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e-mail: ruedi@ini.phys.ethz.ch

Abstract— Methods for detecting patterns in in-
terspike interval (ISI) series, obtained from biologi-
cal neural networks, are usually template based. This
approach faces the major problem, that a priori as-
sumptions about possible pattern structures have to be
made. To avoid this difficulty, we propose a novel sta-
tistical approach, based on the correlation integral.
Applications to model and neuronal data show the re-
liability of the method, even in noisy conditions.

I. INTRODUCTION

Biology can be viewed as an alternative informa-
tion processing paradigm, that often proves far more
efficient than conventional approaches. Whereas the
underlying processes (neurons and their connections
by means of synapses) can accurately be modeled by
electronic circuits [1], their basic way of functioning
is not yet understood. However, it seems evident that
these circuits work on distributed parallel process-
ing principles, and that information is encoded differ-
ently than it would be in traditional signal processing.
In biological information processing systems, gener-
ated activity manifests in neuronal firing events, called
spikes. Temporal recording of firing events provides
ISI series as the empirical material to work on. It can
be expected that the information processed in the net-
work, is encoded by some structure in the ISI series.
This implies pattern recognition as a first fundamen-
tal step in our investigation of biological information
processing. One of the most obvious structures to look
for, is patterns in single ISI series. Generally, ISI pat-
terns can be defined as parts of the series that appear
significantly more often than in random distributions
[2]. For the identification of patterns, usually a set of
template patterns is predefined and their occurrence
within the ISI series is counted (template-based meth-
ods, [3]). In neuronal data, such patterns composed
of one, two, three, four and five consecutive ISI have
been reported [4].

However, template-based methods suffer from two

fundamental difficulties: First, the detection relies on
the set of pre-chosen pattern templates. As the pat-
terns are a priori unknown, the inclusion of the appro-
priate template is a matter of luck. Unbiased guessing
will therefore require exceedingly large template sets.
The second problem is the omnipresence of noise in
natural processes. In biology, patterns cannot be ex-
pected to repeat perfectly, which leads to the prob-
lem how to choose the accuracy required for template
matching. To avoid these difficulties, we propose a
purely statistical approach for pattern detection. This
approach is based on the correlation integral.

II. PROPERTIES OF THE METHOD

A. The correlation integral

Originally, the correlation integral was designed
for the determination of correlation dimensions [5].
This application will not be considered in this report.
Rather, we will explore the potential of correlation in-
tegrals for the detection of ISI-patterns.

Consider an arbitrary scalar time series of measure-
ments {xtk}. From the data, embedded points ξ

(m)
k

are generated using the coordinate-delay construction
ξ
(m)
k = {xtk , xtk+τ , . . . xtk+(m−1)τ}, where m is

called the embedding dimension and τ is a delay [6].
In the case of interspike interval data, however, no ex-
plicit delay is involved. By setting τ = 1, the con-
struction can nevertheless be performed [7]. From the
embedded data, the correlation integral is calculated

C
(m)
N (ε) =

1

N(N − 1)

∑

i6=j

θ(ε − ‖ξ
(m)
i − ξ

(m)
j ‖),

where θ(x) is the Heavyside function (θ(x) = 0
for x ≤ 0, and θ(x) = 1 for x > 0) and N is
the number of embedded points. The correlation in-
tegral C

(m)
N (ε) averages the probability of measur-

ing a distance smaller than ε between two randomly
chosen points ξ

(m)
i and ξ

(m)
j . In practical applica-

tions, log C
(m)
N (ε) is often plotted against log ε (the



so-called log-log plot). Since we will investigate the
behavior of C

(m)
N (ε) for ε finite, there are no stringent

limits in terms of data size.

B. Emergence of steps in the log-log plot

Patterns will manifest as a clustering of the embed-
ded data. For the calculation of C

(m)
N (ε), an embed-

ded point ξ
(m)
0 is randomly chosen. Then, the number

of points in its neighborhood U(ξ
(m)
0 , ε) is measured,

as ε is enlarged. If the point belongs to a cluster, upon
an enlargement of ε many points will join the neigh-
borhood. I.e., C

(m)
N (ε) quickly increases. Once the

cluster size is reached, less points will be recruited,
which leads to a locally flat part of the log-log plot.
Proceeding in this way, step-like structures emerge.
The denser the clustered region, the more prominent
the step-wise structure. Noise tends to smear the un-
derlying patterns and, as a consequence, the step-like
structures. A diminished inclination of the steep parts
of the steps can be taken as an indication of additive
noise. A non-zero slope of the locally flat parts indi-
cates instability of the pattern within the series.
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Fig. 1. Log-log steps, pattern precision and stability of oc-
currence. Steeper steps indicate more precise patterns
(s1 vs. s2 in case a). More horizontal levels emerge
for more stable patterns (s′

1 vs. s3 in case b). In both
cases, d ∼ 0.58 and m = 2.

To corroborate this by examples, we constructed
three ISI series from the ISI set {1,2,4}, where the
given numbers can be taken as ISIs measured in ms.
The first series were generated as a repetition of the
sequence {1,2,4}. To this series, indexwise noise of
maximal ±1% of the smallest ISI was added. To
obtain the second series, the noise was increased to
±10%. The third series was obtained by appending ei-
ther the sequence {1,2,4} (with probability p = 0.5),
or a sequence consisting of three intervals randomly
drawn from I = (0, 4). For all obtained series, the
correlation integrals were evaluated at fixed embed-
ding dimension m = 2 (the influence of the embed-
ding dimension will be discussed below). Throughout
the investigation, we used the maximum norm as the
distance measure. This not only speeds up the com-

putation, it also scales well for the comparison among
different embedding dimensions [8]. Degeneracies in-
troduced by this choice are removed upon the addition
of a small amount of noise. If we compare the results
of the first with the second series, we observe that the
“noisier” pattern exhibits a smaller slope s2 vs. s1 in
Fig. 1 a). Comparing the results from the first vs. the
third series, we observe a smaller slope s′1 for the more
stable pattern vs. s3, see Fig. 1 b). Both comparisons
corroborate our predictions [9].

In practical applications it is generally difficult to
clearly distinguish between the two aspects, as they
naturally interfere. And often, if steps are smeared
by noise, the derivative of the log-log plot is a clearer
indicator for the presence of patterns. In the corre-
sponding derivative plot, narrow peaks separated by
intervals where the derivative ∆log C

(m)
N (ε) is close

to zero, indicate precise and frequent replicating pat-
terns. The number of peaks then corresponds to the
number of steps. To improve the indicator, it has
proven useful to consider the sum

∑m
i=1 ∆log C

(i)
N (ε)

(see [8]).
Our observations are also valid in less simplistic

settings. To show this, we extended our investigations
to data composed of the ISI sequences {10, 1, 100, 1,
100, 5, 2,1}, {2, 6, 10, 10, 20}, {5, 6, 6, 2, 6, 5}, {4,
2, 400, 1}, {8, 2, 1, 5, 3, 3}, {2, 7, 5, 700, 5, 2}. ISI
series were generated from these sequences accord-
ing to the following procedures: a) Random selection
of intervals from joined sequence, with additive noise
uniformly selected from the interval [0, 2]. b) Ran-
dom selection of a sequence, where the intervals were
modulated by sinusoidal driving, and noise of same
magnitude as in case a) was added. c) Random selec-
tion of a sequence without noise. In this way, the ISI
series had identical probability distributions, whereas
only in the series b) and c), patterns were present. The
results shown in Fig. 2 confirm that steps, respec-
tively peaks, only appear in the plots where patterns
are present.

C. Embedding dimension dependence

It is important to note, that from the number of
steps or peaks present in the log-log plot, exactly what
patterns are contained in the ISI series cannot be de-
duced. However, an estimation of the pattern length
can be given according to the following arguments.
For data generated by repeating a sequence of length
n, the number of steps in the log-log plot, s(m,n),
can be expected to decrease with increased embed-
ding dimension m. This prediction can be motivated
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Fig. 2. Patterns manifesting as step-like behavior in the
log-log plot (y-axis: log C(10)(ε)) and as peaks in the
derivative plot (y-axis: ∆ log C(10)(ε)), respectively.
Thick line: log-log plot; thin line: derivative plot,
m = 10. a) Random selection of single intervals from
the joined sequence: no steps visible. b), c) Steps
emerge, if whole patterns are randomly chosen (see
text).

as follows: When calculating the distance between
two points, corresponding coordinates form a set of
pairs, that can be ordered according to the absolute
size of their differences. According to the maximum
norm, the distance between the points is the largest
difference found. As an increase of the embedding di-
mension yields ever more pairs, thus the presence of a
particularly large difference (which has an increased
probability for being present in higher dimensions)
will dominate the distance and suppress the occur-
rence of smaller distances. The analytical formula of
s(m,n) is beyond the scope of this paper. The number
of steps can, however, be computed numerically, if all
differences between the n numbers forming the pat-
tern are distinct (see Table 1). The numbers obtained,
clearly corroborate the expected decrease of the num-
ber of steps as a function of the embedding dimension
m.

As a tractable example, we investigated the ISI se-

Pattern size n

1 2 3 4 5 6 7 8

E
m

be
dd

in
g

di
m

en
si

on
m

1 0 1 3 6 10 15 21 28
2 0 1 2 4 8 12 16 22
3 0 1 1 3 6 9 12 17
4 0 1 1 2 4 7 9 13
5 0 1 1 2 2 5 7 10
6 0 1 1 2 2 3 6 8
7 0 1 1 2 2 3 3 7
8 0 1 1 2 2 3 3 4
9 0 1 1 2 2 3 3 4

TABLE I
Maximum number of steps s(m, n) as a function of the

embedding dimension m and pattern size n.

ries generated from replicating the sequence {0.05,
0.24, 0.37, 0.44, 0.59}. In embedding dimension 1,
all ten possible differences are detected (see Fig. 3).
Upon an increase of the embedding dimension to-
wards 5, the number of steps detected decreases. Af-
ter reaching the value 2, the number of steps remains
constant, as predicted by Table 1.
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Fig. 3. Decrease of the number of steps as a function of the
embedding dimension m = 1, . . . , 7 (sequence length:
5). At m = 1, 10 steps are discernible. This num-
ber decreases in full agreement with Table 1. Noise of
maximal ±1% of the smallest interval was added to the
data.

Real data is always affected by noise. In this case,
the effects are less clear-cut, and Table 1 provides
a guideline only. Moreover, another basic difficulty
complicates the determination of the pattern length.
E.g., its mechanism can be illustrated as follows: If
one step is present in the log-log plot, this can be due
to either one pattern of 2 ISIs, or two “patterns”, of
one ISI each. A greater number of steps complicates
this problem further. One can, however, expect that
the most pronounced step appears when the embed-
ding dimension equals the pattern size. This is, be-
cause at this dimension, the pattern appears in its most
complete form (neither cut into pieces, nor spoilt by



points that do not belong to the pattern). As a con-
sequence, evaluating the log-log plot across different
embedding dimensions provides a helpful indicator
for the pattern length (details omitted).

III. APPLICATION OF THE METHOD

We applied the method to ISI series from the lat-
eral geniculate nucleus (LGN) of anesthetized cats
[10]. We analyzed the responses of two cells to three
classes of stimuli: 1) sinusoidal gratings with ran-
domly changing spatial frequency and direction; 2)
cartoon movies; 3) natural stimuli videos. Each class
contained 2-4 stimuli of 10-30 seconds duration each.
15-25 repetitions of stimuli from one class were ap-
plied randomly. From these recordings, we composed
six, cell and stimulus specific, ISI series. To avoid ar-
tificial patterns due to stimulus onset, the first 50ms
of each trial were deleted. For stimulus 3, this led to
an ISI series of length 2000 for neuron a, to 3400 for
neuron b, and to lengths between 6000 and 12000 for
stimuli 1 and 2. For the analysis, we used the deriva-
tive plot, where we summed over the embedding di-
mensions 1 to 7 and verified the independence of the
results on the particular composition of the ISI series.
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Fig. 4. Cat LGN data. Neuron a: Patterns emerging for all
three stimuli (three characteristic peaks with preserved
spacing between the peaks). Neuron b: Absence of pat-
terns, for all stimuli used. In the plots, we display the
cumulated derivative

∑7
m=1 ∆ log C

(m)
N

(ε).

The emergence of three characteristic peaks for all
three stimuli shows the presence of patterns in the ISIs
generated by neuron a (see Fig. 4, where different cor-
relation integral normalizations are responsible for the
shift of the peaks). For neuron b, the absence of peaks

indicates its inability to produce patterns. This is in
agreement with earlier observations (see [11]) propos-
ing a stimulus-independent categorization of neurons
according to their ability / inability to fire in patterns.

IV. CONCLUSION

The properties of correlation-integral pattern recog-
nition can be summarized as follows: 1) The approach
allows the unbiased testing for patterns, where only a
small data set is required (for our investigations, 2000-
5000 points were found to be sufficient). In its sim-
plest application, our method may therefore be used
for checking the existence of patterns. 2) Although
the method does not directly deliver the patterns them-
selves, indicators for their sizes are provided. When
the existence of patterns is indicated, this additional
information (e.g., possible pattern size combined with
the locations of the steps) can be used in combination
with template-based methods, to reveal the patterns.
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analysis. This work was supported by the SNF and by
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