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Abstract

Explanations of cognitive processes provided by traditional artificial intelligence were based on the
notion of the knowledge level. This perspective has been challenged by new AI that proposes an approach
based on embodied systems that interact with the real-world. We demonstrate that these two views can
be unified. Our argument is based on the assumption that knowledge level explanations can be defined
in the context of Bayesian theory while the goals of new AI are captured by using a well established
robot based model of learning and problem solving, called Distributed Adaptive Control (DAC). In our
analysis we consider random foraging and we prove that minor modifications of the DAC architecture
renders a model that is equivalent to a Bayesian analysis of this task. Subsequently, we compare this
enhanced, “rational,” model to its “non-rational” predecessor and a further control condition using both
simulated and real robots, in a variety of environments. Our results show that the changes made to
the DAC architecture, in order to unify the perspectives of old and new AI, also lead to a significant
improvement in random foraging.
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

Traditional AI aims to explain intelligent behavior at the knowledge level (Newell, 1982).
The knowledge level describes intelligent behavior in terms of knowledge, goals and actions.
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Knowledge and goals are organized following the principle of rationality: “. . . if the system
wants to attain goalG and knows that to do actA will lead to attainingG, then it will do
A. This law is a simple form of rationality that an agent will operate in its own best interest
according to what it knows” (Newell, 1990). The empirical hypothesis put forward in this
approach is that general intelligence can only be displayed by systems that can manipulate
symbols: i.e. physical symbol systems (Newell, 1980; Newell & Simon, 1976). This view has
been criticized on several grounds and a number of fundamental problems have been identified;
the frame problem (McCarthy & Hayes, 1969), the symbol grounding problem (Harnad, 1990;
Searle, 1982), the frame of reference problem (Clancey, 1989a), and the problem of situatedness
(Suchman, 1987) (seePfeifer & Scheier, 1999for a review). It has been argued that most of these
problems can be brought back to the critical dependence of the proposed solutions on thea priori
specification of rules and representations, the problem of priors (Verschure, 1998). Against this
background, so-called new AI has emerged, emphasizing the importance of situatedness and
grounding through the use of real-world systems, i.e. robots (Brooks, 1991a). Proponents of
this view have argued that explanations of intelligent behavior can be found without relying
on internal symbolic representations (Brooks, 1991b) or of goals (Pfeifer, 1995). This change
of perspective in AI raises the important question whether these two views on intelligence are
incompatible or whether they can be unified (Verschure, 1993). One motivation for trying to
unify these two views is that they both seem to capture different aspects of intelligence. Where
the traditional approach found effective descriptions of higher-level cognitive processes, such
as problem solving and planning (Newell, 1990), new AI has aimed to solve problems in the
real-world, incorporating more biologically motivated principles in its solutions (Pfeifer &
Scheier, 1999). However, traditional AI failed to ground its solutions in the real-world, while
new AI faces the challenge to scale up to non-trivial cognitive processes.

In this paper we aim at bridging the apparent gap between the perspectives of old and new AI.
We show that these two views on intelligence can be unified, provided one is willing to accept
specific definitions of the knowledge level and of a situated agent and its control structure. Our
proposal is based on the assumption that a knowledge level description of intelligence, including
the principle of rationality, can be captured in the perspective of Bayesian decision making
(Bayes, 1763). We satisfy, in parallel, the goals of new AI by using a well established robot
based model of learning and problem solving, called Distributed Adaptive Control (DAC)
(Verschure, Kröse, & Pfeifer, 1992; Verschure & Voegtlin, 1998). In this paper we prove
that DAC is equivalent to an optimal decision making system in a Bayesian sense. Most
importantly we show that our solution is self-contained in the sense that DAC acquires and
updates its own set of prior hypotheses. This is relevant since, as traditional AI, also a Bayesian
framework does not automatically solve the symbol grounding problem: it also assumes that
the knowledge of a decision making system is defineda priori. In order to prove that the DAC
architecture obeys the principle of rationality, it needed to be modified. Using experiments with
simulated and real robots we demonstrate that this modified model, called DAC5, shows better
performance in a random foraging task than both its predecessor, DAC3, and a further control
condition.

This paper does not aim to introduce Bayesian decision theory to cognitive science. To the
contrary, the last few years have seen a surge in interest in the use of these techniques (see
Haddawy, 1999; Russell & Norvig, 1995for an overview). Nor is it the point of this paper
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to show that DAC is or is not a better approach towards behavior based robotics and new AI.
Rather we want to show that the perspectives on intelligent systems offered by old and new AI
can be unified. In our proposal these two views capture different, but complementary, aspects
of intelligence. We argue that neither of these can be ignored in the search to understand this
complex phenomenon.

1.1. A Bayesian interpretation of the knowledge level

The knowledge level is seen as one of the levels at which intelligent systems must be de-
scribed. The knowledge level, in turn, is implemented by the symbol, or program, level which
is implemented at the hardware level. Where the knowledge level describes the competence
of an intelligent system its architecture is the instantiated physical symbol system (Newell,
1980; Newell & Simon, 1976). This physical symbol system should approximate the com-
petencies defined by its knowledge level specification. Hence, the knowledge level specifies
the functional properties of the actually physically instantiated intelligent system in terms of
knowledge, goals, and actions. On one hand the knowledge level can be seen as expressing an
observer stance towards an intelligent system where knowledge and goals are attributed to an
artificial system (Chandrasekaran, 1994; Clancey, 1996; Newell, 1982). On the other hand, the
distinction between knowledge, goals, and actions does define key properties of the physical
symbol system that has to satisfy a knowledge level specification.

The prototypical example of a physical symbol system that aims at satisfying knowledge
level constraints is the SOAR-architecture proposed by Newell (Newell, 1990, 1992) (seeLaird
& Rosenbloom, 1996; Vinkhuyzen & Verschure, 1994; for a review). SOAR comes out of a
tradition of modeling which spans over 30 years and started with the logical theorist proposed
in the fifties followed by the general problem solver (Newell, Shaw, & Simon, 1959; Newell &
Simon, 1963, 1972). All knowledge in SOAR is represented by productions (if–then constructs)
and its working memory contains the current state of the problem solving process and its
context. All productions freely add sentences to working memory until no more productions
apply (SOAR runs into quiescence). During this elaboration phase preferences for the operators
are accumulated in working memory. Preferences express whether a particular operator should
be applied or not. After SOAR has run to quiescence, a decision procedure selects the operator
that comes out most favorably in relation to the current goal and applies it to the current problem
state to generate the next state. Hence, the SOAR-architecture selects operator after operator
until it arrives at the goal state. However, it is quite possible that SOAR cannot decide what
operator to use. In these cases, SOAR reaches an impasse and a new problem space, whose goal
is the resolution of the impasse, is created. Within this sub-space, SOAR continues with the
same decision cycle as before, it applies its operators until the goal of the sub-space is reached.
This in turn leads to the selection of an operator in the problem space where the impasse
originally occurred. The resolution of an impasse invariably leads to the creation of a chunk. A
chunk is a regular production, which is added to the production memory. The condition-side of
a chunk consists of the states that were true before the impasse occurred, and on the action-side
of the chunk the operators that lead to the resolution of the impasse. This chunk will become
active, whenever the situation that caused the impasse occurs again. The formation of chunks
is seen as a form of learning that prevents SOAR from having to solve the same problem twice.
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The knowledge level attributes knowledge, goals, and actions to an intelligent system which
are in turn explicitly represented in a physical symbol system (Newell, 1990). The principle of
rationality specifies that those actions are chosen that allow the system to achieve its goals. The
Bayesian framework can be seen as an alternative description of the knowledge level utilizing
the same concepts. In the Bayesian case knowledge is defined by a set of prior hypothesesS
and the theorem of inverse probability defines the probability that hypothesis s is true given
observationr:

p(s|r) = p(r|s)p(s)
p(r)

(1)

wherep(r) is the probability of making observationr, p(s) the prior probability ofsbeing true,
andp(r|s) the prior probability that making observationr givens is true. The optimal action,
a, can be calculated using a score functionGg(sn,a) that defines the expected gain,〈g〉a, of
performing actiona given hypothesissn:

〈g〉a =
∑
sn∈S

p(sn|r)Gg(sn, a) (2)

Bayes’ principlestates that optimal decision making requires that the actiona∗ is selected
that maximizes the expectancy〈g〉:

〈g〉a∗ =
∑
sn∈S

p(sn|r)Gg(sn, a∗) = max
ak∈A


∑

sn∈S
p(sn|r)Gg(sn, ak)


 (3)

The rational view of decision making, also expressed in a Bayesian framework, has been
widely applied in traditional AI to describe high-level cognitive functions (Newell, 1990).
Since we want to unify this rational view with one of a situated real-world system using a
Bayesian framework, an important question is whether animal and human behavior can be
accurately described in this perspective. Many behavioral experiments have been performed
to assess the optimality of animal decision making (Gallistel, 1990). A typical example are
foraging experiments using mazes. For instance, rats placed in a radial arm maze, where dif-
ferent arms contain a varying amount of food pellets, develop an optimal foraging strategy in
terms of travel time, probability of food occurrence and amount of food that adapts to changes
in these task parameters (Roberts, 1992). It has been shown that the strategies adopted are
strongly controlled by the expected gain and its magnitude (Herrnstein, 1970) and maintain
an optimal balance between exploration and exploitation (Krebs, Kacelnik, & Taylor, 1978).
Other examples can be found in human psychophysics, in particular using visual tasks (Knill
& Richards, 1996; Weiss & Adelson, 1998). For instance, the perception of three-dimensional
objects (Nakayama and Shimojo, 1992), of stereo vision (Porrill, Frisby, Adams, & Buckley,
1999), the integration of multiple, possibly ambiguous, measurements of local image proper-
ties in the perception of motion (Weiss & Adelson, 1998) and the use of prior knowledge in the
detection of visual stimuli in static noise (Burgess, 1985). An important problem in perception
is how multiple sources of information are integrated in complex recognition tasks, e.g. audi-
tory and visual cues in speech perception. A comparison of different theoretical approaches
towards this problem showed that a Bayesian model provided the most accurate description
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and prediction of human performance (Massaro & Friedman, 1990). On the basis of these
observations it has been proposed that Bayesian inference is a general organizing principle of
perception and multi-model integration (Massaro, 1997). The above experiments characterized
the performance of humans and animals in a Bayesian framework. But also several propos-
als have been made which attempt to describe the information processing performed by the
neuronal substrate in this decision theoretic framework. For instance, it has been shown that
neurons in the parietal cortex of monkeys accurately represent key decision making variables
such as expected gain and gain magnitude (Platt & Glimcher, 1999). In other work it has been
argued that a Bayesian framework can accurately describe the properties of the visual cortex in
motion processing (Koechlin, Anton, & Burnod, 1999) and the multi-sensor fusion performed
by the superior colliculus that allow it to trigger saccadic eye movements (Anastasia, Patton,
& Belkacem-Boussaid, 2000).

The above examples do not prove that humans and animals are optimal Bayesian machines.
In many tasks optimal decision making is biased by different psychological factors which might
fall outside such a framework (Tversky & Kahneman, 1981; seeMellers, Schwartz, & Cooke,
1998for a review). For example, it has been shown that the illusion to control the outcome
of a choice task leads to an increase in the subjective estimate of the probability of success as
compared to its objective probability (Fong & McCabe, 1999). In another set of experiments it
was shown that humans use a variety of decision rules and that human subjects are not optimal
in a Bayesian sense (El-Gamal & Grether, 1995). However, the same study showed that Bayes’
rule is the one decision rule which approximates human performance closest. Although these
experiments question the generality of the Bayesian framework, our earlier examples show
that this framework does have experimental support in both psychology and neuroscience.
Moreover, one could argue that the observed deviations from optimal decision making can be
accounted for by adjusting the score functions employed. Hence, our attempt to use Bayesian
inference as an operational definition of the knowledge level and its principle of rationality
places these concepts on a well elaborated empirical base.

The rationalistic view of decision making provided by a Bayesian framework describes intel-
ligence from a purposive functional perspective (Chater & Oaksford, 1999). As a knowledge
level description it does not provide any direct link to the more mechanistic and embodied
perspective of new AI. In particular, the set of prior hypotheses, at the core of a Bayesian
inference system, need to be acquired and maintained by the system itself and not provided by
its designer in order for the ontology of the problem solving system to be grounded. The robot
based model of learning and problem solving we investigate here, called DAC, does satisfy
this requirement (Verschure, 1998; Voegtlin & Verschure, 1999). DAC has been developed
as a model for the behavioral paradigms of classical and operant conditioning (Mackintosh,
1974). In particular, it addresses the question how a real-world system can acquire, retain, and
express knowledge of its interaction with the world. DAC has been investigated using both
simulated and real robots in foraging and block sorting tasks (Verschure & Voegtlin, 1998,
1999; Verschure et al., 1992; Verschure, Wray, Sporns, Tononi, & Edelman, 1995) and is a
standard in the field of new artificial intelligence and behavior based robotics (Arkin, 1998;
Clancey, 1996; Hendriks-Jansen, 1996; McFarland & Bosser, 1993; Pfeifer & Scheier, 1999).
Hence, the unification of new and old AI pursued here requires that we demonstrate that the
DAC architecture satisfies a Bayesian analysis of its task domain, i.e. random foraging.
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The following sections introduce our extension of the DAC model, called DAC5, and sub-
sequently prove that it is equivalent to a Bayesian inference system. We investigate the impli-
cations of the extensions made to the model and compare it to its predecessor, DAC3, and an
additional control condition using both simulated and real robots in random foraging tasks.

2. The learning model—DAC5

DAC was developed as a robot based neuronal model of classical and operant conditioning
(Mackintosh, 1974). In classical conditioning initially neutral stimuli, Conditioned Stimuli
(CS), become able to trigger Conditioned Responses (CR) due to their correlation with mo-
tivational stimuli, Unconditioned Stimuli (US) (Pavlov, 1927). Presentation of a US causes
an automatic response, Unconditioned Response (UR). After several simultaneous presenta-
tions of US and CS, the presentation of the CS alone will trigger a response similar to the
UR, the CR. In a typical classical conditioning freezing experiment, for instance, a tone (CS)
is presented paired with a footshock (US). Initially only the US induces a freezing response
(UR), the cessation of ongoing behavior. After several paired presentations of CS and US,
however, presentation of the CS alone will induce freezing (CR). In operant, or instrumental,
conditioning the animal learns to associate its actions with particular states of the environment
(Thorndike, 1911). In this case the US that results from an action, provides a reinforcement sig-
nal for the learning system. In a typical experiment in a so-called Skinner box an animal learns
to press a lever (CR) to receive a food reward (US). DAC is constructed on the assumption that
both phenomena reflect components which are closely coupled in the overall learning system
(Verschure & Voegtlin, 1998). In DAC the assumption is made that in order to explain these
forms of learning three strongly coupled layers of control need to be distinguished: reactive,
adaptive, and contextual control (Fig. 1).

1. Thereactive controllayer provides the behaving system with a basic level of behavioral
competence based on prewired reflexive relationships between simple sensory events
(US) and actions (UR).

2. The adaptive controllayer allows the system to develop representations of complex
sensory events (CS) conditional on US events.

3. Thecontextual layersupports the formation of more complex representations of CS and
CR events expressing their relationship in time.

2.1. Reactive and adaptive control

The reactive and adaptive control layers are based on the following assumptions (Fig. 1):

• USs of a particular type activate specific populations of neurons reflecting an internal
state (IS), i.e. aversive (US− → IS−) and appetitive (US+ → IS+).

• Cells in IS will activate specific reflexive actions (UR), i.e. IS− → avoidance and IS+ →
approach.

• Conflict resolution in action selection is resolved through a predefined interaction between
the IS populations via an inhibitory unit (I).



P.F.M.J. Verschure, P. Althaus / Cognitive Science 27 (2003) 561–590 567

Fig. 1. Schematic representation of the DAC architecture. See text for explanation.

• CSs are derived from events on distal sensors (e.g. color CCD camera), while USs are
derived from proximal sensors (e.g. collision sensors).

• CS representations are formed by modifying the connections between the CS and IS
populations.

2.1.1. Model equations of the fast dynamics of the reactive and adaptive control layers
The activity,uj, of unit j in population CS is derived from the state,sj, of elementj of the

related distal sensor, using a transduction functionf.

uj = f(sj) (4)

The activity of population CS is propagated to the IS populations through excitatory connec-
tions. The input,vmi , of cell i in IS populationm is defined by:

vmi =
MCS∑
j=1

wm
ij uj + pm

i − γmI (5)

whereMCS is the size of the CS population,wm
ij is the efficacy of the connection between CS

cell j and IS celli, pm
i is the state of elementi of US conveying sensorm, I is the activity of
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the inhibitory unit I, andγm the gain of inhibition to IS populationm. The activity,omi , of cell
i of IS populationm is defined by:

omi = H(vmi − θmi ) (6)

whereθmi is the activation threshold andH the Heaviside or step function. The input to the
inhibitory unit I at timet + 1, vI(t + 1), is derived from the activity of the aversive internal
state population IS−:

vI(t + 1) = αIvI(t) + γ I
M IS−∑
j=1

oIS−
j (t) (7)

where�I (αI < 1) is the persistence andγ I is the excitatory gain of I. The activity of I is
determined usingEq. (6), thresholding withθI . The input,fk, of unit k in the UR population is
defined by:

fk =
K∑

m=1

Mm∑
i=1

ymkio
m
i (8)

whereK denotes the number of IS populations,Mm the size of IS populationm, andymki the
strength of the connection between celli of IS populationm and cellk of the UR population.
After updating their inputs the UR units compete in a Winner Take All (WTA) fashion. If
the activity of the winning unit is suprathreshold it will induce a specific motor action. In
case no motor unit is activated the control structure will trigger exploration behavior (forward
translation). A system consisting only of the US–IS and the IS–UR mapping constitutes a
reactive control structure.

2.1.2. Model equations of the slow dynamics of the adaptive control layer
After updating the input,vm, of the IS populations (Eq. (5)), these populations in turn

recurrently inhibit the CS population. The resultant activity,u′
j, of unit j in the CS population

is now defined as:

u′
j = uj − γrej (9)

whereγr is a gain factor modulating the effect of the recurrent inhibition andej is the recurrent
prediction defined by:

ej =
K∑

m=1

Mm∑
i=1

wm
ij v

m
i

Mm
(10)

e will be referred to as aCS prototype. The connections between unitj of the CS population
and uniti of IS populationm, wm

ij , evolve according to:

"wm
ij = ηmvmi u

′
j (11)

whereηm defines the learning rate of the connections between the CS population and IS pop-
ulation m. The synaptic weights of the connections between the CS and IS populations are
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prevented from attaining negative values. Given the effect of the recurrent inhibition (Eq. (9))
this learning method is referred to aspredictive Hebbian learning(Verschure & Pfeifer, 1992;
Verschure & Voegtlin, 1998). This learning rule is related to filtering theory and state estimation
(Kalman, 1960), and similar approaches have been applied to modeling the cortical mechanisms
of perceptual learning (Rao, 1999; Rao & Ballard, 1999). A biophysically realistic real-time
model of this learning rule has been defined that accounts for the physiological changes ob-
served in the primary auditory cortex during classical conditioning (Sanchez-Montanes, König,
& Verschure, 2002; Sanchez-Montanes, Verschure, & König, 2000) in combination with a
physiologically and anatomically constrained model of the cerebellum (Hofstoetter, Mintz, &
Verschure, 2002).

The adaptive control layer will over time form a classification of its interaction with the
environment in terms of CS events conditional to its internal states. These acquired CS proto-
types on one hand allow the system to function as an adaptive controller and on the other form
the representational building blocks for the construction of sequential representations by the
contextual control layer.

2.2. Model equations of the contextual control layer

The contextual control layer of DAC5 (Fig. 1) is based on an earlier model, called DAC3
(Verschure, 2000; Verschure & Voegtlin, 1998) and is based on the following assumptions:

• Salient events are stored in short-term memory (STM).
• The content of STM is stored in long-term memory (LTM) when a goal state is reached.
• The content of LTM is matched against ongoing sensory events.
• Matching LTM elements, or segments, bias action selection of the motor population.
• Chaining through LTM sequences is achieved by biasing LTM matching.

DAC5 bootstraps itself from a stage of adaptive control to a stage of contextual control.
This transition depends on the quality of the matching between predicted and actual CS events
expressed by an internaldiscrepency measure, D. Matching is defined by the distance,d(u, e),
between the feedforward generated CS activity pattern,u (Eq. (4)), and the recurrent prediction,
e (Eq. (10)):

d(u, e) = 1

MCS

MCS∑
j=1

∣∣∣∣ uj

max1≤j′≤Nuj′
− ej

max1≤j′≤Nej′

∣∣∣∣ (12)

D evolves according to:

D(t + 1) = αDD(t) + (1 − αD)d(u, e) (13)

whereαD defines the integration time constant.D is a dynamic state variable which is internal
to the learning system. It provides an estimate of the progression of learning at the level of
adaptive control and will decrease if the constructed CS prototypes consistently match ongoing
CS events. It will increase if expected CS events are violated. OnceD falls below aconfidence
threshold, θD, DAC5 engages its general purpose learning system consisting of structures for
STM and LTM. STM functions as a ring buffer, which stores pairs of CS representations and
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Fig. 2. The general purpose learning system of DAC5, which is constructed on top of the adaptive control layer.
(1) The CS prototype and UR activity are written to the STM buffer and stored as a segment. (2) If a target or a
collision occurs, the contents of STM are written to LTM as a sequence. Now each segment consists of the stored CS
prototype, the stored UR activity, a trigger unit (black) and a collector unit (gray). (3) The UR population receives
input from the IS populations according to the rules of the adaptive control structure. (4) If the input to UR is
sub-threshold, the values of the current CS prototype are matched against those stored in LTM. (5) The collector
units give an input to the UR population.

related motor actions (segments), and has a finite length,NSTM. LTM stores sequences of these
segments (seeFig. 2for illustration).

After each time step the generated CS prototype,e (Eq. (10)), and the action executed by
the robot (Eq. (8) or (17)after WTA), are stored in the STM buffer as a segment. In case a
goal state is reached, i.e. a target is found or a collision is suffered, the STM content is copied
into LTM and STM is reset. This creates sequences “belonging” to different goal states: target
found or collision suffered. If none of the IS populations is active (which means no action is
triggered by the adaptive control layer), all the CS prototypes stored in the LTM segments will
be matched against the current CS prototype (Eq. (10)). Matching of segmentl of sequenceq
is expressed in the matching scoremlq defined by:

mlq = d(e, glq) (14)

whereglq represents the CS prototype stored in segmentl of LTM sequenceq andd is defined
in Eq. (12). The degree of matching of segmentl in sequenceq defines the input to its collector
unit, clq:

clq = 1 − mlqtlq (15)
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wheretlq, is the activity of the trigger unit which will be introduced below. The activity of a
collector unit,blq is defined as:

blq = H(clq − θC)clq (16)

whereθC is the activation threshold. All collector units are connected to the UR population. The
input to cellk in the UR population,fk, receives input from all the collector units of segments
that have stored the same action as represented by this unit:

fk =
∑
l∈LTM

± blq

zlq
(17)

wherezlq is the distance, measured in segments, between segmentl to the end of its sequence
or, in other words, the distance to the goal state. By dividing the output of segmentlq with zlq
the segments closer to the goal state are weighted higher. The sign is plus if segmentlq is from
a sequence that was stored when a target was found and minus if it was stored when a collision
was suffered. After updating their input, the UR units compete in a WTA fashion. The winning
unit will induce the motor action. In case UR does not receive any input from the collector
units, which means none of them matches the actual CS prototype, exploration behavior will
be executed (forward translation).

The trigger elements are used to be able to chain through LTM sequences (seeFig. 3 for
illustration). If the collector unit of segmentlq contributed to activating the cell of UR that won

Fig. 3. The matching and chaining of LTM segments: each segment consists of a CS prototype, a related action
(Act), a trigger unit (black) and a collector unit (gray). The current CS prototype is matched with those stored in
the LTM segments. The matching score and the trigger units give an input to the collector units. If a collector unit
is above threshold (B2) it gives an input to population UR (not in this figure) and the trigger unit of the following
segment is reduced (B3) to enhance the probability that it will dominate the matching process in the next cycle. The
trigger units slowly decay back to their initial value (C3–C5).
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the WTA, the value of trigger unitl+1 in sequenceq will be reduced to a valueβ (0 < β < 1).
This means that a segment, following a previously effective one, will be given higher priority in
future decision making. The activation of the trigger unit of each segment decays to its default
value 1 according to:

tlq(t + 1) = αt + (1 − αt)tlq(t) (18)

2.3. DAC5 as a Bayesian decision maker

By phrasing the foraging tasks performed with the DAC architecture in Bayesian terms we
will prove that the DAC architecture will execute exactly those actions that are optimal in a
Bayesian sense. Hence, we will define the DAC equivalents of the central components of a
Bayesian analysis of the foraging task: goals, actions, hypotheses, observations, experience,
prior probabilities and score function.

(A) Goal: the goalg is defined by the task, i.e. finding targets and avoiding collisions.
(B) Actions: the setA = {ak} consists of all possible motor actions the robot can execute

(UR and CR).
(C) Hypotheses: the setS = {s±k,n} corresponds to the set of “speculations” how a target

can be reached or a collision suffered.s+k,n stands for the fact that a target will be found
n timesteps after executing actionak. s

−
k,n is defined analogously for an upcoming

collision.
(D) Observation: eventr is a representation of what the robot “observes” at a location where

a decision should be made. This is a representation internal to the system for which we
use the recurrent predictionegenerated by the adaptive control structure (Eq. (10)).

(E) Experience: acquired knowledge is everything stored in LTM.
(F) p(s±k,n): the prior probability distribution of the hypothesess±k,n is defined as:

p(s±k,n) =
{
C1 if this has been experienced

0 otherwise
(19)

“if this has been experienced” means that in the past,n timesteps after executing action
ak, a target (collision resp.) occurred. In terms of the learning model this translates to
the presence of a segment in a LTM sequence where thenth to last segment has stored
actionak. C1 is a value that is constant over this set of experiences and chosen such that
p(s±k,n) is normalized.

(G) p(r|s±k,n): this conditional probability stands for the probability that the robot observes
r, given that a target (collision resp.) will occur aftern timesteps by executingak. The
probabilityp(r|s±k,n) is only non-zero if there is a sequence in LTM, where thenth to last
segment has stored actionak. Each LTM segment also contains an observatione. The
more similare is to r, the higher the probability to observer givens±k,n. As a measure
for this similarity we used the activity of the collector unitblq (Eq. (16)). Hence, the
probabilityp(r|s±k,n) becomes

p(r|s±k,n) =
{
C2blq if this has been experienced

0 otherwise
(20)
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This probability is only non-zero if there is a sequence in LTM, where thenth to last
segment has stored actionak. C2 is a normalization constant.

(H) Score function: the score functionGg(s
±
k,n, ak′) indicates the profit ifs±k,n is true and

ak′ is executed. In the random foraging tasks considered here the robot is required
to maximize the number of targets found while minimizing the number of collisions
suffered. Hence, the score function should be positive if actionak′ leads to a target and
negative if it leads to a collision. It should be 0 (“neutral”) if actionak′ is not the same as
ak. In addition, the closer the target (obstacle resp.) the higher the probability of really
reaching it, by executing the action. So, an appropriate score function would be:

Gg(s
±
k,n, ak′) =


 ±1

n
if k = k′

0 otherwise
(21)

Given these definitions the optimal action can be calculated in the following way. The
conditional probabilityp(s±k,n|r) is the probability that a target or a collision will occur after
n timesteps by executingak, given observationr. CombiningEqs. (19) and (20)we get from
Bayesian theory (Eq. (1)):

p(s±k,n|r) = p(r|s±k,n)p(s±k,n)
p(r)

=



C1C2blq

p(r)
if this has been experienced

0 otherwise
(22)

wherep(r) is the probability to observer. From Eqs. (21) and (22)we get the expectancy
(Eq. (2)):

〈g〉ak′ =
∑
s±k,n∈S

p(s±k,n|r)Gg(s
±
k,n, ak′)

(21)=
∑
s±
k′,n∈S

p(s±k′,n|r)Gg(s
±
k′,n, ak′)

(22)=



∑
s±
k′,n∈S ± C1C2blq

np(r)
if this has been experienced

0 otherwise
(23)

According to Bayes’ principle (Eq. (3)), the optimal action to execute is now the one that
maximizes the expectancy (Eq. (23)). SinceC1, C2 andp(r) are all constant over the setS it is
the action that maximizes:

〈g〉′ak′ =
{ ∑

s±
k′,n∈S ± blq

n
if this has been experienced

0 otherwise
(24)

Cell k of the UR population is only getting input from segments that have stored the same
motor action as represented byk while the LTM equivalent ofn is zlq. Therefore, expression
(24) becomes:

〈g〉′ak =



∑
s±k,n∈S ± blq

zlq
if Ak is stored in segmentl of sequenceq is satisfied

0 otherwise
(25)
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It can be seen that the inputfk to cell k of the UR population is exactly the value of the
expectancy〈g〉′ak . This means that the WTA process among the cells of the UR units will be
won by the unit standing for the action which maximizes this expectancy.

It has been shown that the general purpose learning system of DAC5 is a Bayesian inference
machine. It chooses those actions that are optimal in a Bayesian sense (using assumptions
(A)–(H)). The WTA mechanism of the motor map selects the action, which maximizes the
expectancy〈g〉a (Eq. (2)). In addition, the model is self-contained in the sense that the prior
probabilities are constantly updated through adding new sequences to LTM while the obser-
vations are learned at the adaptive control level.

The model developed here, DAC5, is based on DAC3 (seeVerschure & Voegtlin, 1998for
a detailed description of DAC3). The only difference between DAC5 and DAC3 is that the
latter applies a WTA selection mechanism at the level of LTM on the collector unit activities
(Eq. (16)). Hence, for DAC3 the motor action executed is solely defined by the winning LTM
segment. Moreover competition of the collector unit activities is not biased by the distance
between a segment and the goal state (Eq. (17)). Hence, DAC5 is a simpler model than DAC3.
We emphasize that in all other respects DAC3 and DAC5 are identical.

3. Experimental environments

As in previous studies the experiments were performed using both simulated and real robots
(Verschure & Voegtlin, 1998). Simulations guarantee repeatability over trials and therefore al-
low a systematic evaluation of a control structure. Only experiments with a real robot, however,
allow the exploration of the robustness and generalizability of a model (Mondada & Verschure,
1993).

3.1. Simulation environment BugWorld

Simulations were performed using the simulation environment BugWorld (Almássy, 1993;
Goldstein & Smith, 1991). The simulated spherical robot (Fig. 4) uses three types of sensors: a
range finder (CS), collision sensors (US−) and target sensors (US+). The configuration of the

Fig. 4. The simulated robot used in BugWorld. The range finder (black rectangles) consists of 37 sensors distributed
over 180◦ on the front side of the robot. Their angular resolution decreases at the borders (20◦) and is maximal
at the center (5◦). Thirty-seven collision detectors cover the same region as the range finder elements. Two target
sensors are located at 90◦ and−90◦ from the mid-line of the robot.
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Fig. 5. The four environments used in the simulation experiments, consisting of obstacles (bricks) and targets (solid
circles). The region in which the US+ can be detected by the target sensors is indicated by dashed circles. The soma
has the same size as the targets. (A) The standard environment used in previous studies, e.g.Verschure & Voegtlin,
1998. (B) As (A) with non-symmetric target distribution. (C) Large environment with low obstacle density.
(D) Environment with high obstacle density.

shape of the robot and the properties of its sensors will be referred to as thesoma. The soma
can execute discrete translational and rotational actions. These actions are coupled together to
define behavioral patterns: “exploration,” “avoidance,” and “approach.”

Fig. 5 shows the four different environments used in the simulation experiments. In a se-
cluded space multiple obstacles and targets are placed. Each target can only be detected in a
limited region around it. The targets have their own dynamics: in case one of them is touched
it is removed. A new target reappears in the same position when another target is found. The
distance measure used in the simulations is the body-size of the robot, where its diameter is
equal to one unit calleddiam.

3.1.1. The mapping of the sensors and the actions of the soma
The input of the 37 collision sensors (US−) is mapped to the IS− population, consisting of

37 neurons. Each sensor is connected to one neuron. The input to each of these neurons is 1 in
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case of a collision at the corresponding sensor and 0 otherwise. The IS+ population consists of
two neurons, each connected to one of the target sensors (US+). The target sensors are active
when they are within the target region. If one of the sensors is significantly closer to the target
(≥0.25 diam) than the other one, the input to the corresponding neuron is 1 and 0 otherwise. If
the two sensors are approximately the same distance to the target (<0.25 diam), both neurons
in IS+ are active. The CS population consists of 37 neurons, each corresponding to one of the
range finder elements. Their inputs reflect the distance to the next obstacle or wall. The activity,
uj, of CS unitj is defined as:

uj = e−γssj (26)

wheresj is the input from range finder elementj andγs defines the slope of the function.
The UR population consists of five neurons each triggering a specific action. The predefined
connections between the IS and UR populations define the following responses:

• avoid left (right resp.): one of the neurons in IS− corresponding to the collision sensors
on the right (left resp.) side is active.

• approach left (right resp.): the neuron in IS+ corresponding to the left (right resp.) target
sensor is active and the other one not.

• approach forward: both neurons in IS+ are active.
• if no neuron in any IS population is active, or the winning neuron in UR is not above

threshold, an “explore” action will be triggered: forward translation.

3.2. Khepera-IQR421

Experiments with the microrobot Khepera (K-team, Lausanne, Switzerland) were performed
using the distributed simulation environment IQR421 (Verschure, 1997). Khepera (Fig. 6A)
is a circular robot with a diameter of 55 mm and a height of 30 mm. The base plate contains
the elementary interface to the real-world: effectors and obstacle/light detection. The robot
uses two wheels for locomotion. Obstacle and light detection is achieved by eight infra-red
send–receive sensors (IR). Six IRs are placed evenly around the front 180◦ of the robot and
two are placed at the back. The angular resolution of each of the IRs is approximately 50◦.
In addition, the robot is equipped with a color CCD camera (640× 480 pixels). Khepera
was connected to a host computer using a serial port. Only the processes maintaining serial
communication, sampling of sensors, and control of effectors were executed locally.

IQR421 supports the study of neural models at different levels of description. It provides
a graphical specification language to define, control, and analyze large scale neural simula-
tions using a distributed computing method based on the TCP/IP protocol. In this study five
interacting processes were defined; front-end graphics, tracking system, and three simulation
and interface processes. Processes communicated synchronously at approximately 10 update
cycles/s. The three simulation processes, “Video,” “DAC5,” and “Khepera,” exchange data as
indicated by the connections shown inFig. 6B. “Video” deals with digitizing the video image
and simulating the neural system which processes the image. “Video” exchanges the activity
of a population of simulated cells reflecting the CS events, with the simulation of the control
structure, “DAC5.” In addition, “DAC5” receives inputs from populations of simulated cells
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Fig. 6. Real-world experiments. (A) The microrobot Khepera. (B) The four simulation processes defined in IQR421.
Each icon stands for one process. Arrows indicate the interactions between these processes.

responding to US events detected by the robot derived from the infra-red sensors. “DAC5”
projects the activity of its population expressing URs to “Khepera.” “Khepera” in turn inter-
prets its motor map which receives this activity and sends the appropriate commands to the
robot. There is also a process “TraXX” which receives input from a tracking camera mounted
above the environment and extracts thex- andy-location of the robot. The environment used
in the real-world experiments is depicted inFig. 7.

3.2.1. The mapping of the sensors and the actions of Khepera
BothpUS− andpUS+ (Eq. (5)) were derived from the six frontal IR sensors. On average the

IR sensors respond to reflecting surfaces placed up to 5 cm from the sensor.pUS− is defined
by thresholding the IR return signal, which gives an approximation of a collision sensor. The
raw IR signal was projected on to a population of leaky integrator linear threshold units which
renderedpUS−. pUS+ was derived from the ambient light detected by the six frontal IR sensors
in their passive mode. This signal was projected on to a population of leaky integrator linear
threshold units. By thresholding with an appropriate value a measure is defined which reflects
the presence of a target. The distal sensor, which defines CS events, was provided by the color
CCD camera mounted on Khepera. The 480×640 image was compressed to a size of 210×210.
Each color channel of the digitized image, using a RGB representation, was pixelized (reduction
ratio: 100:1) onto a distinct population of 400 leaky integrators conserving the “retinotopy”
of the camera. The CS population consisted of 36 units where each cell reflected a certain
combination of particular color channels in sub-regions of the image. For example, a red
center surrounded by blue activated a particular cell in the CS population. This was done for
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Fig. 7. Environment used for robot experiments: (A) A 1 m× 1.5 m enclosed space contains three target regions
(white solid circles) and a number of colored patches (CS). The targets are defined by halogen lamps mounted above
the floor that disperse a light gradient. The region in which this gradient can be detected is indicated with white
dashed circles. The colored patches consist of combinations of specific surround and center colors (red, green, and
blue). The wall surrounding the environment is yellow.

every possible center-surround combination of the colors red, green, blue and yellow. Motor
output sent to Khepera was derived from the activity of the UR population. It consisted of
eight cells, each of them standing for a certain action (rotational and translational motion).
The motor actions belonging to the behaviors “avoid,” “approach” and “explore” were defined
analogously to the ones for the soma in BugWorld. In this case, as opposed to the simulation,
motor activity was continuous. Once initialized the motors only changed their state if another
pattern of activity arose (seeVerschure & Voegtlin, 1998for further implementation details).

4. Results

We have pursued a formal approach to prove that the dynamic equations of DAC5 generate
actions in a foraging task that are equivalent to those predicted by a Bayesian analysis of the
task. This implies that DAC5 is, in the Bayesian sense, an optimal decision making system and
obeys the principle of rationality. Hence, DAC5 unifies the perspectives of old and new AI. We
observed, however, that in order to make optimal use of the available information, i.e. to achieve
the goals of optimizing the number of targets found while minimizing the number of collisions
suffered, the DAC architecture needed to be adapted. In order to satisfy the research method
of new AI we need to assess whether DAC5 also generalizes to the real-world. Hence, we will
assess whether this model shows enhanced performance in random foraging. We performed a
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comparative study, using both simulated and real robots, where we evaluated the performance
of DAC5, its non-rational predecessor DAC3 and a control condition where the contextual
control layer is disabled, called DAC2. As a first qualitative description of the differences
between these three models sample trajectories of simulated and real robots are presented.
Subsequently a quantitative analysis of the performance is presented.

4.1. Qualitative analysis: BugWorld

In the simulated robot experiments the agent must learn to use the distance profiles provided
by its range finders (CS) to efficiently navigate in a secluded space. The knowledge this agent
will use to optimize its task, range finder profiles and their relationship with collisions and
targets, is nota priori defined. The predefined information about targets and collisions is only
available through proximal sensors, i.e. these events can only be detected when the agent is
in their vicinity. Hence, any form of planning must rely on distal sensor information, i.e. the
range finder profiles.

Fig. 8shows the trajectories of representative examples of DAC2 and DAC5 in the four envi-
ronments considered (Fig. 5). At the start of each trial the weights of the connections between
the CS and IS populations were set to 0 and LTM was empty. The starting position and orien-
tation of the soma were chosen randomly. Each trial lasted 20,000 time steps. The trajectories
displayed show the positions visited by the soma during the last 2,000 time steps of a trial.

In the condition where contextual control is disabled, DAC2, the robot visits practically the
whole environment, independent of the target distribution. This agent, however, does success-
fully avoid collisions with walls and obstacles by triggering the avoidance response shortly
before a wall or obstacle is reached. This is due to learning at the level of adaptive control
that allows the agent to predict upcoming collisions on the basis of its range finder readings.
In contrast to this non-rational agent DAC5 shows a much higher specificity in its behavior,
repeating similar trajectories. Paths “discovered” earlier in the trial are followed with a higher
probability than others, i.e.Fig. 8B, D, F and H. Moreover, the trajectories are more struc-
tured around the distribution of the targets in the environment. For instance, in environment
B (Fig. 8D) DAC5 remains in the vicinity of the two targets with high probability. In contrast
DAC2 does not adjust its behavior to this particular target distribution and shows a practically
identical trajectory to that seen in environment A (Fig. 8C).

4.2. Qualitative analysis: real-world

Experiments with the Khepera microrobot have been performed using the environment
depicted inFig. 7. In these experiments the agent has to learn to make use of the colored
patches on the floor and the wall of the arena to locate the light sources. Also in this case
collisions and light are only detected with the IR sensors (US) when the robot touches an
obstacle or is close to the center of the projected light. Hence, for planning the robot must
make use of the distal information provided by the colored patches sensed through the CCD
camera (CS).

In these experiments the initial conditions were the same as those of the simulation experi-
ments. The trajectories of the Khepera robot (Fig. 9) show the same properties as observed in
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Fig. 8. Simulation experiments: example trajectories in the four different environments depicted inFig. 5for DAC2
(left column) and DAC5 (right column). (A and B) Environment A. (C and D) Environment B. (E and F) Environment
C. (G and H) Environment D.

the simulation studies. Both models successfully locate the targets and avoid collisions. In the
disabled condition the robot again visits most regions in the environment (Fig. 9A). A slightly
denser distribution can be observed inside target regions due to the presence of the US+. In
contrast, DAC5 structures its behavior around a small number of prototypical trajectories, only
visiting a part of the environment (Fig. 9B).

To assess the impact of learning on performance, recall tests were performed: after 20,000
timesteps the lights (targets) were switched off (Fig. 10). In this case only the colored patches
can provide cues to locate the target areas. DAC2 displays highly variable behavior and target
regions appear to be visited with a low probability (Fig. 10A). DAC5 shows highly structured
behavior organized along the colored patches in the environment, visiting the target regions
with a high probability (Fig. 10B).
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Fig. 9. Example trajectories of the microrobot for DAC2 (A) and DAC5 (B) during acquisition trials. The total
length of the acquisition trials was 20,000 time steps. The trajectories shown depict the positions visited by the
robot between time steps 15,000 and 18,000. This corresponds to about 25–30 min after the start of the trial.

In order to demonstrate that the behavior of DAC5 observed in the recall test is due to
its ability to use its contextual control layer, we determined at what positions actions were
triggered due to LTM activity (Fig. 11). LTM dominates the behavior of DAC5 at very distinct
points in the environment and is mostly active when a colored patch is in the visual field of the
robot. Moreover, most rotations occurred shortly after LTM was active.

In summary, these results show that DAC5 uses its abilities for contextual learning to op-
timize its trajectories in random foraging tasks in both simulated and real robots in a variety
of environments. As a result, it performs more successfully than a system where contextual
control is disabled, DAC2.

4.3. Performance quantification

So far we have used a qualitative approach to assess the differences in performance between
the rational agent, DAC5, and a control condition where the contextual control layer is disabled,

Fig. 10. Example trajectories of the microrobot for DAC2 (A) and DAC5 (B) during recall tests. After 20,000 time
steps of learning the targets were switched off. Trajectories shown show the positions visited between time steps
20,000 and 23,000 (from about 33 to 38 min after the start of the trial).
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Fig. 11. Usage of LTM by DAC5 in a recall test. Locations in the environment where LTM controlled the action
selection are indicated with circles. The trajectory shown was followed in a clockwise direction and generated
between time steps 21,400 and 22,000.

DAC2. Although such an approach does provide a useful first order description of a behaving
system, it cannot be taken as conclusive evidence. Hence, in order to put our conclusion on a
more solid foundation we performed a more detailed quantitative analysis. We evaluated 200
exemplars per condition in the four simulation environments (Fig. 5) in trials lasting 20,000
time steps. A total of 2,400 simulated robots were evaluated where the initial positions and
orientations of the robots in the environment were randomized. In this analysis we consid-
ered DAC5, its predecessor DAC3, and again a condition where the contextual control layer is
disabled, DAC2.

Fig. 12A–Dshow the performance of the different models in the four environments in terms
of the number of targets found and collisions suffered per traveled distance (Fig. 5). Although
the environments have quite different characteristics in terms of the amount of targets and
obstacles, the performance of the different models evolve, relative to each other, in a similar
fashion. In all cases we observe that both performance measures in all four environments tend
to converge. Hence, in all cases the learning systems investigated, on the average, developed
stable behavior. Initially in all four environments the high collision rate decreases rapidly.
This is due to the construction of associations between the CS and US by the adaptive control
layer (see alsoVerschure & Voegtlin, 1998). After reaching the confidence threshold (Eq. (13))
DAC3 and DAC5 activate their contextual control layer around time step 4,000. After this
point in time the three models start to perform very differently. Through the use of sequential
representations, DAC3 improves its obstacle avoidance behavior compared to DAC2. DAC5,
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Fig. 12. Performance comparison of DAC2, DAC3, and DAC5 in the different environments depicted inFig. 5. For each condition 200 exemplars
were evaluated. The initial position and orientation of the robots in the environment were randomized. Performance was quantified as the average
number of collisions suffered (right column) and targets found (left column). Averages were calculated over all 200 exemplars per condition every
100 time steps for a 500 time step sliding time window. (A and B) Environment A. (C and D) Environment B. (E and F) Environment C. (G and H)
Environment D.
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however, further reduces its average number of collisions compared to DAC3. The average
amount of targets found in case of DAC3 is lower than for DAC2. While also on this measure
DAC5 clearly shows better performance. For environment A we observe that the average num-
ber of targets found per traveled distance converges to about 0.05 for DAC2 and DAC3 while
DAC5 shows an higher average of 0.06. DAC2 converges to the highest average number of
collisions in this environment, about 0.025, DAC3 gives a value of 0.02, while DAC5 displays
the lowest collision ratio of 0.018.

DAC5 performs better than the other two control models in all four environments, both in
finding targets and avoiding collisions. These results demonstrate that the changes made to
our DAC architecture to satisfy the principle of rationality have rendered a control structure
that also displays superior performance in real-world tasks as compared to its non-rational
predecessor and a control condition where the contextual layer was disabled.

5. Discussion

We have shown that the perspectives of traditional and new AI can be unified. We have rede-
fined the knowledge level description of a complex task, including its principle of rationality,
in terms of a Bayesian analysis. Subsequently we have proven that a robot based architecture
of learning and problem solving generates the same actions as those predicted by the Bayesian
analysis. In addition, we have shown that this architecture shows robust performance in random
foraging in different environments for both simulated and real robots. DAC5 is a self-contained
learning system that demonstrates how problem solving and behavioral control can be under-
stood in strictly bottom-up terms. Using only prewired reflexes a reactive control layer is
equipped with a minimal behavioral competence to deal with its environment. The adaptive
control layer associates inputs from distal sensors with these reflexes and constructs representa-
tions (expectancies) of sensory stimuli. At the level of contextual control these representations
are used to form more complex representations in order to express relationships of sensory and
motor events over time. It has been shown that the contextual control structure uses these repre-
sentations in an optimal Bayesian way to achieve its goals in simulated and real foraging tasks.
The learning model is self-contained in the sense that the prior and conditional probabilities
are acquired through interaction with the world and are continuously updated in relation to the
experience of the agent, by changes in the classification of sensory events at the adaptive layer
or the formation of new sequences by the contextual layer. A key difference between DAC5 and
traditional rational systems is that the former becomes rational due to its continuous interaction
with the world while the latter are rational as a result of prior specification. The “symbols”
DAC5 is integrating in its optimal decision making are acquired and not predefined. An impor-
tant consequence of this is that where the rationality of traditional systems is bounded by the
logical closure of their predefined world models, that of the DAC architecture is bounded by the
complexity of the real-world in which it operates and the direct interfaces it possesses. More-
over, the predefined rules that give rise to global rational behavior are themselves non-rational
and only based on local interactions, e.g. local learning at the level of adaptive control, WTA
interactions at the level of a motor map or nearest-neighbor chaining in LTM. Moreover, the
principles included in the model are based on an analysis of the learning paradigms of classical
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and operant conditioning. We have successfully generalized some of these principles towards
the neuronal substrate (Hofstoetter et al., 2002; Sanchez-Montanes et al., 2000, 2002). Hence,
the DAC architecture described here unifies three key domains. First, it unifies old and new
AI by showing that rationality can emerge in a real-world agent out of the combination of ac-
quired “symbols” with their integration in decision making solely based on local rules. Second,
it unifies rationality with the principles underlying classical and operant conditioning.

A first challenge to the unification demonstrated here is that a Bayesian framework might
not sufficiently capture the knowledge level. This claim can only be evaluated in terms of the
definitions of a knowledge level analysis. In a weak form one could equate the knowledge level
with an intentional stance towards intelligent behavior dissecting overall functionality in terms
of knowledge, goals and actions (Dennett, 1988). In this view many approaches can be taken
to perform a knowledge level analysis. Key to the knowledge level, however, is the principle of
rationality which imposes a strong constraint on how an intelligent system uses its knowledge.
It is exactly this element that is directly captured in a Bayesian analysis. In addition, Newell de-
fines intelligence as the degree to which a system is able to approximate the knowledge level. In
this case intelligence is defined as the ability to bring all available knowledge to bear to achieve
goals (Newell, 1990). This property is another defining feature of the Bayesian framework.
Hence, the choice to operationally define the knowledge level in Bayesian terms is not arbi-
trary. The Bayesian framework captures the central elements of knowledge level descriptions as
elaborated by Newell. Moreover, expressing the knowledge level in Bayesian terms places this
functional approach on a solid experimental foundation in both psychology and neuroscience.

A second issue pertains to the relationship between the Bayesian knowledge level account
and the DAC5 architecture that ultimately controls the behavior of the robot. We have shown
that the DAC5 architecture not only generates the same actions as those predicted by a Bayesian
analysis but that it actually directly implements key components of the Bayesian analysis. For
instance, the dynamics of the collector units of LTM (Eq. (16)) directly reflect the conditional
probabilities on which a Bayesian analysis is based. This could be seen as an argument in favor
of a strictly functionalist perspective where the new AI component of the approach presented
here only shows how a functional analysis of intelligent behavior can be implemented (Fodor &
Pylyshyn, 1988). Our results, however, demonstrate that such an interpretation is not valid. The
DAC5 architecture comprises multiple components, but only a subset of these, in particular
its contextual control structure, give rise to its rational behavior. In isolation, however, this
set of mechanisms would not give rise to any behavior. At start-up the system is devoid of
any hypothesis on how it can plan its behavior. These hypothesis are acquired and updated,
at the level of adaptive and contextual control, by virtue of a continuous interaction with the
real-world. Hence, this system can only display rational behavior by being in the real-world.
The embodiment of our system also has consequences for its knowledge level description. For
instance, by virtue of being in the world DAC5 does not need toa priori represent all possible
states of its world. It will only acquire a small subset of all possible states that is relevant to its
behavior. Moreover, as opposed to traditional systems that require complex operations to assess
goal achievement, DAC5 only requires a minimal set of mechanisms to evaluate its ability to
achieve its goals, i.e. the detection of targets or collisions. Hence, the unification presented here
not only demonstrates that situated agents can be rational, it also constraints a further knowledge
level analysis of the task under consideration. This is in accord with earlier criticism of the
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knowledge level, where it was argued that this perspective is inherently under-constrained and
needs to be placed in the context of physical systems interacting with the real-world (Clancey,
1989b). Another consideration is that functionalism, as also expressed in traditional AI models
such as SOAR (Newell, 1990) and ACT (Anderson, 1983), succeeded in describing complex
cognitive processes but was not able to deal with the fundamental symbol grounding and
frame problem. The unification presented here shows that these cognitive processes can still
be effectively described and explained without paying this price. This is relevant to cognitive
science since it argues for an integrated approach towards the study of mind, brain, and behavior
as opposed to one that solely relies on the study of a disembodied mind. We consider it a great
advantage to show how traditional and new AI can be unified in order to resolve the apparent
conflict between the rationalist and empiricist traditions on which they rest.

Any bottom-up approach towards learning has to justify thea priori design elements of the
system. For DAC5 this pertains to the predefined properties of sensory-motor control and its
learning mechanisms. At start-up the only semantics available to the system are those defined
at the reactive control layer. These include only events detected by proximal sensors that reflect
the immediate presence of targets or collisions. The sensory representations used in decision
making, defined bye (Eq. (10)), are not defineda priori but are acquired by the adaptive
layer using low complexity signals, i.e. collisions and targets, provided by the reactive layer.
The observationr, used in the Bayesian analysis, could also have been defined using other
measures thane that do not depend on learning, i.e. the uninterpreted immediate state of the
distal sensor. However, we observed that usingegives markedly better results (data not shown).
The contextual control layer of DAC5, that provides the substrate for optimal decision making,
is a priori devoid of any hypothesis on how states of the world relate to goal-oriented behavior.
Moreover, the rule for the storage of observations and actions were kept minimal, i.e. all CS
events and associated actions were stored in STM. Also the retention of a STM sequence in
LTM depended on minimal assumptions, i.e. the occurrence of a collision or target event.

Our results show that DAC5 is able to achieve high performance in random foraging tasks
compared to our controls. Even after removing the target stimulus in recall tests, the target
regions were reliably revisited. Moreover, DAC5 organizes its behavior differently to the adap-
tive control structure (DAC2) converging on a smaller number of trajectories between target
locations. We demonstrated that this difference is due to the use of the contextual control layer.
One could argue, however, that the trajectories displayed by DAC5 (Fig. 8) are not the shortest
path between targets and hence not optimal from an objective point of view. However, they can
be considered optimal, given the system’s incomplete knowledge of the world akin to Simon’s
notion of bounded rationality (Simon, 1969). This, however, raises the important question how
an inductive system can optimize its problem solving behavior beyond its direct experience,
or the exploration–exploitation dilemma (Kaelbling, Littman, & Moore, 1996). DAC5 only
has a very limited ability to explore its physical problem space, translational action, and will
not critically reevaluate the plans for behavioral control it has acquired. We speculate that
the combination of more variable exploration behavior with the ability to override predictions
generated by the contextual control structure will improve the problem solving abilities of our
system without violating its strict bottom-up design principles.

In (Saksida, Raymond, & Touretzky, 1997; Touretzky & Saksida, 1997) a robot based model
of operant conditioning is presented as an extension of reinforcement learning. The model
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replicates some fundamental phenomena associated with instrumental learning. However, it
needs a human to provide reinforcement to the system. In DAC5 the reinforcement signal
that induces the retention of a STM sequence in LTM is triggered autonomously. Bayesian
approaches have been applied to robots, for instance, in obstacle avoidance tasks (Hu & Brady,
1994) and the processing of noisy sensor data in the context of path planning (Kristensen,
1997). Contrary to DAC5, however, in these cases the priors included in the model are defined
a priori by the designers of the system. Although such an approach might be advantageous
from an engineering perspective it does imply that these solutions are not self-contained. An
approach closest to the model described here is applied to landmark learning in the context of
the robot localization problem (Thrun, 1998). In this case a model, called BaLL, is presented
that enables a mobile robot to learn what features are best suited for localization. This model,
however, solely focuses on assessing the optimal use of sensory data to reduce the error in
the estimate of a robot’s location and does not address the issue of goal-oriented behavior.
Moreover, like traditional approaches, BaLL aims at developing a global representation of a
task, i.e. an environment, allowing the robot to “know” its location at any one point in time. The
model presented here proposes that these acquired representations can be limited to a number
of prototypical behavioral sequences that support goal-oriented behavior.

DAC5 was restricted in the sense that targets are treated as “positive” and collisions as
“negative” events (Eq. (17)). Hence, the system could only learn to maximize or minimize a
fixed set of goal states. Biological systems do explicitly represent the quality of behavioral
states (Schultz & Dickinson, 2000), however, they are not assigned on a fixeda priori basis to
specific events but again subject to learning (Hollerman & Schultz, 1998). An example of this
can be found in so-called secondary conditioning (Rescorla, 1980). In this case after an animal
has been trained to respond to a CS, e.g. a tone, this stimulus itself can become a reinforcer, i.e.
signaling a potential goal state. The current architecture already explicitly represents the ele-
ments of secondary conditioning at the level of the IS populations of the adaptive control layer.
We believe that adding the ability to learn goal states would allow our DAC5 architecture to
generalize to a wider range of tasks, e.g. solving impasse situations. This might be providing a
way for the learning model to define its tasks itself through the dynamics of the IS populations.
This generalization would bring the embodied problem solving system presented here closer
to the goal of general intelligence, where “within some broad limits anything can become a
task” (Newell, 1980).
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