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Abstract - It is largely unknown how the properties 
of the auditory system relate to the properties of 
natural sounds. Here, we analyze representations of 
simulated neurons that have optimally sparse 
activity in response to spectrotemporal speech data. 
These representations share important properties 
with auditory neurons as determined in 
electrophysiological experiments. 

I. INTRODUCTION 
The properties of any sensory system should be 
matched to the statistics of the natural stimuli it is 
typically operating on [1]. Thus, it is interesting 
to compare the properties of sensory systems with 
the statistics of natural stimuli; and to analyze to 
what extend the neural properties can be 
understood in terms of optimally handling those 
stimuli. 

Significant parts of the visual system can 
be understood in terms of leading to optimally 
sparse neural responses in response to pictures of 
natural scenes. Searching for sparse 
representations on such pictures allows one, for 
example, to reproduce the properties of neurons 
in the lateral geniculate nucleus (LGN)[2] and of 
simple cells in the primary visual cortex [3-5]. 
Here a sparse representation has two distinct 
albeit related meanings. (1) The different neurons 
of the population should have significantly 
different properties to avoid redundancy. (2) At 
the same time the neurons should have sparse 
activities over time implying that they often have 
an activity close to zero and then sometimes have 
very high activitiy. Searching for such responses 
is also at the heart of independent component 
analysis (ICA)[6].  

Simple cells are visual neurons that are 
specific to position, orientation and spatial 
frequency of bars or edges. They can 
approximately be understood in terms of 
computing a localized linear function over their 
LGN inputs. It has recently been shown that 
neurons in the central auditory system share 
similar properties [7-9]. In particular, neurons in 
the primary auditory cortex AI can also be 
understood as linear filters acting upon an input 
that is local in time and local in tonotopic space 
(the space of the sounds frequency). These 
neurons are also often specific to orientation, that 
is, to changes of the underlying frequency.  

Here, we analyze if these linear neurons 
in the auditory system can also be understood in 

terms of leading to sparse activity in response to 
natural input, which in this case is speech data. 

II. METHODS 
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Figure 1: Methods 
A) Text from various German and English sources is read and 
the raw waveforms are recorded. This data is input to a model 
of the auditory system’s early stages resulting in a 
spectrogram B), where the strength of the activity is color-
coded. These spectrograms are subsequently cut into 
overlapping pieces of length 250 ms each. They are whitened 
using the first nPCA components only. The basis vectors of 
this PCA are shown in C), color-coded in a scale where blue 
represents small values and red represents large values. 
 
We obtain speech data from one voluntary human 
subject (KPK) using a standard microphone 
(Escom) and Cool Edit Pro software (Syntrillium 



software, Phoenix, USA) recording mono at 
44kbit, 16 bits precision (Fig 1A). This data is 
pre-processed to mimic the properties of the early 
auditory system [10, 11] using the “NSL Tools”  
MATLAB package (courtesy of the Neural 
Systems Laboratory, University of Maryland, 
College Park, downloadable from 
http://www.isr.umd.edu/CAAR/pubs.html).  

The resulting data can be viewed as 
spectrograms, which represent the time-
dependent spectral energy of sound. An example 
is shown in the Figures 1A and 1B, which show, 
respectively, the input and output of the model to 
the utterance “Es gibt kein Bier auf Hawaii”  (the 
title of a German folksong).  

 
Spectrograms are produced with two 

different sets of model parameters, one “high 
resolution”  and one “ low resolution” . The high-
resolution spectrograms have 64 points along the 
tonotopic axis, covering a frequency range from 
185 to 7246 Hz; over this range the low-
resolution spectrograms only have 16 points. 
Temporally, the data is arranged into overlapping 
blocks of 25 points, covering 250 milliseconds, 
and is subjected to a principal component 
analysis. The first nPCA components (200 for the 
high-resolution set and 100 for the low-resolution 
set) are all set to have unit variance 
(corresponding to whitening) and are 
subsequently used as input I(t) to the optimization 
algorithm. 50,000 subsequent samples are used as 
input. 

100 neurons are simulated, each of 
which has a weight vector W of length nPCA. 
The activities of the neurons are defined as: 

( ) ( )i iA t t= I W  

The parameters of the simulated neurons are 
optimized by scaled gradient descent [12] to 
maximize the following objective function, where 
<*> denotes the average over all stimuli:  
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The skewness is high for asymmetrical, skewed 
distributions, for which high positive values are 
sometimes reached, but not many significantly 
negative values are reached. There is an 
important difference between the visual system 
and the auditory system: In the visual systems 
bright edges are often seen on dark background 
and dark edges are also often seen on bright 

background. In the auditory system however the 
inputs from the cochlea that largely represent the 
presence of energy are bound to be positive. This 
makes skewness an appropriate objective 
function for such data. 

The optimal neuronal receptive fields are 
characterized by a weighted sum of the principle 
components. For each neuron, the relative weight 
of each principle component is determined by the 
optimized set of weights. The resulting functions, 
referred to as spectrotemporal receptive fields 
(STRFs), are then characterized to facilitate 
comparison with physiological data. 

Characteristics include the best 
frequency (BF), which is the spectral location of 
the maximum weight, and the excitatory-tuning 
bandwidth (Qn value), defined as the spectral 
width of the portion of the STRF within 1/sqrt(n) 
of the peak value, divided by the BF. 
Furthermore, we assess the separability and 
quadrant-separability of some STRFs. A 
separable STRF is one that is fully described by 
the product of a spectral function with a temporal 
function. A quadrant-separable STRF is not 
separable; however, its two-dimensional Fourier 
transform has separable quadrants. This pervasive 
feature of cortical neurons has recently been 
described in detail [7].  

III. RESULTS 
The first several principle components of our 
high-resolution speech data are shown in Figure 
1C. A number of features of these components 
can be observed. Those components that 
represent much of the variance change slowly in 
spectrum and in time. Thus, using only the first 
nPCA principal components for learning 
effectively low-passes the stimuli; however, these 
components alone account for more than 90 % of 
the total variance of the data. Interestingly, we 
have found that the form of the lowest 
components is extremely robust to changes to the 
spectrotemporal resolution of the peripheral 
auditory model. We perform two simulations, one 
with high tonotopic resolution, the other one with 
low tonotopic resolution to analyze the effects of 
the chosen representation 

IV. HIGH RESOLUTION  
In the high-resolution case the number 

of PCA components used (nPCA) is set to 200 
and the number of neurons is 100. The resulting 
STRFs of several of the optimized neurons is 



shown in Figure 2A. Note the horizontal-striped 
appearance of many of the functions; this is a 
common feature of the high-resolution results, 
and arises from the dominant presence of narrow 
harmonics in the spectrum of voiced speech. In 
fact, out of the 100 neurons, 37 are selective for 
voice pitch, 16 are selective for changing pitch, 
and 29 of them are primarily selective for a single 
frequency band, presumably due to a single 
harmonic (numbers obtained by manual 
inspection).  

Time-frequency localization is a very 
common characteristic of these simulated 
neurons; in this respect they have much in 
common with nature. Of the 100 neurons 98 are 
localized in time and all 100 are localized in 
spectrum (as estimated by visual inspection).  
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Figure 2: High Resolution Results 
A) The color-coded spectrotemporal receptive fields of 7 out 
of the 100 neurons are shown. B) The histogram of BF for our 
optimized neuronal population is shown. C) The average 
energy is shown as a function of frequency. D) The histogram 
of frequency-specificity, quantified by Q10, measured from 
cat auditory cortex[13]. E) The Q2 value for our simulated 
neurons is shown. Theoretically the Q2 values should be a 
factor of log(10)/log(2) (about 3.33) higher then the Q10 
values if we may assume Gaussian behavior of the response 
around the maximum. 
 

To further quantify these effects, we 
calculated various measures for the STRFs of our 
neurons (see Methods). As a first measure we 

calculate BF, the frequency that results in the 
strongest activity of a neuron. In Figure 2B, the 
results accumulated from all neurons are shown 
in histogram form. It can be seen however that 
the lower frequencies, over which voice pitch is 
predominantly manifested, are represented far 
stronger than the higher frequencies. This clearly 
deviates from the more uniform distributions 
commonly obtained in animal-physiology 
experiments (e.g. [14]), and rather seems to 
reflect the frequency distribution of our particular 
speech dataset, shown in Figure 1C. 

The distribution of Q10, the excitatory-
tuning bandwidth obtained from 
electrophysiological investigation of cat auditory 
cortex [13] is shown in Figure 2D.  The 
distribution of Q2 of our neuronal population is 
shown in Figure 2E. This Q measure quantifies 
the notion that the neuronal representations are 
spectrally localized. 

It should be noted that, as in [13], the 
STRFs are divided into two groups: A group with 
one peak, and a group with multiple spectrally 
separated peaks. This division is reflected in the 
multimodal distribution of Q2; the peak at low Q 
is mostly due to multi-peaked STRFs, while the 
higher-Q peak represents single-peaked STRFs. 
However, the physiological data shown in Figure 
2D only represents neurons with single-peaked 
frequency tuning curves. 

These simulations thus show that 
without preprocessing, many of the neurons 
represent pitch, a behavior that interestingly is not 
commonly observed in vivo. At the same time, 
much of the qualitative properties of cortical 
neurons can be reproduced. The neurons are 
specific to time and spectral frequency and 
partially also for frequency sweeps, just as 
observed in physiology [8, 14]. 

V. LOW RESOLUTION 
In the low resolution case the spectrograms are 
smoothed and resampled to only have 16 points 
along the tonotopic axis, nPCA is set to 100 and 
the number of neurons is 60. The resampling 
alleviated the computation. It also suppressed the 
strong tendency of the network to represent pitch. 
Furthermore, spectrally smoothed spectrograms 
are expected to better approximate the input to 
the central auditory system, since neurons there 
do not respond differentially to fine spectral 
features [15]. The optimal STRFs of several 
neurons is shown in Figure 3A. Note that the 



horizontal stripes, visible in Figure 2A, has 
vanished due to the smoothing. 

Figure 3B and 3C show jointly that 
again the preferred frequency histogram tends to 
follow the average energy distribution. In Figure 
3E we find that the rightmost peak of the Q 
distribution has shifted to lower values, relative to 
the high-resolution case (Figure 2E). This is 
expected since the downsampling lowpasses the 
data along the spectral axis. In the upper panel of 
Figure 3F, an STRF of a neuron measured from 
ferret auditory cortex [16] is shown; this can be 
compared with the STRF from a simulated 
neuron, shown in the lower panel. They share a 
certain degree of localization and smoothness, 
although the feature size of the simulated STRF is 
somewhat larger. 
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Figure 3: Low Resolution Results 
A) The color-coded spectrotemporal receptive fields of 7 out 
of the 100 neurons are shown. B) The histogram of BF for our 
optimized neuronal population is shown. C) The average 
energy is shown as a function of frequency. D) The histogram 
of Q10 measured from cat auditory cortex [13] is shown. E) 

The histogram of Q2 for our simulated neurons is shown. F) 
The STRF of a neuron measured from ferret auditory cortex 
[16] is shown (upper panel), along with the STRF of a 
simulated neuron. G) The upper two quadrants of the Fourier 
transforms for each of the STRFs are displayed. Both are well 
described by quadrant-separable functions (see text). 
 
A particularly intriguing result arises from 
assessing the separability of these two functions. 
Neither STRF is well described as being 
separable into a product of a spectral function 
with a temporal function (For the simulated 
STRF, the relative root-mean-squared (RMS) 
error is 31.1 %. Analysis of the real STRF is 
more involved, and follows from [7]). However, 
the quadrants of the Fourier transforms of both 
STRFs, shown in Figure 3G, are well described 
as being separable (Relative RMS error is 11.1 % 
for the simulated STRF). This non-trivial 
property, called quadrant separability, is 
commonly observed in auditory-cortical neurons 
[7], although its specific function is as yet 
unclear. Therefore, one promising point of value 
in this continuing investigation is the possibility 
to describe how statistics of natural auditory 
scenes might give rise to ill-understood functional 
cortical properties, such as quadrant separability. 

VI. DISCUSSION 
The type of representation chosen as input to a 
learning system is very important and strongly 
influences the resulting representations. When 
trying to understand the computational properties 
of neural systems, it is therefore helpful to have a 
thorough understanding of the appropriate input. 
Fortunately, there are a number of studies on the 
early stages of the auditory system that allow us 
to at least approximately choose the right input 
representation [10, 11].  
The selection of the input representation might 
also explain the differences to other theoretical 
studies of auditory learning. Anthony Bell [17] 
studied the learning of auditory temporal filters 
using ICA (searching for super-Gaussian 
projections on whitened data). He used raw 
waveforms as input, obtaining sets of filters that 
represent both the frequency envelope and the 
phase information. Our filters however only 
represent the envelope information. Only for 
impulsive sounds, such as tooth tapping, does the 
ICA algorithm lead to responses that are localized 
in time. Michael Lewicki [18] also studies 
learning from raw waveforms on auditory 
systems and shows that using overcomplete 
representations can significantly improve the 



model quality. Our study shows the expected 
effect, that choosing the type of input 
representation is important for the results that are 
obtained with such an ICA method. Using 
spectrograms instead of waveforms better 
represents the cortical situation and thus leads to 
responses that can better be compared to cortical 
responses. 

Many properties of the mammalian 
auditory system largely diverge from the values 
we found in this study. The preferred modulation 
frequencies both in time and in spectrum were 
clearly too low frequency.  Furthermore, they did 
not feature the bands of spectral and temporal 
inhibition that are commonly revealed by 
physiological experiments. We are currently only 
able to demonstrate qualitative behavior. It thus 
remains an important problem for further research 
to devise a compact learning mechanism that is 
able to reproduce much of the neuronal properties 
found in the auditory cortex, lending itself to a 
thorough comparison. 

It is interesting to compare learning of 
auditory receptive fields with the learning of 
visual receptive fields. Spectrotemporal receptive 
fields in the auditory system are best compared to 
spatiotemporal receptive fields in the visual 
system. In both cases some of the neurons are 
separable in space and time respectively spectrum 
and time. Other neurons are inseparable. In the 
visual system motion selective neurons are 
among those inseparable neurons. They can 
nevertheless be learnt maximizing the sparseness 
of the ensemble[19]. In the auditory system a 
large number of neurons are not separable in 
spectrum and time but instead are quadrant 
separable in Fourier space. Whether or not this 
property can be generalized to visual neurons 
remains an important question for further 
research. 

Interestingly the properties of the visual 
system are understood far better, and analyzed far 
more vigorously, than those of the auditory 
system. We consider it important to also analyze 
the auditory system since the statistics of their 
inputs, such as principal and independent 
components, at least superficially seem very 
different. If parts of the cortical algorithm are 
conserved over both auditory and visual system, 
studies of learning in the auditory system might 
lead to insights that can be helpful in 
understanding the visual system as well.  

All in all it is an interesting endeavor to 
describe representations of simulated neurons that 

are efficient with respect to some criterion for 
natural stimuli[1-3, 5, 12, 17-22]. This leads to 
very compact models that are able to at least 
qualitatively describe a number of features of the 
biological system [21]. In addition to that it 
might lead to insights why sensory systems have 
the properties they have and link computation to 
anatomical and electrophysiological detail. 
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