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Annotation efforts in biosciences have focused in past years mainly on the annotation of genomic sequences.
Only very limited effort has been put into annotation schemes for pharmaceutical ligands. Here we propose
annotation schemes for the ligands of four major target classes, enzymes, G protein-coupled receptors
(GPCRs), nuclear receptors (NRs), and ligand-gated ion channels (LGICs), and outline their usage for in
silico screening and combinatorial library design. The proposed schemes cover ligand functionality and
hierarchical levels of target classification. The classification schemes are based on those established by the
EC, GPCRDB, NuclearDB, and LGICDB. The ligands of the MDL Drug Data Report (MDDR) database
serve as a reference data set of known pharmacologically active compounds. All ligands were annotated
according to the schemes when attribution was possible based on the activity classification provided by the
reference database. The purpose of the ligand-target classification schemes is to allow annotation-based
searching of the ligand database. In addition, the biological sequence information of the target is directly
linkable to the ligand, hereby allowing sequence similarity-based identification of ligands of next homologous
receptors. Ligands of specified levels can easily be retrieved to serve as comprehensive reference sets for
cheminformatics-based similarity searches and for design of target class focused compound libraries.
Retrospective in silico screening experiments within the MDDR01.1 database, searching for structures binding
to dopamine D2, all dopamine receptors and all amine-binding class A GPCRs using known dopamine D2
binding compounds as a reference set, have shown that such reference sets are in particular useful for the
identification of ligands binding to receptors closely related to the reference system. The potential for ligand
identification drops with increasing phylogenetic distance. The analysis of the focus of a tertiary amine
based combinatorial library compared to known amine binding class A GPCRs, peptide binding class A
GPCRs, and LGIC ligands constitutes a second application scenario which illustrates how the focus of a
combinatorial library can be treated quantitatively. The provided annotation schemes, which bridge chem-
and bioinformatics by linking ligands to sequences, are expected to be of key utility for further systematic
chemogenomics exploration of previously well explored target families.

INTRODUCTION

The immediate impact of the completion of the human
genome project to the drug discovery process is its further
systematization. All targets of a particular gene family are
now visible, and systematic exploration of selected target
families without a priori restriction to a specific therapeutic
area appears to be a promising way to speed up the lead
finding process. Beyond target validation, the challenge
reverts to medicinal chemistry to find ligands for the
sequences and to provide the molecules with which their
novel biology and pharmacology can be studied. The newly

identified macromolecular receptors may belong in part to
established therapeutically important target classes such as
enzymes, GPCRs, NRs, and LGICs, which are the most
successful drug target families and which are early examples
of the systematization approach. Correspondingly, every
newly discovered orphan receptor of these classes can be
considered as a potential drug target.1 Because of the broad
knowledge existing about the previously investigated mem-
bers of these families, including the structural classes of
pharmaceutically active compounds and sequence informa-
tion, it is a logical expectation that the pharmacological
investigation of the new targets should benefit from knowl-
edge-based compound selection and design strategies which
try to extract relevant characteristics from the established
knowledge. To realize this expectation, given that the chem-
and bioinformatics worlds have evolved more or less
independently, it is necessary to establish necessary cross
references by appropriate annotation schemes. Annotation
efforts in biosciences have focused in the past years mainly
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on the annotation of genomic sequences and comprehensive
gene ontologies such as GO2sannotating the biological
process, the molecular function, and the cellular component
of gene productssare the ultimate goals of this research.3

More specifically, several nomenclature and classification
committees have organized comprehensive class-specific
molecular information systems for enzymes,4 GPCRs,5,6

NRs,7 and LGICs.8 Compared to this, only a very limited
effort has been put into annotation schemes for pharmaceuti-
cal ligands. Ligand molecular information systems have
mainly evolved from the need to track literature and patent
information. Catalogues such as MDDR,9 WDI,10 and CMC11

are typical databases which provide structural information
about pharmaceutical ligands together with molecular target
or therapeutic class information. Because the molecular target
information provided within the ligand systems contains only
the target name, if at all, and does not provide any further
relationship among molecular targets, the potential of these
systems remains limited. Ligands of close homologous
receptors are for instance generally accepted as a starting
point in lead finding programs for receptors for which no
specific ligands are yet known. Therefore ligand classification
schemes which reflect phylogenetic or other relationships
of conserved molecular recognition should be expected to
be useful for lead finding. Correspondingly, we will herein
describe the adaptation of annotation schemes for pharma-
ceutical ligands of the four major target families. The
MDDR01.19 database, which includes target information for
a large number of its ligands, constitutes the underlying
ligand data set. The ligand-target classification for each of
the four considered target families is based on the references
established by the EC,4 GPCRDB,5 NuclearDB,7 and
LIGCDB.8 The resulting ligand ontologies will be demon-
strated to be useful for in silico screening and library design.

METHODS

Storage of Ligand-Target Classification Schemes in a
Relational Database.The classification information we used
was collected from four different sources: EC-IUBMB
enzyme database4 for enzymes; GPCRDB5 for G protein-
coupled receptors; NucleaRDB7 for nuclear receptors; and
LGIC database8 for ligand-gated ion channels. These data-
bases use different classification criteria and allow different
numbers of classification levels. Thus, a scheme to store the
classification information contained in these databases in a
uniform way has to restrict itself to the most general way
for storing classification information. This was achieved by
keeping the data in an Oracle database table (named
target_class) in which each record represents an edge in the
classification tree and contains as central information the ID
of the node (fieldname:target) and the ID of its parent node
(fieldname: parent). For example, the statement: “A D2
receptor is a dopamine receptor” translates into a record with
the value “D2 receptor” fortargetand “dopamine receptor”
for parent (Figure 1). Additional fields contain references
to the source of this classification information. Oracle SQL
provides a query syntax for hierarchical queries, which allows
one to search the classification tree recursively for all nodes
of the tree downward from a starting node at an arbitrary
depth. For example, the command “SELECTtargetFROM
target_classSTART WITH target ) ’amine binding class
a gpcr’ CONNECT BY PRIORtarget ) parent” retrieves

all nodes which are amine binding class A GPCRs. Indexes
for the columnstargetandparentmake these searches fast
and efficient.

The classification data was extracted from the HTML code
of the source database web pages using Perl scripts. During
this process spelling was standardized. The relation between
the classified targets and the structures in MDDR01.19 was
established by a table linking the MDDR activity keys with
a node in the classification tree. In addition, this table also
contains for each activity the description of the intrinsic
activity. Here a controlled set of terms taken from the textual
description of the activity keys in MDDR was adapted; the
terms include the following: activator, agonist, analogue,
antagonist, inhibitor, inverse agonist, modulator, and partial
inverse agonist. Although each of the MDDR activity keys
can point to only one node in the target classification tree,
multiple activities of structures can be stored in two ways.
If the description of an activity key names a family of targets,
it points to a node in the target tree having several targets as
child nodes. A compound with such an activity key is thus
considered to be unspecifically active on all these targets.
Second, within MDDR a compound can have more than one
activity key pointing to different targets on which the
compound is active.

Joining the MDDR activity key table with the target
classification table allows one to extract all activity keys
which are associated with the target equally or at a level
below the starting node of the query. The columnstarget
andact_keywere each indexed. The activity keys can then

Figure 1. Representation of the classification tree in a relational
database table.
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be used to search the MDDR01.1 database itself. The data
in this table were compiled manually using the descriptions
provided by MDDR and are contained in the Supporting
Information.

In Silico Screening - Similarity Searching. The mol-
ecules in the MDDR01.1 database were split randomly into
two sets. The first half served as a candidate data set for
similarity searching and the second half was used to form
reference sets. The similarity to the most similar molecule
in the reference set (the nearest neighbor) was used as the
similarity criterion. All molecules of the candidate data set
were ranked by their similarity, and each molecule was
examined if it was described as active on the same target as
the reference set. It was also examined, if the candidate
compounds belonged to the activity classes one and two steps
further up in the classification tree than the reference target.
The number of hits for each target class was plotted against
the similarity rank. In this study the D2 dopamine receptor
was chosen as target of the reference compounds. Within
the compounds similar to this reference set, we studied the
retrieval of ligands of the dopamine D3 and the serotonin
5HT1A receptor, which were considered in our retrospective
analysis as “new” targets homologous to the reference target.
In this way we can investigate the possibility to identify
ligands for a new target by similarity searching, without
knowing ligands for this target itself, but only for a target
similar to it.

The Tanimoto coefficient based on standard Unity 2D
fingerprints (Sybyl 6.7 software, Tripos Inc.) was used as
the similarity measure. Unity fingerprints were stored as
hexadecimal coded strings (“VARCHAR2”) in Oracle tables,
and the similarity searches were performed with a proprietary
searching program written in C++ able to deal with multi-
structure reference sets and to access descriptor and finger-
print data stored in an Oracle database.

Library Design - Analysis of Library Focus. The focus
of a tertiary amine combinatorial library obtained by reduc-
tive amination of commercially available building blocks
(182 secondary amines× 170 aldehydes) was examined by
computing the distributions of the maximum Tanimoto
similarity based on Unity 2D fingerprints between each
molecule of the library and tertiary/secondary amine refer-
ence sets obtained from the MDDR01.1 database, including
7176 amine binding class A GPCR ligands, 2166 peptide
binding class A GPCR ligands, and 1165 LGIC ligands. All
computations were performed with Selector Compare Da-
tabases software (Sybyl 6.7, Tripos Inc.).

RESULTS

Ligand-Target Annotation. Of the 799 activity keys used
in MDDR01.1, 309 could be linked to a target in our
classification scheme. This allowed us to annotate 53 211
of the total 113 821 compounds within MDDR01.1. Although
there still remained activity keys with targets not covered
by our annotation scheme, most of the activity keys which
could not be linked to a target described only the therapeutic
use of the compound and did not name a molecular target at
all. Examples of such keys are “analgetic”, “antibiotic”, or
“cognition enhancer”. As can be seen from the overviews
of the classification trees depicted in Figures 2 and 3, which
summarize for each class the previously most intensively

investigated targets, most of the classifiable compounds are
active on enzymes (28 418) and GPCRs (20 961); substan-
tially fewer LGIC (2941) and NR (1443) ligands were
classifiable. Within the enzymes, hydrolases, especially the
peptidases, were previously most intensively investigated,
followed by the oxidoreductases and transferases, the latter
class contains the kinases. However, the EC naming system,
which is based on considerations of chemical catalysis, is
restricted to exactly four levels of hierarchy and for instance
does not discriminate between the different types of protein
tyrosine kinases. In the MDDR01.1 database itself there is
no distinction made between the different protein kinase
inhibitors as well. In the case of cyclooxygenases (COXs),
the limitation to four levels of hierarchy in the EC system
again does not allow for distinguishing between the types
COX-1 and COX-2, although pharmacologically important
differences exist.

The second important group of targets are the GPCRs,
where most structures are either active on the peptide binding
or on the amine binding class A GPCRs. The GPCRDB uses
an unlimited number of hierarchy levels and the scheme
distinguishes between subtypes of receptors. The same is true
for the scheme of NR database, which was built by the same
researchers following the same guidelines and based on the
results of sequence analyses.

The LGICs are classified in three different superfamilies
without evolutionary relationship. Each of the LGICs consists
of several subunits: Five in the case of the nicotinic (cys-
loop) superfamily (nicotinic acetylcholine receptor, GABAA

and GABAC receptors, glycine receptors, 5-HT3 receptors
and some glutamate activated anionic channels), four in the
glutamate activated cationic channels, and three in the ATP
gated channels (ATP2x and ATP2z receptors). This leads
to a special problem as each subunit is a separate protein
recorded with its own ID in sequence databases. Different
types of subunits of the same receptor family can be
aggregated combinatorially to form an ion channel with
distinct functionality. Ligands can interact with binding sites
on the subunits controlling the opening and closing of the
channel or with the whole ion channel for example by
blocking the pore. The classification starts with the super-
classes and classes and continues with the subunits, shifting
the meaning of a record in the classification table from “is
an instance of” to “is part of”.

In Silico Screening.As a first application example, we
report a retrospective in silico screening experiment with the
reference set of 270 dopamine D2 receptor binding com-
pounds (Figure 4). Hereafter “binding” means agonists as
well as antagonists. All compounds in the candidate set were
ranked by their similarity and examined if they belonged to
the following classes: dopamine D2 binding compounds (248
possible hits); dopamine receptor binding compounds (one
hierarchy level up, 752 possible hits); and compounds
binding to amine binding class A GPCRs (two hierarchy
levels up, 4026 possible hits). The number of compounds
retrieved in each of these groups versus their similarity rank
is plotted in Figures 5-7. Almost all dopamine D2 ligands
were in the 10% of the database most similar to the reference
set (Table 1). These 10% cover 48% of compounds binding
to other dopamine receptors but not to D2. Of the ligands
binding to any other amine binding class A GPCR but not
to dopamine receptors, 30% were found in the 10% most
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similar structures. To illustrate what kind of structures are
retrieved by the reference set, we depict dopamine D3

receptor (Table 2, Figure 8) and serotonin 5HT1A receptor
(Table 3, Figure 9) ligands, respectively, as examples for

Figure 2. Overview of ligand-target classification applied to MDDR compounds. Part 1: Enzymes. As some compounds show activities
on more than one target, the number of compounds in a class may be smaller than the sum over the members of the subclasses. Only the
most investigated structures are shown as representatives. Numbers indicate the number of ligands annotated.
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ligands of an homologous dopamine receptor and ligands of
a more distant amine binding class A GPCR. Shown are

selected compounds found at distinct Tanimoto similarity
indices from 1 to 0.6 together with the reference set

Figure 3. Overview of ligand-target classification applied to MDDR compounds. Part 2: GPCRs, NRs and LGICs. Details as in legend
of Figure 2.
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compound which was the nearest neighbor responsible for
their identification. At a similarity of 0.6, 10% of the total
molecules screened were retrieved, and structures with a
lower similarity were not considered. In the case of the D3
binding compounds, five of the shown structures were
identified by one member of the reference set, whereas all
shown 5HT1A actives were identified by a different member
of the reference set underlining the usefulness of the
multistructure reference approach.

Library Design. Quantifying the focus of a combinatorial
library constitutes a second application example, which relies
on the possibility of accessing comprehensive sets of known
reference compounds. Assessment of focus is in principle
possible by comparing each compound of the candidate
library with reference sets. Such a focus analysis is shown
in Figure 10 for a tertiary amine combinatorial library
compared to known amine binding class A GPCR, peptide
binding class A GPCR, and LGIC ligands. As expected for
tertiary amines, the library is predicted to have a particularly
strong focus for monoamine binding GPCRs. Simultaneously
a substantial number of compounds have similarities greater

Figure 4. Examples of compounds in the dopamine D2 reference set (MDDR registry numbers in brackets).

Figure 5. In silico screening- retrieval experiment- searching
for dopamine D2 binding compounds, accumulated number of hits
vs similarity rank.

Figure 6. In silico screening- retrieval experiment- searching
for combined dopamine receptor binding compounds, accumulated
number of hits vs similarity rank.

Figure 7. In silico screening- retrieval experiment- for
combined amine binding class A GPCR compounds, accumulated
number of hits vs similarity rank.

Table 1: In Silico Screening Results Using D2 Dopamine Receptor
Ligands as Reference Set and Searching within the Candidate Set
for Ligands of the Listed Classesa

% of ligands retrieved

total
data
set D2

all
dopamine
receptor

all dopamine
receptors
except D2

amine
binding
GPCRs

amine binding
GPCRs not
dopamine

1 69 29 9 8 3
5 87 50 32 23 17

10 90 62 48 36 30

a Indicated are for each target class the retrieved fraction of actives
ligands within the 1%, 5%, or 10% compounds of the total candidate
data set most similar (ranked by similarity) to the D2 dopamine receptor
reference set.

952 J. Chem. Inf. Comput. Sci., Vol. 42, No. 4, 2002 SCHUFFENHAUER ET AL.



than 0.6 compared to peptide binding GPCR and LGIC
ligands.

DISCUSSION

Ligand Ontologies Bridging the Bio- and Cheminfor-
matics Worlds. By linking MDDR activity keys to phar-
maceutical targets within a classification scheme, we were
able to group the MDDR structures by their macromolecular
target classes. The four families, enzymes, GPCRs, NRs, and
LGICs, cover most of the biological targets annotated in the
MDDR activity keys. But there are targets still missing or
incomplete in our ontology, the most important of these are

the protein kinases, which need to be classified more in detail
as well as some oxidoreductase families like the cyclooxy-
genases or the monoamine oxygenases. Missing completely
in the ontology are the signal transducing membrane recep-
tors such as the cytokine receptors. This shows how
important it is to design a data structure for the classification
scheme which can be expanded and amended as our
knowledge about the pharmaceutical targets keeps growing.

What also has to be discussed is how to deal with different
binding sites on the same protein. It makes sense to treat
each of them as a target of their own, as each of them has
its own class of ligands which need not necessarily have
chemical properties in common with the others. However,
if one starts to screen for ligands of a new target, one often
does not know how the ligands interact with the target. This
will be known only later on in the drug discovery process

Table 2: Selected Pairs of Retrieved D3 Binding Compounds and
Their Nearest Neighbors in the D2 Reference Set at Distinct
Similarity Values

similarity
D3

compd
nearest neighbor
in reference set

1 15 1
0.95 16 1
0.94 17 2
0.90 18 3
0.85 19 3
0.80 20 4
0.75 21 3
0.70 22 3
0.65 23 3
0.6 24 5

Figure 8. Examples of dopamine D3 receptor binding compounds
identified with the D2 reference set (MDDR registry numbers in
brackets).

Table 3: Selected Pairs of Retrieved 5HT1A Binding Compounds
and Their Nearest Neighbors in the D2 Reference Set at Different
Similarity Values

similarity
5HT1A
compd

nearest neighbor
in reference set

1 25 6
0.93 26 7
0.90 27 8
0.85 28 9
0.80 29 10
0.75 30 11
0.70 31 12
0.65 32 13
0.6 33 14

Figure 9. Examples of serotonin 5HT1A receptor binding com-
pounds identified with the D2 reference set (MDDR registry
numbers in brackets).
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making an early classification of ligands and its use for in
silico screening difficult.

As the classifications for the GPCRs and NRs are sequence
analysis driven, one might consider working directly with
phylogenetic trees because this provides an ordering without
human decisions involved in building the classification
system. In the phylogenetic tree, the nodes where the
branches are separating remain anonymous. In a classification
or taxonomy names are given to those groups which share
commonalities. The names or identifiers for classes are very
important because they can be referenced by other databases.
Furthermore, not all existing drugs are yet classified to the
last subtype of their receptor. For example in MDDR, there
is an activity class for opioid agonists without further
specifying the receptor subtypes. In our classification scheme
this can still be linked to the common class of opioid
receptors. A phylogenetic tree is no constant frame of
knowledge as long as new proteins are still included. In
contrast, the classification implemented here is more con-
servative. A node in the classification tree representing a
target class will probably be kept, unless the whole clas-
sification scheme would have to be abandoned. If necessary,
in an edge between two nodes an additional node may be
inserted, but this will keep the identifier of the existing nodes
intact, so all references pointing to them will still be valid.
An additional table linking the leaf nodes of the ligand-target
classification tree to the sequences identifiers (e.g., SWISS-
PROT ID) of the precise molecular targets allows BLAST-
type sequence similarity-based identification of ligands of
next homologous receptors, relating in this sense ligands to
the sequences.

In Silico Screening and Library Design- Knowledge-
Based Approaches Founded on Ligand-target Classifica-
tion. The main purpose of our ligand ontology is that ligands
of specified levels can easily be collated to serve as
comprehensive reference sets for cheminformatics-based
similarity searches and for library design of target class
focused compound collections. In our retrospective screening
experiment for amine binding GPCR ligands, we have shown
that such reference sets could not only be used to identify
ligands binding to the same target as the reference com-
pounds but also to find ligands for more distant targets. This

illustrates the paradigm that ligands of closely homologous
receptors can generally be accepted as a starting point in
lead finding programs for receptors for which no specific
ligands are yet known.12 This clearly enlarges the scope of
similarity searching which is classically applied for a specific
target and not for target classes. In this case, the potential
for ligand identification drops with increasing phylogenetic
distance. The fact that different structures of the reference
set were responsible for the identification of hits shows the
superiority of a multistructure reference approach compared
to screens with a single query compound. Even if most hits
are identified by one reference compound, it is not known
before the screening which compound this will be. While
the nature of a simple Unity 2D type fingerprint tends to
retrieve compounds which are closely related to the chemical
scaffold of the query compound, a multistructure reference
set, composed by the use of the ligand ontology, still ensures
some diversity in the retrieved hits. This may lead to outliers
in some cases when the reference set contains an outlier itself
(e.g., structure1 - Figure 4 which led to the identification
of the D3 hits15 and16 - Figure 8 which do not have the
tertiary amine group commonly found in dopamine receptor
binding structures). Screens with a larger reference set as
the herein used D2 set will probably be dominated less by
outliers. Nevertheless a preprocessing of the reference set
could be useful. One can cluster the reference set by
similarity and can then identify singletons which may be
outliers. These can be eliminated, and of those clusters which
contain several compounds, a representative can be taken to
form a preprocessed reference set leading to a reduced
computational effort.

Although a multistructure reference set can ensure a certain
diversity of the results, efforts to improve the quality of hits
by using more sophisticated similarity measures depending
less directly on the chemical scaffold is certainly worth
investigating. Descriptors based on physicochemical proper-
ties,13 graph-theoretical descriptors,14 or molecular fields15

may be considered. Thus, we are evaluating currently for
the major target families how different similarity measures
for ligands reflect the similarity of their targets.

The ligand-target classification can also be used for the
analysis of corporate high throughput screening data. If one
links each assay to a target node in the classification scheme,
it is possible to select all assays related to a target family,
and in a second step all compounds which showed activity
in at least one of them can be used to collect all compounds
active for a target family. These compounds can then be
submitted to assays on related receptors or serve as reference
structures for further in silico screening or target class
focused library design. Both disciplines rely on the possibility
of retrieving comprehensive sets of ligands which are likely
to share a conserved molecular recognition mode.

CONCLUSION

Because biology works by applying prior knowledge
(“what is known”) to an unknown entity,3 in post-genomic
drug discovery research, targets can no longer be viewed as
singular objects having no inter-relationship. The structure-
activity relationship homology concept16 and chemogenom-
ics17,18 approaches which attempt to identify all possible
ligands of a given gene family are obviously well placed to

Figure 10. Focus of a tertiary amine combinatorial library.
Histogram of the maximum Tanimoto similarity between each
molecule of the library and reference sets obtained from the
MDDR01.1 database, including 7176 amine binding GPCR ligands
(blue), 2166 peptide binding class I GPCR ligands (orange), and
1165 LGIC ligands (green).
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further systematize the drug discovery process. To proceed
within such family or system approaches we have here
outlined the potential for in silico screening and library design
of adapting annotation schemes which were originally only
thought of for targets toward ligands. Our ligand ontology
addresses the four major target classes and will have to be
extended to include the novel target families of the genome.
Also, for enzyme ligands, the classification system should
be extended to differentiate subfamilies such as kinases. The
models of classification for GPCRs and NRs, which are based
on sequence analyses, are possibly best suited for the purpose
of identifying ligands which share commonalities in molec-
ular recognition. These developments will clearly benefit
from GO type annotation projects but will also have to be
adapted within the target view for their purpose in lead-
finding. Future developments could also include search
capabilities based on SCOP-3D folds or PROSITE motifs,
as they have already been implemented within the LIGAND
database of Japan’s GenomeNet for enzyme reactions.19
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