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SYNOPSIS

While much is now known about the opera-
tion and organisation of the brain at the
neuronal and microcircuit level, we are still
some way from understanding it as a complete
system from the lowest to the highest levels of
description. One way to gain such an integrative
understanding of neural systems is to construct
them. We have built the largest neuromorphic
system yet known, an interactive space called
‘Ada’ that is able to interact with many people
simultaneously using a wide variety of sensory
and behavioural modalities. ‘She’ received
553,700 visitors over 5 months during the Swiss
Expo.02 in 2002. In this paper we present the
broad motivations, design and technologies
behind Ada, and discuss the construction and
analysis of the system.
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1. INTRODUCTION

Mankind has a long history of building suc-
cessively more elaborate approximations of natural
organisms. Early examples from the 1700s include
the humanoid automata of the brothers Droux and
Jacques de Vaucanson’s mechanical duck. Modern
artificial organisms, such as the robot dog Aibo
(Sony) and humanoids SDR-4X (Sony) /3/ and
Asimo/P3 (Honda) /44/, display more advanced
capabilities than their predecessors. Each case is an
example of the application of some of the known
operating principles of an organism to the instanti-
ation of a particular artefact. Since all known
animals above a certain level of complexity have
brains, it is only natural that some sort of
approximation to a brain often finds its way into
these artificial systems.

It could be argued that building this sort of
system is merely the mechanical application of a
known principle, without generating new know-
ledge. Indeed, the above examples were mainly
constructed for entertainment purposes. In the o
century, however, a more deliberate effort was
commenced to construct machines, such as Grey
Walter’s turtles /58/, in order to advance our under-
standing of the brain (see /13/ for an overview). In
this tradition Ashby published his influential
proposal ‘Design for a brain’ in 1952, in which he
proposed that the principles of cybernetics could
be applied to the study of the brain /5/. This
pioneering work explored different applications of
feedback control to neuronal circuits. Absent from
this proposal, however, was the physical realisation
of such a control scheme in a real-world behaving
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system. The process of building a real system
provides a reality check that can be used to elimi-
nate potential models. Real-world systems must
satisfy constraints such as power consumption,
physical appearance and real-time behavioural
performance that many models do not consider
/57,62/. In particular, the construction of a real-
world artefact requires that an explicit link between
neuronal control structures and overt behaviour be
elaborated. In addition, being forced to address
real-world constraints can also have side benefits in
the form of new technologies that are developed to
address specific problems, yet find different fields
of application.

The exercise of building artificial organisms
allows multi-level testing to a degree that would
not be possible in a natural organism. For example,
many animal experiments in neuroscience try to
link neural activity with observed behaviour by in
vivo cell recording during behavioural experiments.
While recording techniques are constantly improv-
ing, the range of data that can be collected from
any one experiment is small since it is difficult to
record from multiple sites simultaneously. As well
as this, the need for recording electrodes attached
to cumbersome equipment makes experiments with
free-roaming subjects even more difficult. If we
then want to add further simultaneous data record-
ing using techniques such as optical imaging, fMRI
or EEG scans, the technical problems become
insurmountable. We encounter the problem of our
measurement techniques interfering with each
other, as well as with the functioning (or even the
lifetime) of the organism itself. Artificial organisms
offer a way to avoid these problems. They can be
designed to allow extensive data recording without
affecting normal operation. When designed to
incorporate models of brain function based on what
has been learned from natural systems, artificial
organisms also serve to help validate or invalidate
different theories. In addition, the use of a synthetic
approach allows the systematic manipulation of
components of the nervous system and the environ-
ment in which the system operates that cannot be
achieved using biological systems. Another important
feature of this approach is that it supports highly
controlled repeatability of experiments that is diffi-
cult to achieve in complex behavioural paradigms.

These considerations led us to construct ‘Ada’,
an artificial organism in the tradition of many that
have come before. However, ‘she’ has one import-
ant difference from any known organism: she is an
interactive space, developed for the Swiss national
exhibition Expo.02 located in Neuchatel. Concep-
tually, she can be seen as an inside-out robot with
visual, audio and tactile input, and non-contact
effectors in the form of computer graphics, light
and sound. Visitors to Ada are immersed in an
environment in which their only sensory stimula-
tion comes from Ada herself (and other visitors).
Like an organism, Ada’s output is designed to have
a certain level of coherence and convey an impres-
sion of a basic unitary sentience to her visitors. She
can communicate with them collectively by using
global lighting and background music to express
overall internal states, or on an individual basis
through the use of local light and sound effects.

The Ada project builds on the tradition of Grey
Walter and Ashby, but extends it further towards
the development of real-world artefacts that show a
complexity that approaches that of real biological
systems. We argue that it is through the construc-
tion of such systems that we can advance our
theories on brain function /57/. A key feature of
this approach is that it allows the incorporation of a
multi-level perspective from neurons to circuits and
behaviour, while allowing full experimental control
and analysis. In this respect we envision an
approach based on a constructive synergy between
experimental and synthetic methods.

To realise Ada, several simultaneous lines of
research and development were pursued. Topics
under investigation include:

e Auditory processing and localisation;

¢ Multi-modal visual and tactile tracking of
humans;

e Communication using visual and sonic cues;
¢ Real-time homeostatic control systems;

e Human-machine interaction via whole-body
locomotion of visitors;

* Large-scale sensory and behavioural integration;
e Learning of behaviour.

Development of Ada commenced in late 1998
and ramped up to a maximum team size of about 25
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people. The main milestones along the way were a
series of about ten increasingly complex public o] vy Gows iy B
demonstrations and tests that started with an inter- e ——

active music composition system at the computer
fair Orbit%8. The technical development team came
trom many ditferent disciplines, ranging from bio-
logical sciences through engineering and physics to
musical compesition, There was also a team of
architects, artists, publicists, scenographers, site
managers and guides for handling the production
and operation of the exhibit, A total of over 100
people were directly involved in the construction
and running of Ada. The exhibit ran continuously
for 10 to 12 hours a day during 5 months from 15
May to 20 COctober 2002, During this period
353,700 visitors interacted with the space.

This paper presents an overview ol Ada's
sensors  and  effectors, svstem architecture  and
behaviours, Three aspects of the system involving
neural processing are discussed in detail! auditory
processing, learning ol behaviours for influencing
visitor positions in the space. and a homeostatic
scheme for behaviour sclection and emotional
expression. An overview ol the operational results
and a description of the data collection stratepics
are also given. We show how data collected at
many different levels can be combined to gain a
coherent picture of Adu’s operation. The sysiem
presented here demonstrates how the construction
of real-world artefacts can facilitate the develop-
ment and evaluation of theories on brain function.
Mureover, Ada shows that we now have the tech-
nological capabilities o construct artefacts of a
level of complexity approaching that of biological
svstems,

2, SENSORS AND EFFECTORS

Figures 1 and 2 show an overview of the Ada
exhibition layout and the main Ada space. The
sensors and effectors within Ada consist of
(including auxiliary exhibition areas) 15 video
inputs. 367 x 3 tactile inputs. 367 x 3 temperature
sensors, 9 audio input channels, 46 mechanical
degrees of freedom. 17 output audio channels, 367
x 3 [loor tile lights, 30 ambient lights and 20 [ull-
screen video outputs. All of these inputs and out-
puls can be addressed independently, giving a tich
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Floor plan of the Ada exhibit. The regions are
labefled (a) 1o () respectively. (a) Conditioning
tnnel: Visitors were introduced 1o Ada’s compon-
ents. (b Voyeur corvidor: Semi-lransparent. nrirrors
allowed w view of what happened inside Ada selll
(€] Ada selfr The Ada main space for visitor
inferaction, (d) Brainarium: Fooam wilth six monitors
providing infonmation  and  real-time  praphical
displays showing the currenl dynamics in Ada's
contrel systen, (e) Explanatorium: Visitors were
provided with  background information on the
exhibit. The arrows indicate visitor flow, The total
surface arca of the exhibit was 427 . of which the
main Ada space occupied about 160 m’,
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Overview of Ada main space. The main space is
about 160 m” in area and 5 m high. The main sensory
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in parentheses specilfy the amount present, See (ext
for lirther cxplanation,



148

K. ENGET AL.

array of sensory modalities and output possibilities.
Ada has the following sensory capabilities:

Vision: Pan-tilt cameras called gazers (Fig. 3)
are available to Ada for focused interactions
with specific visitors. The cameras have zoom
and digital filtering capabilities that are
controlled on-line.

Hearing: There are clusters of three fixed
microphones each in the ceiling plane at 5 m
above the floor surface. Using these sensors Ada
is able to localise sound sources by triangula-
tion. In addition, basic forms of sound and word
recognition and pitch and musical key extraction
are available.

Touch: Ada has a ‘skin’ of 0.66 m wide hexa-
gonal pressure-sensitive floor tiles /15/ (Fig. 4)
that can detect the presence of visitors by their
weight. Each contains a microcontroller and is
connected to an industrial automation bus called
Interbus.

Temperature: Within each floor tile is an 8-bit
temperature sensor. In Ada, this sensor was used
only for measuring the internal floor tile tem-
peratures to ensure that the floor did not
overheat.

As well as sensing, Ada can also express herself

and act upon her environment in the following
ways:

Visual: Ada uses 12 LCD projectors to create a
360° surround projection above the mirrored
wall that surrounds the space, called BigScreen.
These projectors collectively show a single,
unified display of 3D objects covering multiple
screens in real-time. Key elements of BigScreen
for visual communication are the background
image, a closed tube reflecting the dynamics of a
network of coupled oscillators, and independent
graphics windows that can contain still images
or live video that can move with smooth transi-
tions between screens. There is also a ring of
ambient lights for setting the overall visual tone
of the space. Local visual effects can be created
using the red, green and blue neon lights in each
floor tile in Ada’s skin. This output modality can
express Ada’s internal states, interaction dyna-
mics or localised specific effects for guiding and
visitor feedback.

Fig. 3:

Martin MAC 250 light finger, normally mounted
hanging from a bar. The light finger has a 250 W
lamp, a 2-axis 16-bit pan-tilt unit and multiple light
colour/shape filters. The gazer is based on exactly
the same mechanism, except that the light is removed
and replaced with a CCD zoom camera block.

Fig. 4:

Floor tile, shown without the glass top. The tile is
about 66 cm across and 15 cm deep. Red, green and
blue neon tubes (1) take up most of the internal
space. Three pressure sensors with cables protrud-
ing from them (2) can be seen near the corners
around the edge of the tile. The white box near the
centre of the tile is a computer-controllable neon
dimmer (3). The circuit board at the top-right (4)
contains a power transformer, microcontroller and
network communication to the host computer. Holes
can be seen for drainage (5) and cable routing (6) in
the bottom and sides of the tile, respectively.
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e Audio: Ada is able to generate a wide range of
local and global sound. These sounds can be
distributed across the entire space or localised
using a matrix mixer. She expresses herself
using sound and music composed in real-time on
the basis of her internal states and sensory input.
The composition is generated using a system
called Roboser /60/ and performed using a
sampler.

e Touch: Ada has 20 16-bit pan-tilt light fingers
(Fig. 3) for pointing at visitors or indicating
different locations in the space. They are stan-
dard theatre lights on a serial bus called DMX,
which is also used to control the ambient lights
and the gazers. Light fingers can emit light of
different colours and with different mask (gobo)
and focus effects.

A complete list of all devices and manufacturers
can be found in Appendix 1.

3. NEUROMORPHIC DESIGN PRINCIPLES

We describe Ada as a neuromorphic system.
This means that the same design principles were
used to build Ada as are seen in natural organisms.
In this section, we briefly survey some of the
literature on natural nervous systems, and extract
some key concepts that were used in the design of
Ada.

3.1.Modularity and encapsulation

The nervous systems of all higher animals,
while highly distributed, are not anatomically
homogeneous. Rather, they exhibit a high degree of
modularity. Even the peripheral nervous system
contains modules: far from being a simple conduit
for commands to muscles, the spinal cord of many
animals can perform sets of coordinated muscle
contractions. For example, electrical stimulation of
certain regions of the frog spinal cord results in a
smooth leg trajectory to an equilibrium point in its
workspace. The leg can be interpreted as being
under the control of a force field varying in both
space and time /7/. It has been suggested that
collections of these spinal modules serve as motor
primitives, which are used in superposition by
higher brain areas to produce a large variety of
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movements without having to deal with complex
inverse kinematics /37/. This encapsulation of the
inverse kinematics problem - a very difficult pro-
cedure using Cartesian geometry - may serve to
reduce the state space for motor learning to make it
more tractable.

Evidence exists that the modularity of motor
action extends even further than this. Experiments
with monkeys show that complex, coordinated
movements can be induced by localised micro-
stimulation of the motor cortex /24/. This result
suggests that even very complex high-level
behaviours can be regulated by the modulation of
relatively small populations of neurons. Another
example of this design principle can be found in the
cerebellar mechanisms underlying classical con-
ditioning. In this case only a few neurons in the
deep cerebellar nuclei will control the activation of
a complete conditioned response /26/. This is only
possible because the motor commands at this level
of organisation are independent of their translation
to the detailed kinematics and dynamics of the
skeletal motor system.

These results suggest that the motor system is
designed around a hierarchy of encapsulated
modules in which increasingly more abstract and
elaborated behavioural patterns are encoded. In this
context we hypothesise that at least three levels of
encapsulation must be distinguished: specific
movements of individual effectors define actions,
patterns of actions define behaviours, and sets of
behaviours define behavioural modes.

3.2. Data reduction, abstraction and representations

The physiology of the monkey inferotemporal
cortex indicates that neurons in this region form
abstract representations of visual objects /32/. This
representation is considerably abstracted from the
sensory input, and involves a large degree of data
reduction to a very compact representation. Such a
scheme may have two uses: firstly, as an efficient
way of storing behaviourally relevant data, and
secondly, as an important component of a decision-
making mechanism. Decision-making requires that
operations are performed on representations that
pertain to the complexity of the actions the organ-
ism can generate /57/. This complexity is far lower
than that provided by the information that is
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processed by its sensory systems. For instance,
navigation behaviour partly depends on the place
field representations found in the hippocampus
/42/. Place field responses are very sparse, yet they
integrate complex information from both external
and idiothetic cues. As far as decisions on naviga-
tion are concerned, however, the representation ofa
location in space they provide is a data abstraction
that pertains to the task. In contrast, the detailed
representation of the local and global properties of
(for instance) the visual cues that give rise to this
representation are not relevant to the decision-
making process.

These considerations led us to implement Ada’s
sensory processing in such a way that the high-
level abstract representations of events and objects
that are created are constrained by Ada’s tasks.
These representations directly pertain to the actions
and behaviours Ada can generate, i.e. visitors and
their actions.

3.3. Behavioural modulation

The psychologist Abraham Maslow formulated
a system of behavioural motivation for humans
based on needs /33/. According to him, needs came
in two main types: deficit needs and being (self-
actualisation) needs. Deficit needs form a hierarchy
in order of necessity for survival: physiological,
safety, love, and esteem. The deficit needs operate
in terms of homeostasis, inducing behaviours to
remove the deficit when a particular need is not
satisfied. Once all deficit needs are satisfied, the
organism can start to realise self-actualisation,
which is not a deficit need because achieving self-
actualisation does not remove the need to continue
achieving it. The concept of homeostasis has been
widely applied to the study of the brain, for
instance in relation to the mechanisms underlying
sleep /8/ and feeding /46/. In general, homeostasis
expresses a regulation process that aims at keeping
a set of essential variables in a specified range. In
the case of sleep, it has been suggested that the
regulation of the metabolic and energetic needs of a
living system contributes to the cyclic control of its
overall activity level between stages of sleep and
wakefulness. It has been further generalised to the
process of maintaining the organism as a whole in
the notion of autopoiesis /50/.

Although Maslow’s formulation was primarily
directed at humans, and it is questionable whether
needs such as ‘esteem’ and ‘self-actualisation’
could be measured reliably, there is some evidence
to support his concept of homeostasis to select
between possible behaviours in order to reduce
needs. For instance, it has been suggested that the
midbrain central grey region may function as a
modal command region for eliciting certain be-
haviours, as seen in lesion studies in rats /17/. Such
a region could form the basis of a system for
behaviour selection based on the modulation of
activity in relatively small populations of neurons
by a homeostatic goal-achieving and/or need reduc-
ing control system. Hence, we hypothesise that
behaviours are organised around behavioural
modes that are defined by the mechanisms for
homeostatic control, that support self-preservation,
and that this requires the modal organisation of
these behavioural subsystems.

4. METHODS: DESIGN IMPLEMENTATION

4 rBehavioural modulation

Higher
biological
plausibility

3 Behavioural modules

2, Sensorimotor processesJ

Lower
biological
plausibility

Fig. 5: Ada architecture overview showing layered struc-
ture. The lower levels are generally less biologically
plausible than the higher levels, with notable
exceptions (e.g. the auditory system).

Ada’s architecture can be roughly sketched out
as a series of levels (see Fig. 5), with a gradient of
decreasing biological plausibility as the proportion
of traditional procedural code increases. Each level
contains modules that communicate with other
modules in the same layer, as well as with modules
in adjacent layers. The metaphor used is that of
distributed brain-like computation, characterised
by tight coupling within individual modules and
loose coupling between modules. The underlying
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software is a hybrid mixture of simulated neural
networks, agent-based systems and conventional
procedural or object-oriented software. The types
of computations performed at each of the different
levels are summarised in Table 1.

Different communication protocols are used to
connect the components of the system: a TCP/IP
socket-based protocol for the simulated neural
networks, and an asynchronous message-based
middleware for data transfer between agents and
behavioural modules. Lower levels closer to the
hardware have more specialised protocols. The
system is programmed using a mix of C, C++, Java

151

and a neural simulation environment called IQR421
/6.

Figure 6 shows the actual implementation of the
system architecture used in Ada. The different
elements of the architecture are discussed in more
detail in the following sections.

Like the nervous system of real animals, Ada’s
architectural design is highly distributed, with about
100 processes running in parallel. The layering
concept provides a useful framework for thinking
about the design process and controlling the
proliferation of connections between processes.
Actions and behaviours are implemented as low in

TABLE 1

Descriptions of functionality and types of software found at different levels in Ada

Level Functionality

Software

4: Behavioural modulation

Goal function evaluation, behaviour

Simulated neurons (IQR421 /6/)

mode selection, emotional model

3: Behavioural modules
2: Sensorimotor processes
1: Device I/O drivers

0: Hardware devices

Coordinated high-level interactions
Filtering of raw input data
Interface to hardware

Motor control, sound production,
sensor reading, light setting

Simulated neurons, software agents
Procedural or object-oriented code
Procedural or object-oriented code

On-device logic and/or procedural
firmware

‘ Behavioural Goal function
‘ 4 ‘ modulation evaluation |
} 3 ‘ Behaviour, ) Identify } || Track ‘ ‘ |
I ‘ switch || | :
- S I S SN S S T B S
3 nemen RN
‘2 Objects| | DMX Fioor | | Video | |\iion || |Camera ‘ Roboser | | Fractal |, |Audio | Piteh | |
‘ DB control ‘ control | || gen. | control control | || gen. ’ loc. | proc. ||
} VI S T . i ,,,¢ . f# AT‘ Jr o e o o | T
\ | Interbus i . i e % ‘ S
| ; process Video Video | | | RS2 || Video | || oun
| 1 ‘ DM Kidriver Interbus driver input driver Sampler || driver | || driver
‘ river \
* = b i
‘ Light fingers ! ! |
0 ; Il Gazers | | Floor Video ||| Frame | Video Speakers | | LCD | Microphones
i | ; || tiles proj. || |grabber| |cameras || screen +sound card | |
| | | | | Mood lights | | i | | |
\, ‘ | == B - | Lol AR i
Behaviour | Gamel Cue AdaObj. DMX | Fioor ) BigSc,een ! Visiqn | Vi.icg 77LRoboser 3 \ AVis o) L"Lufﬁ?, J
Types of implementation: [ [ Neural |] [ Agentbased ] [ Object-oriented /procedural  hardware _|

Fig. 6:
layers depicted in Figure 5. See text for explanatior.
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Ada system architecture, organised into conceptual layers and servers. Numbers in the left column correspond to the
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the processing hierarchy as possible, so that they
can be deployed directly by upper layers without
explicit knowledge of their internal workings; i.e.
we invoke the principles of encapsulation and
modularity. One simple example of this can be seen
in the floor tiles, which contain simple reactive
behaviours even at the hardware level that can be
either used or overridden by subsequent layers.

4.1. Device drivers

Many different types of hardware devices are
used in Ada. For the system to achieve coherent
overall behaviour, all of these devices need to be
controlled in parallel and in real-time. As is the
case in many other large modern artificial systems,
this is achieved by interfacing all of the compon-
ents to a common computational substrate; i.e. a
computer cluster. Various combinations of com-
munications protocols and software drivers are
used, as summarised in Appendix 1. Every device
driver resides on a server, a set of programs that
controls the operations related to that device.

Highly complex sensorimotor capabilities may
exist for particular devices, but their scope of
control is strictly local. The device drivers abstract
these capabilities to make the problems of high-
level control more easily tractable. At the same
time, they implicitly define what is physically
possible with a device on its own. Their underlying,
local, hardware-based functionality can be seen as
an analogue of the peripheral nervous system.

4.2. Sensorimotor processes
4.2.1. Overview

Sitting on top of the device drivers are a set of
sensorimotor processes. These fall into two cate-
gories: those that further abstract the capabilities of
a single underlying device, and those that co-
ordinate the operation of two or more devices.

Sensorimotor processes that provide abstrac-
tions for a single device provide alternative (more
compact) methods of accessing that device, but do
not extend its inherent abilities. For example, a
DMX-controlled light finger has pan-tilt settings
that explicitly set joint angles on the light mecha-
nism, so it is possible to make a light finger point to

any point in its working envelope by specifying
two numbers. However, the frame of reference of
the behaviours that Ada generates is a 3D Cartesian
space, requiring all sensors and effectors to be
mapped, implicitly or explicitly, to this common
frame of reference for efficient operation. For
instance, the gazers, light fingers, localised sound
output, BigScreen video windows, floor tracking
and floor effects must all be aligned to the same
physical space. Hence we encapsulate the neces-
sary kinematics to allow the light finger to be
accessed using Cartesian coordinates. In addition,
humans also generally find it easier to think about
the problem in a 3D Cartesian space. A single
device may have many encapsulations, providing
convenient access to different subsets of its
capabilities, but the encapsulations add nothing
intrinsic to what the device can do.

In contrast, sensorimotor processes that access
multiple devices can produce qualitatively different
behaviour that extends the overall capabilities of
those devices as viewed by an outside observer.
The key to extending observed device capability
lies in the temporal coordination of device
operation. For example, if a process simultaneously
directs two light fingers to illuminate the same
location, an observer will draw the conclusion that
there is some sort of connection between the two
events. Many such paired events build up an
overall impression of coherent behaviour that is
fundamental to the perception of the space as a
single entity.

Another way of categorising sensorimotor pro-
cesses relates to the type of underlying device
being accessed. Devices can be input-only (sensor),
output-only (effector) or input-output (both sensor
and effector). Input-only processes can transform
their sensory input in some way, but they cannot
affect the behaviour of the system. Output-only
processes are similarly restricted in an inverse
sense: on their own, they can only play sequences
of actions, whether they are preset or random.
Input-output processes, on the other hand, can
generate interactive behaviour by closing the
control loop with the environment. A simple
example of interactive behaviour can be found in
the floor control process, which can use the floor as
both a sensor and effector to light up tiles that are

REVIEWS IN THE NEUROSCIENCES
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loaded above a certain threshold. In practice, there
are no instances of sensorimotor processes in Ada
that directly access the device drivers of multiple
input and output devices. While in principle there is
nothing to prevent a sensorimotor process from
doing both input and output interfacing, in a large
system it quickly gets unwieldy from a modularity
and software maintenance viewpoint. This type of
distributed interaction is reserved for the next level.

Sensorimotor processes reside on servers, ac-
cording to the device drivers with which they
communicate. Each server controls all of the
devices of one particular type, and handles resource
allocation requests from higher-level processes.
Sensorimotor processes only access data or devices
on the server that they belong to. Table 2 lists the
most important sensorimotor processes and the
server to which each one belongs.

4.2.2. Biologically inspired auditory processing:
An attentionally modulated stereausis model

As an example of neural processing occurring at
the sensorimotor level, we take the Audio server.
Ada’s auditory system provides information about
the most interesting visitors in the space. Visitors
become ‘interesting’ from an auditory perspective
by clapping their hands, speaking, or whistling. The
task of the auditory system is thus to detect,
classify, and localise salient sounds made by the
visitors. It does so in an acoustically cluttered
environment, using a simplified model of the mam-
malian auditory system. The core of the system
consists of a What and a Where pathway (see
Fig. 7). The What pathway, which is modelled after
the monaural auditory pathway, is concerned with
the identification of sounds. The Where pathway,
being concerned with the location of sounds, is
modelled after the binaural auditory pathway.

The What pathway

The What pathway detects patterns in a spectro-
temporal representation of the microphone signal.
Similar to its biological counterpart, it does so
using neurons with specific spectrotemporal recep-
tive fields (STRFs) /1/. Each neuron in our system
codes for a different type of sound. The types of

VOLUME 14, NO. 1-2, 2003

sound include phonetic elements (i.e. certain
vowels and consonants), claps, and pitches. In
order for a sound to be detected, 1) the neuron
corresponding to that sound must be active
(membrane potential above threshold) and 2) the
neuron’s activity level must be higher than any
other active neuron in the population (winner take
all).

The spectrotemporal representation and STRFs

The spectrotemporal representation of the audio
signal is similar to that produced by the subcortical
monaural auditory system of mammals. In the
mammalian cochlea, an incoming sound is passed
through the biological equivalent of a bank of
band-pass filters /14,59/. As a result, neurons in the
auditory nerve respond to a restricted range of
sound frequencies, which varies systematically
from low to high frequencies as a function of the
place in which the neuron innervates the cochlea.
This ‘tonotopic’ organisation is a key feature of the
mammalian auditory system, and is preserved
through several nuclei to the primary auditory
cortex (Al) /41/.

Our spectrotemporal representation is produced
via the short-time Fourier transform /12/, which is
computed in real time using the fast Fourier trans-
form (FFT). The FFT of the signal is computed
about 22 times per second. Only the amplitude of
the FFT is subsequently used. The linear frequency
axis is then warped to a logarithmic frequency axis,
thus approximating the tonotopic axis of the
cochlea. Finally, the amplitudes are compressed in
a logarithmic fashion, in accordance with the
properties of auditory nerve fibres /41,59/.

The STRF is a weighting function, or filter,
which acts upon the spectrotemporal representation
of the audio signal /16/. The form of each STRF
was chosen as the optimal detector for a specific
type of sound, based upon recordings containing
that sound in the presence of realistic background
noise. In accordance with neurons in primary
auditory cortex (Al), the temporal-filter charac-
teristics of the STRFs were all band-pass. As a
result, all neurons respond only when the sound
changes. Some, however, respond to faster changes
and others respond to slower changes /30/.
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TABLE 2

Summary of servers and most important sensorimotor processes

Server Device Sensorimotor processes

Floor_server Floor tile network Read raw load (input)
Read calibrated adaptive-thresholded load (input)
Determine loaded tiles (input)
Determire tiles with isolated persons (input)
Set single tile colour (output)
Set floor colour (output)
Set global floor effect (output)
Set local tile effect (output)
Interactively set tile effects for loaded tiles (input/output)

Vision_server Gazer camera Read image (input)
Read video stream (input)
Record image (input)
Record video stream (input)

Visca_server Gazer camera Set camera zoom (output)
Set image parameters (output)
Set digital effects (output)

DMX_server Ambient light Set colour (output)
DMX_server Gazer pan-tilt unit Set Cartesian position (output)
DMX_server Light finger Set Cartesian position (output)

Set colour wheel (output)
Set ‘gobo’ light filter (output)

BigScreen Graphics output Set background texture (output)
Set foreground object texture (output)
Set lighting parameters (output)
Set tube parameters (output)
Set tube perturbations (output)
Set still grabbed image parameters (output)
Set live video window parameters (output)

Audio Sound input card Determine frequency spectrum (input)
Determine sound location (input)
Determine sound type (input)

Roboser Sound output Set MIDI parameter (output)
Set local sonic event (output)
Set sound library (output)
Set style (output)

Object_server (internal database) Save visitor data
Read visitor data
Append to visitor data
Delete visitor data

*Game_server = =
*Cue T T

*Behavior_server

* Some servers do not have any sensorimotor processes; they use the sensorimotor processes of other servers to implement their
functionality.

REVIEWS IN THE NEUROSCIENCES
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The Where pathway

In the auditory brainstem of mammals, infor-
mation from both ears is combined in order to
estimate the location of sound sources. For acoustic
frequencies below approximately 5 kHz, sound
location within the azimuthal plane is based largely
upon the computation of inter-aural time delays
(ITDs) /41/. Similarly, in the Where pathway of our
system, sound location is based upon the compu-
tation of inter-microphone time delays. However,
the computation and utilisation of ITDs by Ada
diverged significantly from the mammalian solu-
tion because, unlike mammals, Ada does not have
a head, her ears were located 5 meters above the
localisation plane, and she was required to
accurately localise sounds in two dimensions.

Three microphones were arranged in an ‘L’
pattern, as shown in Figure 7. A sound originating
from a given location on the ground produces a
specific pair of ITDs between microphones 1 and 2
and microphones 2 and 3. In other words, for a
given observed pair of ITDs, the location of the
sound source can be estimated by comparing this
pair of ITD measurements. The ITDs were inferred
from the short-time cross-correlation between the
signals from spatially separated microphones. These
cross-correlation functions are also computed
around 22 times per second, using the same data
that are used for the FFT mentioned above.

After the pair of inter-microphone cross-
correlation functions are computed, their outer
product results in a 2D matrix of neural activities.
Each element of the matrix corresponds to a certain
point on the ground. The neuron with the maximum
activity will thus signal the location of the sound
source.

Synchronisation of the What and Where pathways

The system as a whole can be imagined as
having two layers that we will call cortical and
subcortical. In the subcortical area, the What
features (the spectrotemporal representation) and
the Where features (the ITDs) are continuously
being computed. The cortex is normally silent.
There are gates between the subcortical and cortical
areas that are normally closed. Each gate corres-
ponds to a different kind of sound (i.e. speech,
claps, whistles).
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Fig. 7:  Overview of the auditory processing scheme. Sound
from the microphones is processed in separate
‘what' and ‘where’ pathways. Information about
‘what’ gates the flow of information about ‘where’
to the final winner-take-all (WTA) operation and
the output. See text for explanation.

Activity in the cortex is triggered by activity in
the What pathway. When a given sound is detected,
a corresponding gate is opened for a short time.
While this gate is open, location activity is passed
onto a corresponding cortical cell group where it
is integrated and subjected to a winner-take-all
operation. The winning activity codes for the most
likely location of the sound that activated the What
pathway.

Only certain What cells can open the cortical
gates: those that respond to fast changes in the
spectrum. There are two consequences of this. First,
localisation performance is enhanced, because the
transient parts of signals are the easiest to localise.
Second, multiple sounds that are interleaved in time
can nevertheless be separated.

To consider a specific example, imagine that
one visitor is speaking while another is clapping.
The transient elements of the speech repeatedly
open the gate to the ‘speech’ cortical area, where
the corresponding location maps are passed and
held for a short time. Simultaneously, the location
maps corresponding to the claps are passed to a
different cortical drea and held for a short time. In
this way, the locations corresponding to two
distinct and ongoing sound events are separated
and simultaneously presented to higher processing
centres.

In another example, two people are clapping at
different locations. When person A claps, the clap
gate opens briefly. The location map computed
from the onset of the clap is passed into the cortex,
where it is held for a short time. Next, person B
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claps, and a new location is passed to the cortex,
superseding the last location. Thus, the activity of
the clap group will continue to alternate between
the locations corresponding to A and B.

The neuronal model of auditory processing used
in Ada explores a new hypothesis on the attentional
modulation of auditory localisation. Moreover, this
model is applied in the real-world in real-time as
part of a larger behaving system. This provides for
an evaluation of this model far beyond the artificial
conditions in which audition is usually explored. In
the Ada architecture the auditory system is an input
sensorimotor process that provides a very signifi-
cant abstraction from the input. From two sets of
three microphones, sending 16-bit input into six
sound card channels at 44 kHz, the auditory system
can categorise and localise the sound - a data
reduction of several orders of magnitude. The
encapsulation of the complex operations involved
is vital for simplifying the design of the control and
behavioural modules at the next level of the
system.

4.3. Behavioural processes
4.3.1. Overview

To build behaviours, Ada uses a set of be-
havioural processes to coordinate her sensorimotor
processes. Ada has four of these basic behavioural
processes:

1. Track: Isolate the trajectories of individual
persons and groups. Information from the floor
tile pressure sensors is used to determine the
location, speed, direction and weight of persons.
The limited resolution of the tiles means that it
is not always possible to distinguish individual
paths, so in some cases Ada only knows about
the presence of groups of people at certain
locations.

2. Identify: Test the individual responses of
persons to cues and reward them if they are
responsive. Once a person has been tracked
successfully for a certain period of time, their
compliance is tested. The test stimulus takes the
form of a flashing tile next to a tracked person.
Each time a person follows a compliance cue
their measured compliance increases; once it

reaches a certain threshold they are given a
reward. The reward has three components: a
pulsating coloured pattern is shown on the floor
around the person, light fingers are directed at
the person, and an image, live video and
recorded trajectory of the person are displayed
on the BigScreen. The images on the screen
automatically move around to align themselves
with the current estimated direction of motion of
the person.

. Group: Try to actively influence the position

and distribution of persons. Grouping cues of
various colours and types are shown to try to
bring many persons to a single location. Ada
tries to learn to deploy cues that people are
most likely to respond to by measuring their
responses to different randomly chosen cues.

. Play: Deploy an interactive game. There are

four types of games that Ada can play:

e Football: Visitors try to step on an animated
bouncing ball on the floor tiles. The ball
speeds up whenever it bounces off a person
to make the game more difficult.

e Pong: A variation on the old Atari game.
Two teams each collectively control a paddle,
whose position is determined by the centre
of gravity of each team. The paddle is used
to strike a bouncing ball towards the
opposition’s goal.

e Boogie: A dance game for situations in which
the space is very crowded. Pulsating patterns
are shown on the floor, which change in
frequency and colour as the power spectrum
of the floor pressure data changes with
people’s dancing tempo. Individual high-
lighted tiles are connected to percussive
sound effects.

o Gunfight: People try to ‘shoot’ each other.
Jumping from a tile to an adjacent tile
generates a bullet in the direction of move-
ment. Jumping on the spot creates a shield,
making the person temporarily impervious to
bullets but also disabling their ability to
shoot. Persons who leave the space or are
shot more than a certain number of times are
eliminated from the game; the winner is the
last one remaining.

REVIEWS IN THE NEUROSCIENCES
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Each behavioural process integrates a set of
behaviours distributed across several servers, con-
trolled by a process residing on one of the servers.
They differ from the sensorimotor processes in that
they do not access the device drivers directly, and
they communicate with each other between servers.

There are four special servers containing be-
havioural processes that do not have corresponding
sensorimotor processes: object server, game_server,
cue and behavior server. Object server is an
object-based database that contains Ada’s persist-
ent representation of persons and groups of people.
Game_server controls the running of the floor-
based games that Ada can play. Cue contains
methods for trying to influence the position of
groups of people in the space by generating
different patterns on the floor. Behavior server
coordinates the switching of behavioural processes
to ensure an overall coherent effect.

What the visitor sees in Ada at any point in time
is a mixture of the behavioural processes in dif-
ferent states of operation. These states of operation,
called behavioural modes, regulate the processing
and output of each behavioural process. There are
six behavioural modes: Sleep, Wake, Explore,
Group, Play and End (Leave). Appendix 2 contains
an overview of how the behavioural modes affect
the functions performed by each behavioural
process, and Section 4.4 describes the way in which
behavioural modes are switched.

4.3.2. Neural adaptive action selection using DAC

As an example of how one of these behavioural
processes works, we examine the Group process in
more detail. It is based on a neural model of
classical and operant conditioning called Distribut-
ed Adaptive Control (DAC) /53/. Given a set of
appetitive and aversive unconditioned stimuli
(US+/US-) and conditioned stimuli (CS), DAC
selects unconditioned responses (UR) based on a
set of predefined (US+/-, UR) reflex mappings. If a
CS is consistently paired with a US, DAC will
acquire a conditioned response (CR). In this way
DAC directly implements the notion of stimulus
substitution, which is a standard interpretation of
the classical conditioning paradigm.

Figure 8 shows an overview of the DAC archi-
tecture. DAC consists of three, tightly coupled,
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Fig. 8: Overview of the DAC architecture. Explanation in
the main text.

layers of behavioural control: reactive, adaptive,
and contextual control. The reactive control layer
provides a behaving system with a prewired reper-
toire of reflexes, which enables it to interact with
its environment and accomplish simple automatic
behaviours. The activation of any reflex, however,
also provides cues for learning that are used by the
adaptive control layer. Adaptive control provides
the mechanisms for the adaptive classification of
sensory events and the reshaping of responses
supporting simple tasks, and can be seen as a model
of classical conditioning. The sensory and motor
representations formed at the level of adaptive
control provide the inputs to the contextual control
layer, which acquires, retains, and expresses
sequential representations using systems for short-
term and long-term memory. These representations
are used to control ongoing behaviour in the
context of behavioural plans /51,57/. For Ada, we
restrict ourselves to using the reactive and adaptive
control levels of DAC, called DACO and DAC2,
respectively.

Reactive control (DACO)

The reactive control structure (DACO; Fig. 9) is
implemented by four populations of simulated
neurons that are interconnected by prewired fixed
connections. The sensor readings of the appetitive
unconditioned stimuli, US+, and the aversive un-
conditioned stimuli, US-, are projected onto two
populations of internal state neurons, IS" and IS
The input, vk,, of cell i in IS population £ is defined
by:
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vl =pf =y (1)

where p%; is the state of element i of the US
conveying sensor and # is the gain of the inhibitory
input received from population /.

Conflicts in action selection are resolved
through competition between IS' and IS". This
competition is expressed via an inhibitory popu-
lation /. Here it is assumed that resolving aversive
situations takes precedence over responding to
appetitive ones. The input to unit i of the inhibitory
population /, vi(t+1), is derived from the activity of
the aversive internal state population 1S :

1 MI.\" ]
: =a'v (t s s
viE+D=alvO+y —o Zo] (t) )
The activity of population / is determined using
Equation (2), thresholding with 6.
The activity of unit I in IS population &, ok, is
defined by thresholding the integrated input Vi

of = HOF —6") 3)

where H is the Heaviside or step function and oF
defines the activation threshold of the units of IS
population 4.

For both US-IS mappings one sensory element
will activate only one neuron in IS* or IS,
respectively. v of populations IS and IS is
subsequently thresholded in order to generate their
activity. If any neuron in IS  is suprathreshold it
will depolarise the membrane potential of the
inhibitory population 7, v If v is above threshold it
will inhibit the activity in IS'. In this way a
prewired preference relationship is defined between
appetitive and aversive internal states, according to
the rationale that it is generally more important to
avoid aversive states than to seek out appetitive
states.

Both IS populations will depolarise specific
neurons in population UR, which represents parti-
cular actions. If none of the neurons of the internal
state populations are active, the reactive control
structure will resort to its default action of
exploration. The input, r;, of unit /i in the UR
population is defined as:

& K M Bl
T —2 2)’1,‘0:'
1 £ )

where K denotes the number of IS populations, M
is the size of IS population £, and i is the strength
of the connection between cell i of IS population &
and cell / of the UR population.

After updating their inputs the UR units com-
pete in a winner-take-all fashion. The winning
unit’s activity is again thresholded, &%, If its
activity is above threshold it will induce a parti-
cular motor action, a conditioned or unconditioned
response. If no motor unit is active the control struc-
ture will trigger a default exploration behaviour.

Reactive Effectors

Control

US-
S

Sensors

sensors

Adaptive

Control
—{> Excitatory
—» Inhibiory

sensors

——— Fixed

-
N
o' e Plistic \4) WA

Fig. 9: DAC reactive and adaptive control layers. The com-
ponents and their interactions are described in the
text. Adapted from /51/.

Adaptive control (DAC2)

The adaptive control structure (DAC2) is
defined on the basis of the reactive control structure
(DACO). It adds the components dealing with the
processing of representations of CS events, and
their association with URs. The population CS
receives encoded events from initially neutral
stimuli. The activity, u;, of unit j in population CS
is derived from the state, s;, of element j of the
input sensor:

w, =e" (5)

where y* defines the slope of the transduction
function.

CS in turn excites populations IS" and IS, in a
modified form of equation (1). In this new form,
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the input, vk, of cell i in IS population & is defined
by:

N
v =Zw5u/+pf——yk1 (1)
J=1

where N is the size of the CS population, wk,-j- is the
efficacy of the connection between CS cell j and
cell i of IS population k. pk,- is the state of element i
of the US conveying sensor and yk is the gain of the
inhibitory input received from population /.

The synapses forming the connections between
these populations are modifiable using a predictive
Hebbian learning rule /53/. This method embeds a
local learning rule in a recurrent circuit. After the
inputs, v, of the IS populations are updated
(Equation 17), the IS populations in turn recurrently
inhibit the CS population. The resultant activity, u,
of unit j in the CS population now is defined as:

u, =u,—y'e, 6)

where 7" is a gain factor modulating the effect of
the recurrent inhibition and e; is the recurrent
prediction defined by:

K Mt /
o=y S g

where K denotes the number of IS populations, M .
is the size of IS population &, wk,j is the strength of
the connection between cell i of IS population k and
cell j of the CS population, and v is the integrated
activity of unit i of IS population k. e is the
predicted CS given the state of the IS populations
and will be referred to as a CS prototype. The
connections between unit j of population CS and
unit I of IS population k now evolve according to:

Awl =n*viu, ®)

where 7% defines the learning rate of the con-
nections between population CS and IS population
k. Despite the possibility of u' attaining negative
values, w is kept greater than or equal to O at all
times. The representations of CS events constructed
in this way will ultimately express the average CS
state conditional on particular IS states. We have
shown that this solution allows the use of local
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learning rules, while preventing problems such as
overgeneralization, primacy, and saturation /57/.

DAC has been investigated using formal ap-
proaches /52/ and robots /53,55-57/, and has been
shown to be compatible with formal Bayesian
models of human decision-making /51/. In one
task, for instance, a mobile robot was required to
associate coloured patches on the floor of an arena
with actions in order to minimise the travelled
distance between targets. For many different task
configurations, the model would find the shortest
route between targets in this robot equivalent of a
random foraging task /55/. The DAC architecture
has established itself as a standard in the field of
artificial intelligence and behaviour-based robotics
/3,11,13,25,40,54/. The principles investigated at
the level of reactive and adaptive control have been
translated into biophysically detailed models of key
structures involved in classical conditioning, i.e.
the experience dependent reshaping of receptive
fields in the primary auditory cortex /28,45/ and the
adaptive timing of responses by the cerebellum
/26,29,54/

Allen Newell, one of the founders of Artificial
Intelligence, defined general intelligence as the
ability to make anything a task /38/. This implies
that the cognitive architecture underlying intelli-
gent behaviour must be capable of coping with a
large range of possible task configurations. Any
model of such an architecture must therefore be
shown to generalise easily to different task domains.
Ada allowed us to investigate this generalisation
for aspects of the DAC architecture. Although
DAC was originally developed as a model of
classical and operant conditioning applied to
mobile robots, it can be used in more general learn-
ing situations. Here, we investigate the application
of DAC to the learning of cues for guiding visitors
to a particular location. In both cases, however, the
DAC architecture -is employed as a model of
adaptive action selection as first studied by
Thorndike over 100 years ago using the puzzle box
/48/. The generic learning problem consists of two
elements. The first element is stimulus identifica-
tion, i.e. deciding which event in the world is
behaviourally relevant. The second element is
adaptive action selection - the process of deciding
which action allows the system to achieve its goals.
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To learn how to guide visitors, Ada must choose
a cue, show it to a visitor, and evaluate the visitor’s
subsequent action. If the visitor follows the cue and
moves towards the goal location then it was
effective; if the visitor moves away then it was not.
This provides a mapping of visitor movement
towards the goal position as appetitive (US+) and
movement away as aversive (US-). Ada can choose
from four different colours of cue (red, green, blue,
white) and two types of cue (single flashing tile,
travelling ‘bullet’ towards goal), giving a library of
eight different cues. Thus there are eight different
types of US+/UR and eight corresponding US-/UR
stimuli - one for each cue in the library. For the
results presented here, the goal was placed in a
fixed location that was usually avoided by visitors,
but in principle it could be in dynamically changing
positions.

In principle, the initially neutral CS could be
composed of many multi-modal components com-
bining tactile, audio and visual information.
However, for simplicity we chose to set the CS to
be the general level of ‘crowdedness’ of the space,
with four neurons coding increasing levels of
visitor crowdedness in the space. The rationale
behind this choice was twofold. Firstly, the CS
should ideally be provided by passive visitor
interaction - the visitor should not have to perform
‘special’ actions to provide Ada with the necessary
information to provide cues. Secondly, we expected
that the visitor density could affect the likelihood
that they would be able to see and react to different
cues (e.g. due to occlusion by other visitors in
crowded situations), hence making different cues
more appropriate for different visitor density
scenarios.

Figure 10 illustrates the operation of the Group
process. Topographic maps of visitor locations are
continually fed into the Ranger module, and the
motion of the most ‘salient’ visitor (as determined
by the Identify agent) is tracked. An error signal
calculated by the Ranger module, indicating
motion towards or away from the goal position, is
fed into the Cue module. Once activated by
behaviour server, the Cue module converts and
gates the reinforcement signal into DAC as US+ or
US- according to the current UR (i.e. the last

selected cue). At the same time, the visitor density
coding from floor server is gated into DAC as the
CS.
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Fig. 10: Overview of neural pathways within the group
process. The process is activated when signalled by
the behaviour_server (a). The topographic location
of the most salient visitor (b) is compared with the
goal position (¢) and a motion error signal is
generated (d). The motion error signal and the
current visitor density (e) form the US+/- and CS
signals, respectively (f). The UR coming from DAC
(h) can then be output to produce the selected cue
(i). If no US or strong enough CS is available, a
default explore behaviour is triggered (g) which
maps a random action onto the output.

Within DAC, the association of US and CS takes
place. The resulting UR (or CR, if caused by a CS)
will either be a forced action or a default explore
action. If an explore action (UR = 0) occurs, the
Explore cell groups are activated to provide a
randomly chosen UR, which is then mapped back
into DAC to provide a ‘real’ action. Finally, the
resulting UR passes through Cue into floor_server,
where the cues seen by the visitors are generated.

The predefined reflexes for the learning scheme
are very simple. Two basic rules apply that define
the essence of trial and error learning: if something
works, do it again; otherwise try something else at
random. This basic learning process provides for
the latching of cues that were successful. In
addition, these cues will be associated with the CS,
allowing DAC to identify those cues that are
effective and ineffective given the crowdedness of
the space. DAC uses a weight matrix to initialise
these rules.
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4.4. Behavioural modulation and emotional model

Ada has to solve the general problem of
behavioural control and action selection. Behavi-
ours and actions can be called adaptive when they
allow a behaving system to achieve particular
goals, despite being in an initially unknown
environment. In the earlier example of the DAC
architecture the goals are defined in relation to
particular tasks. In the case of Ada these goals
serve a maximal and consistent interaction with
visitors. Conceptually, Ada is an artificial organism
that tends to homeostasis, along similar lines to that
described by Maslow, by trying to maximise her
own goal functions, which we interpret as her
‘happiness’.

In this respect we assume that the homeostatic
control of goal functions feeds into a hedonistic
evaluation of the state of operation of the system
/46/. This means that the system as a whole must
implicitly or explicitly compute its level of happi-
ness, which can then be used to determine whether
certain actions contribute to this goal. As a first
approximation we can write:

H=f(g, g» &)

where H = overall goal or ‘happiness’;
g = survival; g, = recognition; g; = interaction.

Survival is a measure of how well Ada satisfies
her basic requirements, which are to maintain a
certain flow of visitors over time and to keep these
people moving with a certain average speed.
Recognition quantifies how well Ada has been able
to track and collect data about people, as a pre-
condition for more advanced interactions. This
process can be seen as Ada ‘carving’ objects out of
the world of her sensory data, which is imple-
mented as a progressive filtering of the sensory
data and the creation of objects in her internal
database once certain criteria of persistence and
coherence have been satisfied. Interaction mea-
sures the number of successful human interactions
in which Ada has been involved, with more
complex interactions such as games being weighted
more highly.

As a system, Ada has the goal of maximising
the value of H. There are multiple strategies for
achieving this: for example, Ada could encourage
high visitor throughput, but in doing so have very
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few possibilities for recognition and interaction (gs
high, g, and g; low). Alternatively, Ada could also
achieve an equivalent value of H with only a few
visitors in the space, but with high recognition and
interaction with each visitor (g, low, g, and g; high).
The actual computation of H occurs in multiple
ways: an explicit top-level calculation is performed
using simulated neurons, and in parallel individual
behavioural processes calculate their own contribu-
tions to the components of H.

A
Behaviour (a) Emotional
selection expression
(b)
(d) ‘ b d ®
~ Servers

Fig. 11: Overview of neural pathways at the behavioural
modulation level in Ada. Signals from the servers
feed into the calculation of the homeostatic variable
H (a). Behavioural mode selection (d) is determined
by the resulting value of H (c) and other events
from the servers (b), as well as internal dynamics
within the behaviour selection module itself.
Emotional expression parameters are also calculated
from the value of H (e) and feed back to output
elements of the servers (f).

The value of the homeostatic variable H and its
underlying goal functions is used in two ways: to
select behavioural modes, and to define emotions
(Fig. 11). This explicit link between behaviour and
emotion via H has the advantage of automatically
providing a degree of coherence between the
actions and expressed emotions of the organism.

The following two sections describe the opera-
tion of the behaviour selection system and the
emotional expression model in more detail. Sample
data from the operation of the system are shown in
Section 5.2.

4.4.1. Behavioural selection

The results of the H calculation are combined
with other high-level inputs and the state history to
select the most suitable overall set of behaviours
for Ada - her current behavioural mode. As
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mentioned in Section 4.3, Ada was given six basic
behavioural modes: Sleep, Wake, Explore, Group,
Game and Leave. Strictly speaking, behaviour
selection occurs at multiple levels - for example,
the floor tiles display colours that depend on the
local effects in use, as well as the overall state
of the space. However, we will mainly concern
ourselves with the determination of how the
behavioural mode affects the operation of the
processes at the next level down in the architectural
hierarchy.

A neural modulation scheme is used to activate
and inhibit different behaviours in the underlying
processes (Fig. 12). Incoming input from the
servers passes through multiple feed-forward
layers, and the result of H is projected on to a
population called M;p,.. This cell population also
serves as the collection point for several projections
from intermediate layers in the calculation of H, as
well as projections from other servers. Time-
delayed components in M., can also be intro-
duced by using the M., population as a delay line.

At this point, all non-linear terms in the
behaviour selection have essentially been calcu-
lated and accumulated at Ay, From here, My,
drives two cell populations equally: Mcomperirion and
Mjeleer. Excitatory and inhibitory interactions be-
tween these two populations lead to a biased
competition between the neuronal representation of
behavioural modes. A small amount of recurrent
excitation in M. forces either a ‘hard’ or ‘soft’
winner-take-all (WTA) on the population. The
resulting active cell(s) in M. then define the
current behavioural state of Ada. Each cell in M,
corresponds to a different operating configuration
of all of the underlying processes, i.e. the set of
possible behaviours that the lower-level processes
can deploy. The extent to which the WTA opera-
tion needs to be ‘hard’ depends on the subjective
evaluation of how the behaviours interact and/or
interfere with each other.

In practice, during a live exhibit with a high
visitor flow rate, the behavioural control was run in
a ‘hard’ mode with an underlying cycle to ensure
that all visitors could see the space in a short time.
Some other modes existed for test modes and gazer
calibration. The behavioural modes were used to
switch the behavioural modules into different

operating states, so that the overall effect would
provide an entertaining visitor experience. Table 3
summarises how each behavioural module was
modulated by the different behavioural modes.

l Events from servers I

= =

| Intermediate layer(s)

I\/
N

| Mcompazilian mm Mieject

Types of connections

—> Excitatory
cz=> Inhibitory
wzzZp Both excitatory & inhibitory

Fig. 12: Neural behavioural mode selection scheme used in
Ada. The M,,,, population receives input from the
various servers, as well as preprocessed data from
the intermediate layers and the current values of the
components of H. These data are combined and
projected on to the M.omperision @and Mo popula-
tions, with the winning neuron(s) in the M.
population encoding the current behavioural
state(s). Recurrent connections to M, from both
Mieiec; and M., allow various combinations of state
transitions with different timings.

4.4.2. Emotional model

Ada has two components to her emotional
expression: her mood and her emotions. Both
depend directly on the current levels of her goal
functions (H), as depicted in Figure 13. To
distinguish between Ada’s moods and emotions we
adopted a model of affect in which mood changes
on a time scale of hours or days, and emotions :
change on a time scale of seconds to minutes /18/.
Exhibition-related requirements meant that the time
course of Ada’s behaviour needed to be rather

REVIEWS IN THE NEUROSCIENCES



DESIGN FOR A BRAIN REVISITED

TABLE 3
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Modulation of activity of behavioural modules depending on behavioural states

Mode Track Identify Group Play
Sleep Simple reactive patterns Off Off Off
only; one colour for all
visitors
Wake Visitors given different- Off Off Off
coloured floor tiles
Explore Visitors given different- Probe for ‘interesting’ Off Off
coloured floor tiles visitors; deploy light
fingers and gazers
Group Visitors given different- Probe for ‘interesting”  Try to direct visitors Off
coloured floor tiles visitors; deploy light to a certain location
fingers and gazers in space
Play Running in background Off Off Play selected game
to support games depending on number
of visitors in space
Leave Tile effects show path Off Off Off
to exit of space for each
visitor
Goals & behaviowral control | Moods

compressed in comparison with humans, so we
chose to set mood activity to change on the order of
tens of seconds to minutes, whereas emotions were
set to change in the order of seconds.

Ada’s mood system has the parameters of
arousal and valence, a bipolar description of
affective space common in the literature /43/. The
arousal parameter is set by the current behaviour
mode, and corresponds to the general level of
activity of the system. The valence parameter
represents the status of /. Emotions are synthesised
on input from the three components of H. Joy is set
by the goals of Survival and Interaction in the
sense that Joy is high if Survival or Interaction
approach maximum achievement. The Sadness
parameter increases if either Recognition or
Interaction decreases from maximum achievement.
Anger is excited if Swrvival decreases from
maximum achievement, while Surprise is triggered
by a sudden increase in Recognition.
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Fig. 13: Ada’s mood and emotion synthesis. The current
behaviour mode set Arousal, whereas global
Happiness set Valence. The emotions Joy, Sadness,
Anger and Surprise were set by the status of
achievement of the high-level goals Survival,
Recognition and Interaction, as indicated by the
arrows. (+), approaching maximum goal achieve-
ment’ (), moving away from maximum goal
achievement. Adapted from /61/.
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Audio expression

Audio expression is achieved with the Roboser
system, a real-time music composition and perfor-
mance system that accepts input from a variety of
sources to guide a composition process. The
Roboser composition engine synthesises a stream
of MIDI data upon simulated neural input /60/.
Roboser composes music on up to twelve perform-
ance tracks in real-time. During performance in
Ada, the outputs of the Roboser tracks are per-
formed using a sampler, resulting in a complex
soundscape. Different MIDI parameters on dif-
ferent tracks are set in real-time to achieve the
desired musical effect for each mood and emotional
state, according to an extended version of a scheme
outlined by Gabrielsson and Juslin /21/. On top of
the mood/emotion soundscape is a set of localised
sound effects corresponding to the actions of
the space. Typically, these sounds are punctuate,
emotion-independent audio events. A second
Roboser system running in parallel with the
emotional soundscape handles these sounds, with a
matrix of speakers in the space providing for the
localisation of selected sounds.

Visual expression

Visual communication of moods, emotions and
punctuated events is achieved in an analogous way
to Roboser using a system called BigScreen. The
display consists of a 360° screen (see Fig. 14)
containing a textured background and a simulated
dynamic horizontal ‘tube’ of fluid, similar in effect
to a lava lamp if all of the fluid is joined into one
blob. Moods are expressed by altering the back-
ground texture and lighting parameters, while
emotions are expressed by changing the dynamics
and colouring of the tube. Punctuated events are
represented by insertions of energy at certain points
along the tube, causing rippling waves to appear.
Events related to individual visitor interactions can
cause the appearance of live gazer video windows
or saved snapshots that can move around the
screen.

4.5. Computational infrastructure

Ada runs on a 100 Mbit network of 31 PCs

(AMD Athlon XP 1800+, 1.0 Gb RAM, Tyan
motherboards, SuSE Linux 7.3). Driver cards are
used for DMX and Interbus communications. In
addition, 40 frame grabbers (Hauppauge, Haup-
pauge, NY, USA), four sound cards (M-Audio,
Arcadia, CA, USA) and 11 dual-headed 3D acce-
lerated graphics cards (Matrox, Dorval, Canada)
are installed. Laptops on a wireless LAN (Cisco,
San Jose, CA, USA) enable system testing and
tuning to occur while walking around in the main
space.

4.6. Data logging

Data can be logged at several different parts of
the system simultaneously at ~5 Gb per hour, not
including digital video tape (DV) or raw digital
sound (WAV) data. The data are automatically
transferred to a central repository on the network
each evening for backup on to DVD-R. A time-
server keeps all timestamps across the cluster
synchronised to within 100 ms, which is sufficient
for most types of analysis. A brief description of
the types of data logged is given in Table 4. Every
level of the system is covered by some form of
computerised data recording, as well as several
external hand-recorded statistics concerning system
reliability and visitor flow.

5. RESULTS
5.1. Ada in operation
5.1.1. System reliability and public response

Most current models of neural computation
need to work only in relatively well-controlled
laboratory conditions, for periods of time much
shorter than the lifespan of real organisms. For
Ada, however, every major component was con-
tractually required to work safely and reliably with
large numbers of naive users, for up to 12 hours per
day, over a period of 5 months. The visitors also
expected to enjoy themselves while passing
through the exhibit. This demanded a much more
rigorous approach to operational reliability than is
normally required of a research laboratory. From
1998 to 2002, ten increasingly large public tests
were run to evaluate the feasibility and scalability
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TABLE 4

Description, level and types of data logged in Ada - All different levels of the system architecture are covered

165

Description Level Type
Floor raw load data: sensor values and RGB neon output 1: Device driver Text
Floor server data: positions of all currently loaded floor tiles 2: Sensorimotor Text
Tracking data: onset, path and endpoint of visitor tracks on floor  3: Behavioural module Text
Neural network internal states for behaviour selection and 4: Behavioural modulation Text
emotion (it was possible to track all neuronal states at any level)

Camera view (up to 4 simultaneous gazers or overhead cameras) 0: Hardware device DV
Gazer view of tracked visitors 1: Device driver MPEG
Ada generated musical composition and sonic events 1: Device driver MIDI
Sound in space External behaviour WAV
Miscellaneous hand-held video footage External behaviour DV
Visitor questionnaires gauging responses to the Ada experience  External behaviour Text
Visitor guest book External behaviour Text
Operator log book for tracking system reliability issues External behaviour Text
Hand-counted visitor flow data (15 min intervals) External behaviour Text

of the underlying technologies, stability and
performance of the different models, gauge visitor
impressions, and test different interaction scenarios.
The two key issues that stood out from the results
of the tests were the need for effective visitor flow
control, and the importance of communicating
Ada’s intentions clearly through the use of effec-
tive cues and visitor pre-conditioning sequences.
One direct consequence of this experience was the
decision to employ guides to actively inform Ada’s
visitors as much as possible about what they would
see in the exhibit.

The system reliability data were tracked for the
entire duration of Expo.02, using logs kept by the
system operators and exhibit guides. Anecdotal
evidence of visitor enjoyment was recorded in the
visitor guest book. In addition, over 800 visitors
were asked to fill out a questionnaire measuring
their interpretation and evaluation of Ada. These
visitors were selected under a variety of controlled
manipulations of Ada’s operation, e.g. disabling
particular modalities or manipulating visitor density,
and visitor behaviour.

VOLUME 14, NO. 1-2, 2003

Ada ran for over 1700 hours on 159 consecutive
days with an uptime of better than 98.3%, where
uptime was defined as having a system that
functioned well enough to enable a normal flow of
visitors through the exhibit. Discounting outages
due to deficiencies in building services that were
beyond the control of the project team, the overall
system uptime was over 99.1%. This result com-
pared favourably with other exhibits at Expo.02
which did not have the same level of technical
complexity as Ada. Nine stable versions of the Ada
software were released during Expo.02, incorporat-
ing incremental improvements in user functionality
and data logging facilities. On any given day, either
the latest development version or the stable version
could be run, depending on the demands for testing
and experimentation. Overall, the satisfactory
operational result was partly the result of accumu-
lated experience during the developmental process.

The public reaction to the exhibit was over-
whelmingly positive, despite queue waiting times
of up to 90 minutes. Surveys conducted by the
Swiss Expo.02 organisation indicated that Ada was
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one of the five most popular attractions out of over 5.2. Behavioural control

60 at the Expo. An online poll /27/ also found that

Ada was the most popular of the IT-related exhibits All actions of Ada and her allocation of
at the Expo. Anecdotal evidence from the visitor resources and the processing of subsequent infor-
guest book also indicated a main]y positive mation are modulated by her behavioural modes, as

reaction. The visitor queue length of >30 minutes
outside the exhibit for the entire duration of the
Expo suggested that the final attendance of 553,700
could have been higher if the capacity of the space
had been larger.

5.1.2. Visitor flow control

Due to the extremely large number of visitors
who wanted to see Ada, it was necessary to control
their flow very rigidly to avoid problems with over-
crowding. This was necessary both for safety
reasons and to ensure that each visitor had a certain
minimum amount of space with which to interact
with Ada. Table 5 summarises a typical visitor

Fig. 14: A typical live user interaction scene within Ada, as

experlence m. the Spacs and Figure 14 shows a seen through one of Ada’s gazers. Visible are floor
typical scene in the main space. tiles, a visitor being highlighted by a light finger

During normal operation, the main space (centre left), a dynamic 3D visualisation on the
received about 25 visitors at a time, giving a BigScreen (top) and a live gazer video on the

screens (top left). The visitor at the centre right has
just clapped her hands and Ada has produced a
flower pattern on the floor tiles below her feet in

nominal throughput of about 300 visitors per hour
and an instantaneous exhibit occupancy of 125

visitors. The traCkH‘lg SyStem W(?rked as reliably for response. The visitor in the upper middle part of the
wheelchairs and children weighing more than about image is being challenged by one of Ada’s probes, a
20 kg as it did for adults. flashing white tile to her immediate left.

TABLE 5

Typical visitor experience at the Ada exhibit

Region Visitor experience Time (min)
Queue (outside) ‘Brainworkers’ educational video on big screen (10 min) 0-90
Conditioning tunnel Sequential introduction to individual sensors and effectors 3
Voyeur corridor View group of visitors interacting with Ada, listen to guide’s explanation 5
Main space Interact with Ada 4-6
Brainarium View ‘observation room” screens and look back into main space 5
Explanatorium Art by H.R. Giger depicting the merging of biology and technology, 5

guest book, videos with statements and explanations by non-scientists
and scientists, credits poster
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described in Section 4.4. The modes are set by a
number of goal functions defined in a neuronal
control model. A first question is whether this
control model provides a robust control system that
can handle the many unexpected events triggered
by the visitors. Data were logged at all levels of the

This core module of Ada operated without a
single failure during the entire Expo. We analysed
the dynamics of this control module in relation to
several internal and external measures.

Figure 15 shows a selection of data that were
logged during 1 hour of normal operation that give

a global description of Ada’s control system and

system for up to 90 minutes in length, and analysed sy!
interactions. From this small selection it is already

for consistency and reliability.

1 Ada Operation Overview: 2002-10-18 13:03
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Fig. 15: Multi-level overview of 1 hour of live operation of Ada. The labels A to D are discussed in the main text. Selections from
several different levels of the system architecture are shown. From top to bottom, the traces are:

« Levels of g and overall happiness H (note: log scale).

+ Behaviour mode over time. The characteristic repeating staircase shows Ada cycling through the different modes; the
length of each mode changes depending on visitor interactions. Each behaviour cycle lasts an average of about 5 min.
Numbers of light fingers and gazers deployed during each cycle. Note that these values show the total number of light
fingers and gazers deployed over the course of the cycle, not the actual number active at each time. When the space
enters explore mode, compliant visitors have light fingers and gazers assigned to them. This continues through group
mode, and ends at the commencement of game mode. The values are reset at the end of each cycle.

Cell activity for a simulated neuron indicating detection of a handclap in the space. There is some variation in the
handclap rate between individual cycles, and ‘bursts’ can be seen in the trace. This would support the observation that
visitors sometimes tended to copy each other; i.e. if one person clapped their hands then it was quite likely that many
others would follow suit. People who clapped their hands were given a reward of the floor tiles around them flashing
for a short time; this probably induced them to continue clapping as well as encouraging others to try the same thing.
Cell activity for a simulated neuron indicating detection of the spoken word “Ada”. These events generally occurred
much less frequently than handclaps.

o The number of loaded tiles (visitor detected) and the number of visitors that are actively being tracked. There was a

limit built into the tracking system that would allow a maximum of 30 visitors to be tracked simultaneously.
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possible to notice some features of the system as a
whole. For example:

e (Fig. 15A) Ada tends to have maximal values of
H when there are relatively few people in the
space. This occurs during Sleep mode when a
group is leaving, and another group is in the
process of entering.

e (Fig. 15B) There is a limit of 30 people that can
be tracked simultaneously, even if there are
more visitors in the space. The number of people
who are not being actively tracked at any one
time (the difference between the number of
loaded tiles and the number of tracked people) is
relatively small. This means that the tracking
system is working reasonably effectively, up to
its inbuilt limit of 30 visitors.

e (Fig. 15C) The value of g tends to decrease
sharply if the space is overcrowded (>40
visitors).

e (Fig. 15D) People seemed to tend to either clap
their hands or say “Ada”, but not both simu-
ltaneously. Further analysis with higher time
resolution would be needed to verify this
observation.

e The actual number of people in the space was
verified to be within a few percent (average
counting error <1 visitor) of the number of
loaded tiles. This number does not seem to have
a large influence on the average value of H. The
number of light fingers and gazers deployed
during the presence of any particular group of
visitors does not affect the average value of H.

The dynamics of these traces, such as the
variability of g and H, and the varying lengths of
the behaviour modes, show that Ada is not an
automaton. Rather, she is an open system flexibly
interacting with her dynamic world. The verifica-
tion of Ada’s ‘reasonable’ operation, as shown
above, is the first step on the way to a more in-
depth analysis of individual components presented
in the following sections.

5.3. Auditory processing

In certain behavioural modes (Wake, Explore
and Group), floor occupancy data are combined
with the localisation data to produce a floor effect

as a reward for visitors whose handclaps are
successfully detected. The reward, in the form of a
‘flower’ of light around the visitor’s feet, is only
shown if the handclap is localised to within a
certain distance of a visitor. This functionality
requires topographic maps of the floor and the
handclap localisation to be overlaid as accurately as
possible. During the system tuning phase before the
start of the Expo, we used a ‘clap robot’ to calibrate
the auditory processing system. Basically, the clap
robot was a laptop computer and amplified speaker
on a movable platform about 1.0 m above floor
level that could produce repeatable handclaps and
be shifted to different locations in the space. It was
observed that after tuning, most handclaps would
be localised to within about one tile of the actual
position of the clap robot. Because of the multi-
modal nature of the interaction, this level of
accuracy is more than enough - it is only necessary
that the handclaps be localised close enough to the
actual source for that source to be identified
uniquely. This strategy of combining multiple sen-
sory modalities to achieve behaviourally relevant
accuracy is a common characteristic of many
complex organisms.

Testing of the type done using the clap robot
was impractical during live operation, so a precise
measurement of the absolute accuracy of the
system under real-world conditions was not
possible. However, we can obtain a good estimate
of the accuracy by observing the pattern of
localised handclaps and comparing these locations
with the actual positions of visitors from the floor
data. Figure 16 shows the spatial probability
distributions for detected handclaps, segmented by
behaviour mode and averaged over 60 cycles
(nearly 5 hours). The plot showing the average for
all behaviour modes (lower left panel) shows two
peaks, roughly corresponding to the locations of the
two microphone arrays. This result seems sensible,
as claps originating closer to the microphones will
generally have a higher intensity and thus a higher
chance of being detected. Due to the extremely
challenging acoustic environment with a high level
of reverberations and ambient noise, not all
handclaps are localised to valid spatial positions
where tiles are positioned. About 13% of all loca-
lised handclaps corresponded to invalid locations,
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Sleep

Explore

-5 0 5
All Modes

Color scale is in terms of clap probability (in %).
Axis dimensions are in metres.

The total number of claps per mode were:
Sleep: 382; Wake Up: 624; Explore: 2294; Group: 714; Play: 751; Exit: 49

The data consists of approximately 60 behavior cycles (about 5 hours).

Fig. 16: Spatial probability distributions for detected handclaps in Ada, split by behaviour mode and averaged over 60 cycles. All
values are in percent. The overall distribution plot is weighted by the number of handclaps occurring in each behaviour

mode. Detailed explanation in the text.

which were discarded in Ada’s processing of this
information and in the subsequent analyses.

To obtain an estimate of the localisation
accuracy of the microphones, we compare the
localisation achieved by our attentional stereausis
model to a hypothetical random scheme based on a
Monte Carlo sampling technique (n = 100). This
can be achieved by determining the distance from
each localised point to the nearest occupied tile,
and comparing it with a random sound localisation
distribution. Figure 17 shows the average distance
from each localised handclap to the nearest loaded
tile, both for the actual handclap data and for
random localisation data. For the random case, it is
expected that the average distance decreases as the
space becomes more crowded, with an overall
average of about 1.15 m (the distance between tile
centres is 0.66 m). For the real data, the average
error across all behaviour modes is about 0.72 m, a
significant improvement. It can be seen that for the
random localisation case, there is an inverse
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relationship between the number of loaded tiles and
the average localisation error. This relationship
is effectively removed by the use of the real
localisation data, indicating that the accuracy of the
matching is not strongly affected by the number of
visitors in the space. The slightly higher average
error for the Sleep mode is probably due to the
visitors tending to be near the entrance or the exit
of the space, which is where the microphones are
least effective at localising visitors.

The rate of handclap detection can be seen in
Figure 18. Visitors’ handclaps were detected at
about 0.5 Hz over the entire recording period
(weighted by behaviour mode). However, during
Wake, Explore and Group modes the detection rate
increased to over 0.7 Hz, while it was below 0.35
Hz for the other modes. This indicates a large
influence of the space on this aspect of the visitors’
behaviour. In fact, the behavioural effect was
probably significantly larger - it was observed that
visitors’ combined clapping patterns, once initiated,
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Fig. 17: Handclap localisation performs significantly better than random. (Left) Average error of localised handclaps (distance to
the nearest loaded tile), split by behaviour mode for the data shown in Figure 16 (solid line). Also shown is a comparison
with the corresponding result for purely random localisation, i.e. matching to randomly selected loaded tiles (dotted line).
The dashed lines show the average distance for all behavioural modes, weighted by the number of handclaps in each
mode. (Right) Average number of loaded tiles for the same data set, split by behavioural mode.

could reach a rate of several Hz. The handclap
detection system saturates at high handclap rates
and is not able to detect handclaps above a certain
rate, but it was still able to produce correct output
for a subset of the visitors. It was observed that
visitors who clapped their hands and received feed-
back from the floor tended to continue clapping, a
clear indication that they understood the correlation
between their action and the response of the
system.

Figure 19 shows the cumulative probability of a
handclap localisation occurring within a certain
distance of a loaded tile. The two curves compare
the actual handclap localisation data with the data
that would occur for a purely random localisation
distribution. It is clear that the handclap localisation
is working significantly better than random - 18%
of handclaps fall exactly on a loaded tile, compared
with 9% for the random case. This improves to
about 90% of all handclaps localised within 1.32 m
(two tile diameters) of a loaded tile, compared with
only 64% for the random case.
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Fig. 18: Behaviour mode affects detected handclap rate.
Average claps per second per behavioural mode
(solid line) and for all modes (dashed line).

It can be seen in Figure 16 that no handclaps
were recorded on the left-hand side of the space
(minimum X-coordinate). This was due to an in-
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correct threshold setting in the simulated neural
transmission scheme that prevented the recording
of handclaps detected in that region but did not
affect the operation of the rest of the system.
However, no bias was introduced to the data, as
only the data recording itself was affected.
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Fig. 19: Cumulative probability distribution of handclap
localisation occurring within a certain distance of a
loaded tile, compared with the same measure for a
purely random handclap localisation scheme. The
max/min errors for the random scheme indicate the
+ 2 standard deviation limits for the Monte Carlo
simulation (n = 100).

5.4. Neural adaptive action selection

Ada faces a number of unpredictable elements
in her environment that require learning. One of
these is that it is not known a priori what cues Ada
should generate on the floor so that visitors will
respond appropriately. We have rephrased this
problem in the context of classical and operant
conditioning, and adapted the reactive and adaptive
control layers of the DAC architecture to this
learning situation, as described in Section 4.4.

Groups of approximately 30 visitors were
exposed to the normal exhibit behaviour cycle of
about 5 minutes total duration. During this time, the
space was set in Group mode for about 30 seconds
and all tracked visitors were exposed to cues
generated by DAC. These cues were all directed to
one corner of the space, which previous experience
had shown that visitors were very unlikely to visit
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(on average) during a typical stay in the space. For
one group of visitors the learning mechanisms of
DAC were disabled, while for a second group it
was enabled. After each trial with a visitor group in
the learning-enabled condition, the synapse weights
evolved by the DAC module were recorded. Every
trial started with zero synapse weights between the
CS and IS populations. Tracking and tile occu-
pancy data were recorded simultaneously. Trials
were repeated about 15-20 times in succession.

The average distribution of floor load during
each behavioural mode for 18 cycles shows that the
visitors distribute themselves in a highly mode-
specific way (Fig. 20). The contours represent the
fraction of the total duration of the behaviour mode
that each location in space was occupied. During
Sleep, new visitors enter the space from the lower
left corner while the previous group exits (upper
left corner). In the two following modes, Wake and
Explore, we observe that the visitors tend towards
an increasingly uniform distribution in space, sug-
gesting less grouping and an increase of loco-
motion. In Group mode, however, visitors reduce
their speed of movement and cluster more, before
changing back to a more uniform distribution
during Game mode. In the last mode, End, visitors
accumulate at the exit of the Ada space. Through-
out the entire cycle, visitors have a tendency to stay
away from the entry area to the space. In general
we see that the behaviours that Ada generates
during the different modes induces marked dif-
ferences in the distribution of visitors and their
locomotion patterns.

When we compare the visitor distribution for
the conditions in which the DAC learning system is
enabled or disabled, we observe a change in the
distribution during Group mode. In the control
condition visitors generally do not visit the lower
right corner of the space. The goal location of the
Group process was placed in this region, the
rationale being that an effective cue should draw
people towards that point. In fact, the centre of
gravity of the visitor distribution does shift towards
the lower right corner when the DAC module is
enabled. Figure 21 shows a comparison between
the two cases by plotting the difference between the
visitor distributions for test runs in which the DAC
learning system of the Group process was switched
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Fig. 20: Floor load distribution contour for a visitor cycle with the cue learning system disabled, averaged over approx. 18 cycles.
The black trace on each plot is the movement of the centre of gravity (CoG) of the visitors; the CoG end point of the
mode is indicated by a white circle. The entrance to the space is in the lower-left corner of each plot; the exit is in the top-
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Fig. 21: Group process affects visitor distribution. Shown is the difference between the visitor distribution contours with the cue
learning system enabled or disabled, averaged over approx. 18 cycles. The target location of the Group process is
indicated by a black circle. (Left) Difference plot for Explore mode. (Right) Difference plot for Group mode.
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on or off. As expected, in Explore mode the
difference is virtually zero. However, when the
Group process is switched on, the visitor con-
centration around the target location increases
dramatically when the cue learning system is
enabled. The other peaks in the distribution are due
to visitors standing still, possibly indicating visitors
who are unsure about how to respond to the cues.
Figure 22 highlights the difference in the
movement of the visitor centre of gravity. The
overall centre of gravity of visitors shifts by about
1.5 m towards the goal area, while no similar effect
can be seen in a control case with the Group

process switched off. The effect of the shift also
tended to produce an offset that persisted into the
following (Game) mode. Hence, the grouping cues
learned by the space through trial and error are
effective in guiding the visitors.

In order to understand whether this difference in
visitor behaviour is due to DAC we need to analyse
its learning performance. If learning were effective
one would expect to see the association of one
particular action (cue CR) with a particular value of
crowdedness (CS). The evolution of the synaptic
weights of the DAC learning system is shown in
Figure 23. There are eight different cues (US) and
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Fig. 22:  Group process affects visitor distribution. (Top) Movements of the visitor centre of gravity (CoG) during the behavioural
cycle with Group mode learning enabled (solid lines) and disabled (dotted lines). All curves are averages over ~18 visitor
cycles. The length of each cycle has been normalised on the horizontal axis as follows: Sleep 0-1, Wake 1-2, Explore 2-3,
Group 3-4, Game 4-5, End 5-6. (Bottom) Difference between x and y coordinates for Group mode on and off. At the start
of Group mode (3-4), both cases have their CoG at the same position. For the case in which the Group process is switched
on, there is a measurable CoG shift during the Group mode of (-1.0, +0.35) m in the (x, y) direction, relative to the case in
which it is switched off. At the start of Game mode, the visitors then move rapidly in the (-, +y) direction. The deviations
betweeni the curves in the Sleep and End modes are due to normal fluctuations in the entry/exit patterns of groups of

visitors.
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Fig. 23: Typical development of learned appetitive (A) and
aversive (B) DAC synapse weights for cue selection
during one experiment. The different traces indicate
the development of synapse weights for different
cues. See text for explanation.

four visitor density categories (CS), giving a total
of 32 (US+, CS) and 32 (US-, CS) possible
associations. The vast majority of synapse weights
remains close to zero; however, for both US+ and
US- a few weights emerge that are significantly
larger than all of the others. The US+ developed
weights are generally much larger than the US-
weights. The evolution of the synaptic strength
between the CS and IS populations, representing
the learned cue, shows that learning occurs very
rapidly. In case of IS" the synaptic weights con-
verge after ten trials, i.e. ten Group mode cycles.
There is an initially high weight of 0.7 that turns
out to be a spurious response; this cue turns out to
be unsuitable and is automatically discarded by the

learning process over time. In this example a cue
consisting of a flashing blue tile was selected. A
second action was also reinforced (flashing red tile)
but it did not translate into overt actions due to the
winner-take-all mechanism in DAC. For IS,
learning progressed more rapidly, and after five
trials a cue was identified that was not effective.
The learning dynamics seems to suggest a competi-
tion among several cues. However, this could be
due to variable visitor responses. It is important to
note that visitors were not aware about this cue
learning system or instructed to react in any
particular way to the cues it generated. Hence, the
reinforcement received by DAC was highly vari-
able. Our model, however, shows robust learning
performance and does not show catastrophic
forgetting due to exceptions, a well-known problem
of many learning models /47/.

Our results illustrate the feasibility of guiding
visitors in a space using visual cues, without
explicit prior visitor prompting. A neural classical
conditioning model can be used to allow the space
to learn the most appropriate cues to apply. The
synaptic weights developed during learning are
rapidly acquired, effective, and stable over time.

6. DISCUSSION

Following in the tradition of Ashby and Grey
Walter, we use synthetic methods to evaluate
theories of brain function. Here we have presented
the Ada project that constitutes the most ambitious
attempt so far to construct a real-time and
real-world artefact controlled by neuromorphic
principles. We have shown that neuromorphic
construction principles, although originally con-
ceived as models of natural organisms, can
generalise to the control of a complex artefact, an
interactive space that includes a wide variety of
sensory modalities and effectors. Moreover, we
have shown that neuronal models of auditory
localisation and behavioural learning generalise
well to the tasks Ada had to solve. The modular
organisation of the Ada architecture also allowed
for a clear separation between algorithmic solutions
to specific problems and neuromorphic ones.
Running experiments using the space has allowed
us to simultaneously test theories of behavioural
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control and modulation, artificial emotional expres-
sion, auditory processing and learned action
selection. We were able to do this using multiple
high bandwidth data recording techniques that
would simply not be possible using any known
animal-based paradigm. By also running this space
as a live public exhibit, we have demonstrated that
the capability now exists for neuromorphic techno-
logies to be more widely deployed in society.

Ada’s closest relative from a project perspective
was also her direct physical neighbour - the EPFL
robotics exhibit at Expo.02 /49/. This project dealt
with different technical content to Ada (autono-
mous cooperating museum guide robots), but both
projects were of similar size and operated under
similar conditions.

There is a developing trend to use robots for the
investigation of models of brain function (see /3/
and /40/ for partial reviews). It is beyond the scope
of this article to review all these approaches.
We therefore limit ourselves to a more restricted
comparison with other projects. Several research
projects deal with issues related to home automa-
tion and ‘intelligent rooms’, and many companies
offer commercial home automation systems, such
as the GE Smart series from GE Industrial Systems
/23/. This system offers a substrate for connecting
electrical devices and home network services with
a common software interface. The control system
software is based on rule sets or driven directly by
end users, either within the building or via remote
links. In this sort of system, the design emphasis is
on ease of end-user installation, operation and
customisation, rather than advanced behavioural
functionality.

Other control systems exist in projects such as
the Intelligent Room at MIT /35/. The Intelligent
Room project aims to develop systems that support
human activities in a seamless, flexible way. To
date, work has been done on context-aware speech
and gesture recognition, flexible resource allocation
/22/ and an agent-based extension to Java called
MetaGlue. Ada has a similar set of functionalities,
but with three main differences. Firstly, Ada is a
product for general public use and is much larger
than the Intelligent Room, in terms of physical size,
number of components and degree of behavioural
integration. Secondly, the design of the user inter-
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action with the space is immersive rather than
invisible - the building does not serve its users’
needs in the background, but is an active partici-
pant in their experiences. Thirdly, Ada achieves her
own goals by actively engaging her users.

A similar project, also named the Intelligent
Space, is being pursued at the University of Tokyo
/2,31/. The general approach is to design a platform
to facilitate communication between the entities
that inhabit it - whether they be humans, robots, or
components of the space itself. The concept of a
Distributed Intelligent Network Device (DIND) is
proposed for connecting devices in the space. Each
DIND has sensors, processing and communications
components. In this way the space is seen not as an
explicit entity like Ada, but as a common network-
ing medium in a physical area. Another group at
the University of Tokyo has developed a system for
accumulating human behaviour in a small proto-
typical apartment /39/ using mainly tactile sensors.
Two noteworthy developments are a pressure-
sensitive bed and a high-resolution pressure-
sensitive floor /36/ for use in the invalid care
industry in which 24-hour monitoring of patients is
desirable.

An animal-like analogue to Ada is the Mutant
dog robot /20/ and its commercially available
successor Aibo from Sony. Ada and Aibo are both
complete systems designed to interact with the
general public, and both integrate visual, audio and
tactile information to produce behaviour. They both
have an internal emotional model and layered
system architectures: Aibo’s architecture is agent-
based, while Ada has a hybrid of simulated neural
networks and agent-based software components.
Sony has formalised its system architecture in the
OPENR model for building robots /19/. The main
differences between Aibo and Ada are the obvious
ones of appearance and size. By looking like a dog,
Aibo has an inherent advantage over Ada for
human interactions. A decision made in designing
Ada was to explore the limits of human interactions
that could be supported without the use of pre-
existing metaphors, and to discourage visitors from
anthropomorphising the system. In this way,
visitors to Ada had to be convinced of her
‘intelligence’ by Ada’s behaviour, rather than by
any projections of attributed cognitive or emotional
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abilities that could occur with an animal-shaped
robot. The designers of Aibo were also able to draw
on the rich available literature on canine behaviour
when designing the behavioural models used in the
robot /3/. On the engineering front, Aibo has the
dual challenges of miniaturisation and minimising
power consumption, whereas Ada faces power con-
sumption constraints on a much larger scale.

There are also robots that, like Ada, seek to
emulate the functions of organisms and interact with
humans. Two notable humanoid robot examples
are the SDR-4X from Sony /3/ and Asimo/P3
from Honda /44/, which are both now reaching
commercial application. Asimo has a system
architecture with horizontal and vertical integration
rather similar to Ada’s, but with a different set of
behaviours for the different problem set applicable
to humanoid robots. In particular, SDR-4X and
Asimo must cope with navigation and legged
locomotion problems that are not applicable to
Ada. Instead, Ada deals with the complementary
problem of visitor tracking and identification.
Another well-known example is the humanoid
torso Cog /10/. The Cog project has so far dealt
more with individual competencies rather than
overall behaviours, such as visual-motor process-
ing, human interaction with robot facial expres-
sions based on an emotional model, and neural
models of arm motor control. The emotional model
in Cog runs on a head-only subsystem of Cog
called Kismet /9/, and has some similarities to
Ada’s emotional model - both contain a set of
drives (goal functions) and a set of emotional
states. While individual components of Cog have
achieved coordinated functionality, the individual
behaviours have not yet been integrated into a
cohesive whole, and it has not made the move from
the laboratory into the real world in the same way
as Ada, Asimo or Aibo.

As of this writing, more in-depth data analysis
of Ada’s performance is also ongoing in the
following areas:

e automatic calibration of gazers and multi-modal
visual/tactile tracking;

e assessment of visitor reactions to the exhibit
based on demographic measures, and an investi-
gation of the effects of various manipulations
of the functionality of the space on visitor

perception;

e the ability of the space to actively affect the
speed and position of visitors, and the effect of
boundary conditions (entry/exit placement, pre-
conditioning sequences) on their distribution in
the space;

o detailed floor tracking characteristics.

Further development of the system lies in the
direction of the incorporation of more biologically
realistic models for different components, in
particular the behaviour modulation and learning
processes. We expect that it should be possible for
a modified version of the DAC system to be used
for the overall behavioural modulation of Ada.
Individual components, such as the auditory
system, floor tiles and visual processing, will also
be further enhanced in future. In particular, the
vision capabilities of Ada (during the exhibition
visual information did not directly affect Ada’s
behaviour) will be elaborated.

It is clear that we are seeing a trend towards the
creation of artificial organisms that is gathering in
momentum, in terms of the sophistication of the
techniques used and the diffusion of these creatures
from the laboratory into everyday life. The design
of the computational abilities of these systems is, in
many cases, inspired by what has been learned
from observing natural organisms. Analysis of arti-
ficial organisms will, in turn, lead to a deepening of
the understanding of how their biological counter-
parts work, and open up new fields of application
beyond the reach of natural organisms. The techno-
logy used in Ada is the first of these new
applications. Ada is one of the largest-scale artifi-
cial organisms yet created, in terms of size,
computational power and number of sensors and
effectors. Her construction is based on explicitly
declared neuromorphic design principles, and was
the result of a large-scale multi-disciplinary research
and development effort of approximately 50 man-
years. During 5 months of active operation, Ada
successfully entertained over half a million visitors,
while also serving as a platform for research into
several different topics. We have demonstrated that
large coherent neuromorphic systems containing
multiple agent-based and neural models can be
successfully deployed and evaluated. While defi-
nite plans were not available at the time of writing,
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it is expected that Ada will be reassembled in a new
location to allow an ongoing mix of research,
development and public performance.

7. ACKNOWLEDGMENTS

We gratefully acknowledge the financial assis-
tance of ETH Ziirich, the University of Ziirich,
Expo.02, Manor AG, the Velux Stiftung and the
Gebert Riif Stiftung.

APPENDIX 1

Summary of devices and drivers in Ada

Device Product, Maufacturer

Interface Server

Floor tile network | Custom. Mechanical construction by Westiform; Niederwengen, | Interbus
Switzerland. Interface card by Hilscher; Hattersheim, Germany

Floor_server

Gazer Mechanism: custom modified Martin MAC250; Arhus, Mechanism: DMX on | DMX_ server
Denmark PCI card
Sony EVI-400 zoom camera block; Tokyo, Japan Camera block: VISCA | Visca_server
RS-232
Ambient light IHGL-CCU MK 11 DMX-controlled neon-tube box; Despar, DMX on PCI card DMX_server
- Mainz, Germany
Light finger Martin MAC250; Arhus, Denmark DMX on PCI card DMX server
Video camera Hauppauge frame grabber PCI card Vision_server
Video output Sharp XGA video projector; Osaka, Japan PCI card BigScreen
Matrox XGA dual-head graphics card; Dorval, Canada
Sound input Audio-Technica Pro45 unidirectional cardoid condenser; Stow, | PCI card Audio
OH, USA
M-Audio Delta44 sound card
Sound output Akai S5000 sampler; Tokyo, Japan MIDI Roboser
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APPENDIX 2

Operations performed by behavioural processes on each server
Each process (column) performs operations on multiple servers (rows)

Track
@ floor_server

Identify
@ object_server

Floor_server

e Identify persons
e Weigh persons

e Display colour
labels

e Display compliance test

cues
e Display compliance
reward effects

e Display effects for
localised sounds

Group Play
@ cue @ game_server
e Display grouping e Display game
cues background

e Display game objects

DMX_server

e Assign labels to
persons and
groups

e Direct light fingers at

person
e Direct gazer at person

Visca_server

an optimal image

Set camera zoom to get

Vision_server

Collect images and

videos of salient persons

BigScreen e Display saved image, live
video and recorded
trajectory of person on
screen
Audio e Supply localised sound
location and type
Roboser e Play game-specific

sound effects

Object_server

e Store person
trajectories and
weights

Store compliance
statistics

e Retrieve visitor
locations

e Retrieve visitor
locations

Game_server

e Game algorithm and
state control

Cue

e Generate grouping
cues

Behaviour_server

e Set operation
mode

e Set operation mode

e Set operation mode | e Set operation mode
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