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We study the behavior of one-dimensional chaotic signals and filtering using the discrete
Haar wavelet and Daubechies wavelets.

Keywords: Discrete wavelets; filter; chaos.

Most discrete signals are filtered using linear difference equations, for example
y[n] =ayln — 1]+ (1 —a)z[n], n=0,1,..., (1)

where x[n] is the input signal, y[n] the output, y[—1] = 0, 2[0] = 0,and a (0 < a < 1)
is the filter parameter. Notice that y[n] depends upon previously computed values of
the filter output. Thus the chosen filter is an infinite response filter. It is well-known
that filtered chaotic signal can exhibit increases in observed fractal dimensions,!™®
for example the Ljapunov dimension. In the present note we study the Ljapunov
exponent of filtered chaotic one-dimensional maps using wavelets.

Let us first summarize some facts about the discrete wavelet transform.6 19 We
notice that within the discrete wavelet transform we distinguish between redundant
discrete systems (frames) and orthonormal, biorthonormal, ... bases of wavelets.
In our case the discrete wavelet transform (or DWT) is an orthogonal function,
which can be applied to a finite group of data. Functionally, it is very much like the
discrete Fourier transform, in that the transforming function is orthogonal, a signal
passed twice (i.e., a forward and a backward transform) through the transformation
is unchanged, and the input signal is assumed to be a set of discrete-time samples.
Both transforms are convolutions. Whereas the basis function of the Fourier trans-
form is sinusoidal, the wavelet basis is a set of functions, which are defined by a
recursive difference equation for the scaling function ¢:

M-1

ox) = Y (2w — k), (2)

k=0
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where the range of the summation is determined by the specified number of nonzero
coefficients M. Here k is the translation parameter. The number of the coefficients
is not arbitrary and is determined by the constraints of orthogonality and normal-
ization. Owing to the periodic boundary condition we have

Ci = Ck+nM » (3)

where n € N. We notice that periodic wavelets are only one possibility to deal with
signals defined on an interval. Generally, the area under the scaling function over

all space should be unity, i.e.,
/ ¢(x)de =1. (4)
R

From Eq. (2) it follows that

M-1

Z Cr — 2. (5)
k=0
In the Hilbert space La(R), the function ¢ is orthogonal to its translations; i.e.,
/¢ S k)dz =0, k#£0. (6)

What is desired is a function v, which is also orthogonal to its dilations, or scales,
ie.,

/w (20 — k) dz = 0. (7)

Such a function ¢ does exist and is given by (the so-called associated wavelet
function):

M

Y(x) =Y (1)1 kd(20 — k), (8)

k=1
which is dependent on the solution of ¢. The following equation follows from the
orthonormality of scaling functions

Z CkCk—2m = 250m 5 (9)
k

which means that the above sum is zero for all m not equal to zero, and that the
sum of the squares of all coefficients is two. Another equation, which can be derived

from ¢ (x) Lo(x — m) is:
Z(—l)kcl—kck—2m =0. (10)
k

A way to solve for ¢ is to construct a matrix of coefficient values. This is a square
M x M matrix where M is the number of nonzero coefficients. The matrix is
designated L with entries

Lij = C2i—j - (11)
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This matrix has an eigenvalue equal to 1, and its corresponding (normalized) eigen-
vector contains, as its components, the value of the function ¢ at integer values of
2. Once these values are known, all other values of the function ¢ can be generated
by applying the recursion equation to get values at half-integer =, quarter-integer
x, and so on, down to the desired dilation. This determines the accuracy of the
function approximation.

An example for 1 is the Haar function
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0 otherwise,

and ¢ is given by:

1 0<2<1,
o) = {0 otherwise. (13)
The functions
Ymom(z) =222z —n), mneZ, (14)

form a basis in the Hilbert space La(R). If we restrict m to m =0,1,2,... and
n=01,2...,2"—1, (15)

we obtain a basis in the Hilbert space L2[0,1].

This class of wavelet functions is constrained, by definition, to be zero outside
of a small interval. This is what makes the wavelet transform able to operate on
a finite set of data, a property which is formally called compact support. The
recursion relation ensures that a scaling function ¢ is nondifferentiable everywhere.
Of course this is not valid for Haar wavelets. The following table (Table 1) lists
coefficients for three wavelet transforms. We notice that for Daubechies-6 the sum
of the coefficients is normalized to v/2 and not to 2 as it is for the first two cases.

The pyramid algorithm operates on a finite set on N input data zg, 1, ..., xn-1,
where N is a power of two; this value will be referred to as the input block size.
These data are passed through two convolution functions, each of which creates

Table 1. Coefficients for three wavelet functions.

‘Wavelet co c1 c2 c3 cy4 cs5

Haar 1.0 1.0

. 1 1 1 1
Daubechies-4 Z(1+\/§) Z(3+\/§) 1(3—\/3) Z(l_\/g)

Daubechies-6 0.332671 0.806891 0.459877 —0.135011  —0.085441 0.035226
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an output stream that is half the length of the original input. These convolution
functions are filters, one half of the output is produced by the “low-pass” filter:

N-1
1 , N
ai:?jiocm_j—i_le, 120,1,...,3—1, (16)

and the other half is produced by the “high-pass” filter function:

1 N-—1 . N
bi= 3 Z)(A)ch,gizj, i=01,...,5 1, (17)
j:

where N is the input block size, c; are the coefficients, = is the input function,
and a and b are the output functions. In the case of the lattice filter, the low- and
high-pass outputs are usually referred to as the odd and even outputs, respectively.
In many situations, the odd or low-pass output contains most of the information
content of the original input signal. The even, or high-pass output contains the
difference between the true input and the value of the reconstructed input if it
was to be reconstructed from only the information given in the odd output. In
general, higher order wavelets (i.e., those with more nonzero coefficients) tend to
put more information into the odd output, and less into the even output. If the
average amplitude of the even output is low enough, then the even half of the
signal may be discarded without greatly affecting the quality of the reconstructed
signal. An important step in wavelet-based data compression is finding wavelet
functions, which cause the even terms to be nearly zero. However, note that details
can only be neglected for very smooth time series and smooth wavelet filters, a
situation which is not satisfied for chaotic time signals.

The Haar wavelet represents a simple interpolation scheme. After passing these
data through the filter functions, the output of the low-pass filter consists of the
average of every two samples, and the output of the high-pass filter consists of
the difference of every two samples. The high-pass filter contains less information
than the low pass output. If the signal is reconstructed by an inverse low-pass filter
of the form:

N/2—1

,TJL: Z Cgi_j+1ai, jZO,l,...,N—l, (18)
=0

then the result is a duplication of each entry from the low-pass filter output. This is a
wavelet reconstruction with 2x data compression. Since the perfect reconstruction
is a sum of the inverse low-pass and inverse high-pass filters, the output of the
inverse high-pass filter can be calculated. This is the result of the inverse high-pass
filter function

N/2—1 ‘
i = Z (=1)7¢cj_1-2ibi, j=0,1,...,N—1. (19)
=0
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The perfectly reconstructed signal is:
=l 4" (20)

where x is the vector with elements x;. Using other coeflicients and other orders
of wavelets yields similar results, except that the outputs are not exactly averages
and differences, as in the case using the Haar coefficients.

Our input signal is given as the solution of the logistic map

x[t 4+ 1] = 42[t](1 — x[t]) , (21)

where z[0] € [0, 1]. The properties of the logistic map are well-known.!! For almost
all initial values we find that the Ljapunov exponent of the logistic map is given by
In(2). We apply the Haar wavelet to filter the time series (zo, 21, . . ., ny—1) resulting
from the logistic map in the chaotic regime. The filter decomposes the signal into the
moving average coefficients {a;} and details {b;} with ¢ =0,1,..., N/2 — 1. Owing
to Broomhead et al. the complete set of coefficients {a;, b;} have the same Ljapunov
exponent as the original time series. The reason is that Haar (and Daubechies)
wavelets are finite impulse response filters and that the convolution is performed
only once. Therefore we deal with a nonrecursive finite impulse filter. Using the
time series given by the logistic map (21) we evaluate z]L, zf using Egs. (16), (18)
and (19). We have ' = ¥, | for j even and z! = —zf! | for j even. We use the
series x]L for the calculation of the Ljapunov exponent. Notice that in the case of
the logistic equation (21) the even output resulting from Haar wavelets, i.e., the
details, contain nearly as much information as the odd output, i.e., the averages.
We remove the duplication of each entry of zJL and calculate the Ljapunov exponent
of this time series. Thus the size of the time series is N/2. An algorithm to find
the Ljapunov exponent from time series is described by Steeb.!' The Ljapunov
exponent is much larger than In(2) for this time series, i.e., the time series becomes
more chaotic.

Using the coefficients for the Daubehies-4 and Daubechies-6 wavelet we find
similar results, i.e., the Ljapunov exponent is much larger than In(2). Furthermore,
for other one-dimensional chaotic maps we also find similar results.
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