The limit case of β → ∞ is 

simulated by omitting stability from the objective function altogether. For the simulations 



using the linear-threshold model, the population average of mean saturation (chromaticity) is 

reduced from 0.50 where β=0 (no contribution from decorrΨ ) to 0.19 where β → ∞  (no 

contribution from stableΨ ). The results from the simulations using the full-wave rectifying 

neurons are qualitatively similar, with a reduction in mean saturation from 0.5 (β=0) to 0.25 

( β → ∞ ). For both neuron types a 50% drop in mean saturation is achieved for values of 

β=20 (Figure 4a). 

The reduction in mean saturation is associated with a reduction in the proportion of 

chromatic neurons. In the simulations using the linear-threshold model, increasing β from 1 to 

20 reduces the proportion of chromatic neurons from 100% to 61%. In the full-wave 

rectifying model simulation, the same increment in β reduces the proportion of chromatic 

neurons from 93% to 63%. These results show that the proportion of chromatic versus 

achromatic neurons as well as the average chromaticity across the network is determined by 

the relative contribution of the de-correlation versus the stability objective. Therefore a single 

parameter, β, is sufficient to determine the proportion of chromatic versus achromatic neurons 

in the network. 

Next, we investigate the robustness of our model to reductions in the dimensionality of 

the training input. We determine the change in mean saturation when as few as 25 principle 

components were used, roughly 1/8th of the principle components used in the main 

simulations (see Methods). The change in mean saturation across both linear and full-wave 

rectifying models, and for values of β between 5 and 10, was not larger than 53% (Figure 4b). 

This minimal dependence on the number of input dimensions contrasts with a study by Hoyer 

& Hyvärinen (2000) using independent component analysis, which reported a strong 

correlation between input dimensionality and the proportion of colour selective neurons. 

Increasing input dimension by a factor of 2.5 yielded an increase in the number of chromatic 

neurons of approximately 290% (estimated from Figure 10 in Hoyer & Hyvärinen 2000). 



Doubling the number of independent components (from 100 to 200 dimensions) yielded a 

77% increase in chromatic neurons, while in our simulations, which use PCA, the same 

increase in dimensionality produces an increase of just 11% (Figure 4c). This indicates that in 

simulations using ICA, the emergence of colour selective neurons depends on dimensionality 

of the input, while in simulations using the stability objective, colour selectivity is determined 

by the relative strength of the de-correlation objective.  

We sought to verify that the results of our simulations are indeed a consequence of the 

temporal structure in the natural stimuli used as training input. Additional simulations were 

performed in which we destroy this temporal structure by randomly shuffling the frames 

comprising a stimulus pair. We compare the value of the objective function between 

initialisation and steady state conditions. In the simulations of full-wave rectified neurons, 

β=10, steady state values are 8% higher than at initialisation (from –2.23 to –2.04). In the 

simulations using the linear-threshold model, an increase of 4% is found (from –2.05 to –

1.96). These values are modest compared to those found in the simulations with natural 

temporal ordering in the training input (from -1.96 to-1.32, or 33% in the full-wave rectified 

model simulations and from –1.72 to -1.25, or 27% in the linear-threshold model simulations). 

The impact of shuffling the stimulus pairs was even more dramatic when the objective 

function was defined by Ψstable alone (β=0). In this case, the increase in the value of the 

objective function when using the natural temporal stimuli is more than 10 times larger (31% 

increase for the full-wave rectified model, 43% increase for the linear-threshold model) than 

for the simulations using the temporally shuffled stimuli (3% increase for the full-wave 

rectified model, 4% increase for the linear-threshold model). 

We also determined the effect of shuffling the stimulus pairs on the emergence of 

colour selectivity in the network. Mean pixel saturation was 0.19 in the network trained on the 

shuffled stimuli, half the value that is obtained when the natural temporal order is intact 

(0.38). This resulted in the proportion of chromatic neurons in the network falling from 65% 



in the naturally ordered condition to just 19% in the shuffled condition. Furthermore, most 

neurons in the simulation using the linear-threshold model are close to the 

chromatic/achromatic threshold of 0.2 (96% fall between 0.1 and 0.3 mean pixel saturation), 

whereas for naturally ordered condition, mean saturation shows a wider distribution (43% 

between 0.1 and 0.3). While the change in mean saturation is less pronounced for the full-

wave rectifying model (0.24 compared to 0.29), a similar narrowing in chromaticity is 

observed (63% compared to 30% of neurons fall between 0.1 and 0.3 mean saturation, Figure 

4d). This indicates that in the shuffled condition, most neurons cannot be clearly identified as 

either chromatic or achromatic. 

Taken together, these findings indicate that natural temporal structure is critical to the 

attainment of an optimal solution for the stability objective function at the level of the 

network, and for the emergence of distinct chromatic and achromatic neuron populations. 

Discussion 

In this study we address how neurons selective for different stimulus dimensions can emerge 

from an initially homogeneous population. We have shown that optimising the stability 

objective alone yields non-oriented chromatic neurons. Forcing neurons, to acquire dissimilar 

receptive fields (and thus sub-optimal stability) leads to the emergence of a second 

subpopulation of oriented achromatic neurons. The stability of each neuron serves as system 

inherent measure to separate the two groups of neurons. 

Furthermore, our simulations show that the relative size of each subpopulation is 

determined by a single parameter. Thereby, we have shown that the proposed objective 

function successfully segregates neurons into distinct populations that are selective to one 

property of the stimulus while being relatively non-selective to another property. By adopting 

complementary selectivities, a small number of neuronal populations can encode a complete 



set of features in the stimulus independently of each other, and thus achieve a parallel mode of 

processing. 

We considered two distinct neuronal models in our simulations, the linear-threshold 

model and the full-wave rectifying model. The results are similar regardless of which 

neuronal model is used, indicating that our objective function can succeed irrespective of the 

type of model. This result highlights the potential utility of our approach. Our objective 

function may provide insights into the mechanisms underlying learning and development, not 

just at early stages of the visual system, but at higher levels of the visual hierarchy as well. 

The generalisability of our approach also holds promise for its application in the development 

of artificial vision systems. 

Simulations of the development of colour selective responses using natural stimuli as 

input has been addressed in several recent studies. These adopt a version of the sparseness 

principle, using independent component analysis (ICA), and use standard colour images 

(Hoyer & Hyvärinen 2000; Tailor et al., 2000) or hyperspectral images as training input 

(Wachtler et al. 2001). All studies find colour selective neurons, similar to those described 

here. However, neither study quantifies the relation of the neurons’ spatial receptive fields to 

their chromatic properties. Here we find a strong correlation between chromatic and spatial 

properties. Another remarkable difference between the stability objective and the sparseness 

objective, as modelled using ICA, is the dependence of the latter approach on the 

dimensionality of the training input. This indicates that when using the ICA approach, the 

segregation of chromatic and achromatic subpopulations will depend on properties of the 

dimensionality of the external input. In the present approach this segregation is regulated by 

an internal parameter specifying the strength of the interactions between neurons within the 

network. 

Earlier studies using the temporal coherence objective to learn invariant responses  

delivered a clear proof of concept using artificial (Földiak 1991) as well as artificially 



transformed natural stimuli (Stone 1996; Wallis & Rolls 1997). This studies were motivated 

by the idea that, if different transformations of the visual input naturally happen on different 

timescales, selectivity and invariance towards these transformations can be extracted using 

solely this fact. For example, the invariance to position and selectivity to orientation results 

from local orientations being correlated over longer time scales than positions (Kayser et al. 

2003). As the temporal structure of the stimulus is therefore the decisive property exploited by 

this type of objective function, it is crucial that we demonstrate that these results are 

confirmed when using stimuli that preserve temporal structure in the natural input. Our unique 

stimuli, derived from recordings made from a camera mounted on a freely behaving cat, 

provide image sequences that preserve the natural temporal structure. Note however, that we 

found it technically infeasible to use more realistic colour representations, as the current 

sampling rates of devices capable of recording hyperspectral images are several orders of 

magnitude below the correlation time constants observed in our natural videos (Kayser et al. 

2003). Thus, we were not able to capture this aspect of the natural input. Note that the results 

of the ICA studies using hyperspectral images (Wachtler et al. 2001) are not qualitatively 

different to those in which the standard RGB-representation was used (Tailor et al. 2000, 

Hoyer & Hyvärinen 2000). Thus, we can be confident that the RGB format is adequate for our 

purposes. Furthermore, the present ‘Catcam’ videos were not recorded at sufficient temporal 

resolution to model the temporal properties of receptive fields. Modelling chromatic spatio-

temporal receptive fields with the stability objective thus remains an interesting issue for 

future research. 

There is physiological evidence that colour-sensitive neurons in primate V1 tend to be 

non-oriented, whereas achromatic neurons tend to exhibit the precise orientation tuning seen 

to be characteristic of V1 simple and complex neurons (Gouras, 1974; Lennie et al. 1990). 

This is further supported by psychophysical experiments that show that humans can resolve 

higher spatial frequencies for isochromatic patterns than for isoluminant patterns (Webster et 



al. 1990, Sekiguchi et al. 1993). This raises the issue as to how our particular objective 

function might be implemented physiologically. A possible mechanism for the de-correlation 

objective is provided by inhibitory lateral connections in primary visual cortex. 

Physiologically, this process does not necessarily require synaptic changes at the tangential 

connections, but can also exploit modifications to afferent synapses that are in turn influenced 

by lateral interactions (Körding & König 2000). This mechanism utilizes action potentials 

propagating retrogradely through the dendritic tree (Stuart & Sakmann 1994). Building on the 

same physiological mechanism, a temporally asymmetric learning rule (Makram et al. 1997, 

Larkum et al. 1999) could plausibly subserve the function of the stability objective (Einhäuser 

et al. 2002). 

The biological plausibility of our approach may go beyond the similarity between our 

simulated receptive fields and those found in visual cortex. We speculate that important 

properties of the visual system, including the establishment of distinct functional pathways, 

may develop using learning rules resembling the stability objective. 
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Captions 

Figure 1  

Three examples of the two consecutive images that are selected from the natural image 

sequence. Each pair of images forms the basis of the input to our model. The white squares 

indicate three of the twenty 30x30 pixel patches that are sampled from the same location in 

each frame pair. 

Figure 2 

(a) Development of objective function Ψtotal in the course of the optimisation process for a 

simulation of full-wave-rectifying neurons with β=5. 

(b) Receptive fields produced following 60 iterations of the simulation shown in (a). The 

receptive fields are sorted according their individual stability value, with low stability 

values at the top of the figure and high stability values at the bottom. 

(c) Coefficient of correlation between all the activities over one stimulus presentation of 

the neurons of panel b. 

Figure 3 

(a) Dependence of neuron chromaticity on individual objective value ψi
stable. Chromaticity 

was assessed by calculating mean saturation for each receptive field, averaged across 

pixels. 

(b) Chromaticity versus anisotropy for β=5 and full-wave rectifying neurons. 

(c) Chromaticity versus anisotropy for β=5, linear-threshold model. 

Figure 4 

(a) Mean chromaticity versus β for the full-wave rectifying model (stars) and linear-

threshold model (circles). 

(b) Dependence of mean neuron chromaticity on PCA dimension for different values of 

β and the two neuron models. 



(c) Percentage of chromatic neurons (mean saturation > 0.2) of (a) compared to results 

from ICA, redrawn from Hoyer & Hyvärinen (2000).   

(d) Distribution of mean pixel saturation for the control condition of shuffled stimuli (left) 

compared to stimuli that` preserve the natural temporal structure (right). Top row 

shows results from the linear-threshold model, bottom row, the full-wave rectifying 

model. 
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