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We couple a previously studied, biologically inspired neurotrophic model
of activity-dependent competitive synaptic plasticity and neuronal devel-
opment to a neuromorphic retina chip. Using this system, we examine the
development and refinement of a topographic mapping between an ar-
ray of afferent neurons (the retinal ganglion cells) and an array of target
neurons. We find that the plasticity model can indeed drive topographic
refinement in the presence of afferent activity patterns generated by a
real-world device. We examine the resilience of the developing system to
the presence of high levels of noise by adjusting the spontaneous firing
rate of the silicon neurons.

1 Introduction

Exposing biological models to the full complexity of real environments pro-
vides far better and more rigorous tests of their underlying assumptions
and mechanisms than simulating their environments on computers. Such
simulations generally fail to model details of inherent noise and irregulari-
ties in the environment, some of which may have a significant influence on
the development and functioning of the modeled biological system and the
performance of the model. For the purposes of sensory-processing models
in the neurosciences, it is therefore desirable to generate afferent electri-
cal activity patterns for input into neuronal networks by using real-world
sensory-transduction devices. Most work done according to this paradigm
uses standard electronic sensing devices, such as video cameras and micro-
phones, which do not bear much similarity to biological sensors beyond the
fact that they transduce the sensory signal into an electrical one. A recent
alternative to using such traditional sensors is provided by the relatively
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new concept of neuromorphic engineering (Mead, 1989). Neuromorphic
engineering typically uses analog VLSI (aVLSI) technology to implement,
at the level of neuronal processing elements and the electrical signals they
generate, key features of the low-level sensory processing found, for exam-
ple, in the visual or auditory systems. Perhaps the best-known product of
neuromorphic engineering is the so-called silicon retina, a device that gen-
erates retinal ganglion cell–like output in response to optical stimuli falling
on its surface.

After an early attempt to build a retina model from discrete electronic
components (Fukushima, Yamaguchi, Yasuda, & Nagata, 1970) that already
showed the basic spatiotemporal filtering behavior observed in biological
retinae, a host of retina-like integrated circuits have been developed. These
circuits differ in the types of retinal functions they implement and the de-
tail with which they model these functions. Depending on the intended
applications, some implementations focus on modeling spatial properties
of the inner and outer plexiform layers (Boahen, 1999), while others, at the
expense of detailed spatial modeling, put more emphasis on reproducing
temporal dynamics, such as adaptation in the photoreceptors (Mahowald,
1991; Delbrück & Mead, 1994). For more extensive reviews of neuromor-
phic vision chips we refer to the literature (Etienne-Cummings & Van der
Spiegel, 1996; Moini, 1999).

For the work examined here, a model has been used that restricts itself to
temporal aspects of retinal processing in favor of high processing densities
and low fixed-pattern noise (Kramer, 2002a). It implements the separation
into ON and OFF channels found in the retina and the lateral geniculate
nucleus, shows quickly decaying transient responses, as found in the mag-
nocellular pathway projecting from the retina into the visual cortex, and
employs the spike-based activity encoding of the retinal ganglion cells and
later visual processing stages (Kramer, 2002b).

Silicon retinas have so far mainly been used to visualize the retinal output
and to demonstrate its qualities. But they were also instrumental in driving
the development of an event-driven, asynchronous communication infras-
tructure for neuromorphic chips and other systems (Lazzaro, Wawrzynek,
Mahowald, Sivilotti, & Gillespie, 1993; Mortara & Vittoz, 1994; Deiss, Dou-
glas, & Whatley, 1998; Boahen, 2000), which has been adopted for this work.
A few attempts have been made to use this infrastructure to couple retina
chips to other neuromorphic circuits implementing higher-level visual pro-
cessing (Mahowald, 1994; Venier, Mortara, Arreguit, & Vittoz, 1997; Indiveri,
Whatley, & Kramer, 1999; Higgins & Koch, 2000; Indiveri, Mürer, & Kramer,
2001; Liu et al., 2001). Recently, an autoconfigurable neuromorphic chip
that models the activity-dependent release and uptake of a diffusible neu-
rotropic factor has been developed. It uses a fixed set of gradient-sensing
silicon growth cones, interspersed within a two-dimensional array of target
neurons, to wire together neurons that fire together (Kwabena Boahen, per-
sonal communication, 2001). However, to our knowledge, no attempt has
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been reported so far that uses a neuromorphic vision chip in conjunction
with a detailed model of synaptic plasticity that permits synaptic sprouting
and retraction.

Here, we explore the coupling of a silicon retina to a biologically in-
spired model of anatomical, activity-dependent competitive synaptic plas-
ticity and neuronal development. This model is inspired by recent data im-
plicating a class of molecular factors, called neurotrophic factors (NTFs), in
activity-dependent synaptic competition in the developing vertebrate ner-
vous system (for a review, see, for example, McAllister, Katz, & Lo, 1999).
The model has been developed, extensively analyzed, and applied in sim-
ulation to the development of various systems, including the visual system
and the neuromuscular junction (Elliott & Shadbolt, 1998a, 1998b, 1999;
Elliott, Maddison, & Shadbolt, 2001). Coupling this model of synaptic plas-
ticity to a neuromorphic chip not only permits us to explore further the
properties of the chip but also to determine whether the model can suc-
cessfully drive normal development in the presence of realistic, rather than
simulated, evoked afferent activity patterns.

We consider in particular the competitive, activity-dependent develop-
ment of an orderly topographic projection from an array of afferent neurons,
representing the neuromorphic vision chip, to an array of target neurons.
Such a system could represent, for example, the development of the retino-
tectal system of amphibiums and fish, which is known to develop and regen-
erate in an activity-dependent, competitive manner (Meyer, 1983; Schmidt
& Edwards, 1983; Schmidt & Eisele, 1985). We (Elliott & Shadbolt, 1999) and
others (see, for example, Goodhill, 1993; Sirosh & Miikkulainen, 1997) have
previously considered the development of retinotopic maps, although only
in the presence of simulated afferent input.

2 The Neuromorphic Chip

The neuromorphic chip consists of a 16 × 16 square array of pixels (picture
elements) consisting of adaptive photoreceptors with rectifying and thresh-
old differentiating elements. The chip responds to ON and OFF transient
optical signals at different output terminals. In response to a sufficiently
large ON or OFF transient, which in an imaging setup typically corresponds
to a moving edge, a pixel generates a single binary spike or a train of binary
spikes, depending on the shape of the transient and the pixel’s refractory
period, which can be globally set with a bias control. For short refractory
periods, a pixel emits a burst of spikes, even for sharp transients, and is thus
said to be in the bursting mode, while for long refractory periods, even a
prolonged transient can evoke only a single spike, and the chip is then said
to operate in the nonbursting or single-spike mode. The response threshold
and the spontaneous firing rate of the pixel can be varied separately for the
ON and OFF pathways with bias controls. For example, the thresholds can
be set such that only one of the pathways shows any response, and sponta-
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neous firing can be completely suppressed if desired. The spikes from the
two outputs of the different pixels in the array are filtered through an ar-
biter system, determining the order in which they are multiplexed to be sent
off chip. Communication with other devices obeys a standard protocol, ac-
cording to which the spikes are placed on an asynchronous communication
bus as binary addresses that code for the identity of the sending neurons.
In our case, the address codes for the location of the pixel in the array and
its output terminal (ON or OFF). Data traffic on the communication bus is
regulated using a four-phase handshaking protocol. Bus addresses rapidly
decay to zero in the absence of further spiking activity.

The chip is coupled to a standard PC running under Linux for data ac-
quisition purposes. Due to unresolved difficulties in the rate of processing
interrupts by the Linux kernel, it has been found simplest to set the chip
in free running mode by shorting its handshaking pins, and reading the
address bus, connected to the computer’s parallel port, at a rate set by the
speed of the computer simulation. Such an approach, however, entails two
problems. First, without reading the status of the handshaking pins, it is
impossible to determine whether a zero address (X = 0, Y = 0, these being
pixel coordinates on the chip) on the bus corresponds to a decayed address
in the absence of recent spiking activity or to a recent spike generated by
the (0,0) pixel. All zero address reads are therefore discarded, so that the
(0,0) pixel is ignored. Second, in free running mode, the computer can read
multiple times the same address, generated from a single-spike event, be-
fore it decays to zero. In bursting mode, when each pixel generates several
spike requests in response to one ON or OFF edge, it is therefore impossible,
without examining the handshaking pins, to distinguish multiple reads of
the same spike event from multiple reads of the same address generated
by several spike events from the same pixel. The second problem can be
eliminated by setting the chip to nonbursting mode, so that precisely one
spike is generated in response to each ON or OFF edge, and by discarding
subsequent consecutive reads of any new address on the bus. Using the
nonbursting mode also practically eliminates a third possible problem: that
spikes may be ignored by the PC due to interspike intervals being shorter
than the PC’s read period. This would happen in the presence of strong ac-
tivity on the bus, given that the maximum communication rate of the chip
is significantly larger than the maximum read rate of the PC. We find that
our approach generates data that reflect very accurately the optical stimuli
presented to the chip.

Optical stimuli for the chip are generated on the LCD monitor of the
same PC as is used for data acquisition. The stimuli consist of eight separate
sequences of images, each sequence corresponding to a white bar sweeping
across a black background in a window on the monitor. The sequences are
distinguished only by the orientation and direction of motion of the bar.
A bar can be horizontal, vertical, or diagonal (on either diagonal) with re-
spect to the orientation of the rows of the array and move in either direction
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perpendicular to the bar’s orientation. All bars are sufficiently long to fill
the field of view of the chip (i.e., the bars are effectively infinitely long,
although of finite width). These sequences are repeatedly played without
interruption, each new sequence being selected randomly after the com-
pletion of the previous one. The speed of the bar is largely unimportant.
Provided that the speed is neither so low nor so high that the chip does not
respond faithfully to an edge, any variation in intermediate speeds merely
tests the computer’s capacity to process the captured data rapidly enough
before another set of data is captured. The optical stimuli are focused onto
the chip’s light-sensitive surface by a variable-aperture, variable-focus lens.
These stimuli consist of both a leading ON edge and a trailing OFF edge.
However, because the chip’s response to ON and OFF edges is not quite
symmetric and because we require only one response type for this work,
the ON responses from the chip are suppressed.

3 The Neurotrophic Model of Plasticity

We briefly describe our neurotrophic model of anatomical, activity-depen-
dent, competitive synaptic plasticity and its application to the development
of topography. A fuller description, derivation, and discussion of the model
and its application to various systems can be found elsewhere (Elliott &
Shadbolt, 1998a, 1998b; 1999; Elliott et al., 2001). Our discussion of the model
is at first general. We then discuss specific features of the implementation
of the model necessitated by its coupling to the neuromorphic chip.

Let letters such as i and j label afferent or presynaptic cells and letters
such as x and y label target or postsynaptic cells; the vector character of
these labels is left implicit for the purposes of notational simplicity unless
indicated otherwise. Let sxi denote the number of synapses projected from
afferent i to target x, and let ai ∈ [0, 1] denote the activity of afferent i. Then
our basic equation for the evolution of sxi is given by

dsxi

dt
= εsxi

[
(a + ai)ρi∑
j sxj(a + aj)ρj

∑
y

�xy

(
T0 + T1

∑
j syjaj∑
j syj

)
− 1

]
. (3.1)

In this equation, T0 and T1 represent, respectively, an activity-independent
and a maximum activity-dependent release of NTF by target cells; the pa-
rameter a represents a resting NTF uptake capacity by afferents. These three
parameters, through the combination c = T0/(aT1), determine whether com-
petitive dynamics are present in the model: for values of c below a calculable
threshold, competition occurs, while for values of c exceeding this threshold,
competition breaks down (Elliott & Shadbolt, 1998a). Analysis shows that a
must be neither too large nor too small, so we set a = 1 as in most previous
work. T1 is an overall scale factor for the number of synapses and may be
set for reasons of numerical convenience, but without any loss of generality,
to T1 = 20. Selecting a value of T0 = 0 will ensure the maximum rate of
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map development, so this is what we use. The function �xy characterizes
the diffusion of NTF between target cells. Alternatively, it may be thought of
as encoding lateral interactions between target cells, with excitatory lateral
interactions (positive �xy) enhancing target cell NTF release and inhibitory
lateral interactions (negative �xy) suppressing NTF release. For simplicity,
we take �xy to be a gaussian with characteristic width σ = 0.75, consistent
with previous work (Elliott & Shadbolt, 1999). NTF receptor dynamics are
encoded in the function ρi = āi/

∑
x sxi, where āi denotes the recent average

activity of afferent cell i. It can be shown (Elliott & Shadbolt, 1998a) that
if �xy is nonnegative, then NTF receptor dynamics are required to ensure
that each afferent cell always innervates at least one target cell. However,
if �xy possesses a Mexican hat profile, with an excitatory center and in-
hibitory surround, NTF receptor dynamics can be discarded. Finally, ε sets
the overall rate of plasticity. Here, we set ε = 0.02, which is sufficiently small
to prevent development from being disrupted by too great a dependence
on temporally recent stimulation and sufficiently large to allow adequately
short run times.

To apply this model to the development of a topographic mapping be-
tween an afferent structure and a target structure, we suppose that the af-
ferent and target cells are separately organized into two square arrays of
cells. Although not necessary, for convenience we take these arrays to be of
the same size, so that the number of target cells equals the number of affer-
ent cells. Were the topographic mapping between these two sheets of cells
perfect, each afferent cell would innervate precisely one target cell—the tar-
get cell that would be in register with it were the two sheets superimposed
without distortion. Such a mapping ensures that neighborhood relations on
the afferent sheet are preserved on the target sheet and vice versa and are
expected to develop from an initially unrefined mapping in which these
relations are not at first respected. We establish an initial unrefined pat-
tern of connectivity between the afferent and target sheets by following the
method used by Goodhill (1993). Let dmax denote the maximum distance
(in units of cell spacing) between any pair of cells in the target sheet. For a
given afferent cell, let d denote the distance between any randomly selected
target cell and the target cell to which the afferent cell would project were
topography perfect. Then the number of synapses between the afferent cell
and the randomly selected target cell is set to be proportional to

β

(
1 − d

dmax

)
+ (1 − β)n, (3.2)

where n ∈ [0, 1] is a randomly selected number for each such pair of target
and afferent cells. The parameter β ∈ [0, 1] defines the topographic bias in
the initial projections (Goodhill, 1993). A value of β = 0 gives no initial to-
pographic bias, with entirely random connections between the two sheets.
A value of β = 1 gives maximum bias, so that an afferent cell projects max-
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imally to its topographically preferred target cell, with projections falling
linearly with increasing distance away from this cell. Consistent with pre-
vious work, we usually set β = 0.5 (Elliott & Shadbolt, 1999); we will also
examine the impact of decreasing the value of β on our results.

In order to depict in graphical form the topographic representation of the
afferent sheet on the target sheet, we use the following method. First, for
each target cell, we calculate the center of mass (CoM) of afferent projections
to that cell, so that we evaluate

�MCoM
�x =

∑
�ı �ıs�x�ı∑
�ı s�x�ı

, (3.3)

where we have restored the vectorial nature of the afferent and target cell
labels for clarity. The positions defined by these vectors are then plotted in
space and connected by lines according to the nearest-neighbor relations
on the target sheet: the positions corresponding to �MCoM

�x and �MCoM
�y are

connected by a line if, and only if, cells �x and �y are nearest neighbors on the
target sheet; this is repeated for all such pairs. Increasing deviations of the
resulting pattern of lines away from a regular square grid of lines represent
increasing disruption of the topographic representation of the afferent sheet
on the target sheet.

We now turn to a discussion of the features of the implementation of
the model that are particular to its coupling to the neuromorphic chip.
The silicon retina is a square array of 16 × 16 pixels. Hence, the array of
target cells is also 16 × 16. In free running mode, we discard data corre-
sponding to a zero address on the bus and so ignore the (0,0) pixel on the
retina. Correspondingly, we discard the (0,0) neuron in the target sheet.
This is achieved by removing all projections from the (0,0) afferent pixel to
the target sheet and all projections to the (0,0) target cell from the afferent
sheet.

Our plasticity model is not a spiking model, but rather uses an instan-
taneous firing rate, ai ∈ [0, 1]. In principle, we could capture one spike at a
time from the chip and process this single spike according to equation 3.1.
However, single spikes processed in this way by our model would lack any
spatial or temporal information about the structure of the optical stimuli
presented to the chip, and consequently topographic refinement would not
occur. We therefore capture, or “bin,” several spikes before simultaneously
processing all of them according to equation 3.1. In bursting mode, it is
possible that each pixel could spike several times during a binning read,
thus necessitating a somewhat ad hoc procedure for converting spike num-
bers with variable maxima per bin into instantaneous rates. In nonbursting
mode, for a typical moving edge, each stimulated pixel spikes precisely
once. In this mode, therefore, ai conveniently takes only binary values, so
that ai ∈ {0, 1}, without the need for any arbitrariness in the conversion to
an instantaneous rate.
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Figure 1: The development of the topographic mapping between the neuromor-
phic chip’s retinal sheet and a target sheet of neurons, with the binning at each
iteration of 32 spikes. Each map is generated as discussed in the text and rep-
resents the state of topography at the iteration number indicated immediately
above it.

Because the retinal array is 16 × 16, a horizontally or vertically moving
edge generates successive sequences of 16 spikes, the spikes being generated
by the line of pixels on which the edge instantaneously falls. We therefore bin
integral multiples of 16 spikes during the data acquisition process, before
processing the spike data using equation 3.1. In fact, we will show results
from the binning of 16, 32, and 64 spikes.

4 Results

We now turn to a presentation of our results. A run typically consists of
10,000 to 20,000 iterations, each iteration corresponding to the capturing
and processing, via equation 3.1, of a fixed number of spikes from the chip.
The number of spikes captured per iteration influences the final quality of
the topographic mapping from the retinal sheet to target sheet and affects the
overall rate of topographic error reduction. We consider the binning of 16, 32,
and 64 spikes and perform several complete runs for each bin size. For each
bin size, all runs are qualitatively very similar. We therefore characterize
the results for each bin size by randomly selecting a representative run
from each case.

For the binning of 32 spikes, we show, in Figure 1, the refinement of
topography over the period of development. By approximately 10,000 it-
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erations, topographic development is largely complete, with no significant
further changes occurring with increased iteration numbers. Initially, the
topographic map is tightly folded and disrupted. For example, for target
cells near the edges of the sheet, considerable afferent input is derived ini-
tially from the opposite edge of the afferent sheet. Hence, the center of mass
of afferent projections at first is skewed toward the center of the afferent
sheet. As development proceeds, the map unfolds, with the centers of mass
drifting in the direction of perfect projections, although nonuniformities in
the emerging topographic grid remain. By about 6000 iterations, the map
is nearing its final structure. Edge effects remain even at 10,000 iterations,
although these would likely be reduced by greatly increasing the number
of iterations. The “hole” at the top left corner of the map corresponds to the
missing (0,0) afferent and target cells. Although the afferent input is derived
from a real-world device and not simulated, these results compare very fa-
vorably with those obtained from simulated retinal inputs (Goodhill, 1993;
Elliott & Shadbolt, 1999). Corresponding to Figure 1, in Figure 2 we show
the development of the receptive field of a typical target cell near the center
of the target sheet. The development of this cell’s receptive field shows that,
as with the development of the overall topographic map, the receptive field
is nearly mature at 6000 iterations.

In Figure 3, we show the final topographic maps obtained from binning
16, 32, and 64 spikes, where the data for 32 spikes are identical to those used
to generate Figures 1 and 2; these maps represent 17,500, 10,000, and 10,000
iterations of development, respectively. There is little qualitative difference
between the maps for the binning of 32 or 64 spikes; both are nearly, although
not quite, perfect. For 16 spikes, however, the map, although well developed,
does not exhibit the quality of the maps for larger numbers of spikes. This
is because the captured activity patterns represent only the leading edge of
a horizontally or vertically moving bar and lack any structure in a direction
perpendicular to the orientation of the bar’s edge. A very similar result
would be obtained with simulated retinal data in which just single lines of
retinal cells are activated across the retina.

Figure 4 shows the change in the overall topographic error in the maps
as development proceeds for the 16, 32, and 64 spike data sets shown in
Figure 3. At each iteration, the topographic error is calculated simply as
the average over all target cells of the distance (in units of cell spacings)
between a target cell’s center of mass input and the afferent cell that would
project to the target cell were topography perfect. The greatest rate of error
reduction is achieved with the binning of 64 spikes. Nevertheless, although
32 spikes result in a slower decrease in topographic error, the final errors
in the mature states for both 32 and 64 spikes are nearly identical. The
residual error in these systems is due largely to the edge effects previously
discussed. With 16 spikes, the error reduces and stabilizes by around 10,000
iterations but remains higher than the final error for 32 or 64 spikes. In
addition to edge effects, this higher error reflects the slightly greater dis-
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Figure 2: The development of the receptive field of a target cell near the cen-
ter of the target sheet for the same system as shown in Figure 1. Each square
represents an afferent cell’s input to the target cell, with the gray-scale value
of the square indicating the number of synapses projected by that afferent cell.
A white square (“Min”) denotes no synapses, a black square (“Max”) denotes
the largest number of synapses projected by an afferent to the target cell, and
shades of gray interpolate between these extremes.

 ! # % ' ( * + - . # % ' ( * + ! 1 # % ' ( * +

Figure 3: Final states of the topographic mappings between the neuromorphic
chip’s retinal array and a target sheet for three different levels of spike binning
per iteration. The number of spikes per bin used to generate a map is indicated
immediately above the map.



Developing Topography Using a Neuromorphic Vision Chip 2363

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

T
op

og
ra

ph
ic

 E
rr

or

4

Iteration Number

163264

Figure 4: The change in the overall topographic error in the development of the
topographic maps, calculated as discussed in the text, plotted against iteration
number, for the same three data sets used to generate Figure 3. The number
attached to each curve indicates the number of spikes per bin used to generate
the data.

ruption in the maps generated by the binning of fewer spikes, as seen in
Figure 3.

In terms of maximizing the rate of topographic error reduction, for the
parameter values used in the simulations of our plasticity model, bins of
64 spikes appear to be approximately optimal. If we bin larger numbers
of spikes per iteration (96 or 128 spikes, for example; data not shown), we
find that the error curves initially follow very closely that for 64 spikes in
Figure 4 but eventually depart from it, leaving higher residual errors. This
behavior reflects the way in which the spike bin size affects the correlations
in the afferent activity patterns experienced by the developing neuronal
network. Once afferent correlations (and hence spike bin size) exceed some
threshold, competition between spatially neighboring afferent cells begins
to break down or becomes tempered, although competition between more
distant afferent cells remains unchanged. Hence, a gross, overall retinotopy
continues to emerge rapidly, but topographic refinement at a fine-grained
level does not occur because nearby afferents’ activities are too well corre-
lated. For a sufficiently large number of spikes per bin, no error reduction
will occur at all, corresponding to a complete breakdown of competitive
dynamics.

For bins of 32 spikes and 10,000 iterations in each case, we examine the
dependence of the final maps on the parameter β, which determines the
topographic bias in the initial, unrefined mapping between the afferent and
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Figure 5: Final states of the topographic mappings between the neuromorphic
chip’s retinal array and a target sheet for three different values of the initial
topographic bias parameter β. The value of β used to generate a map is indicated
immediately above the map. In all cases, 32 spikes are binned per iteration.

target sheets. All the data above are generated for a value β = 0.5, which
falls midway between no initial bias, β = 0.0, giving a completely random
initial map, and maximal bias β = 1.0, giving a well-ordered initial map.
Figure 5 shows representative examples of the maps generated with smaller
values of β, so that the initial topographic bias is smaller. For β = 0.4 and
β = 0.3 (data not shown), the final maps are essentially identical to those
generated with β = 0.5. For β = 0.2, we see a well-ordered map, although
distortions particularly around the edges of the map are beginning to ap-
pear. For β = 0.1, these edge distortions become more significant, but the
center of the map remains well structured. For β = 0.0, corresponding to
an initially completely random map, a few small patches of locally refined
topography emerge, but there is no global order to the map. Figure 6 shows
the change in the overall topographic error in these maps during develop-
ment for these three smaller values of β. The topographically refined patches
for β = 0.0 explain why the topographic error actually increases over time
in this case: the absence of global order means that synaptic connections
may be removed from areas of lower topographic error in favor of higher
correlations in areas of greater topographic error.

Finally, we examine the robustness of our results to noise. For all data pre-
sented above, spontaneous firing of the silicon retina has been completely
suppressed, so that pixels generate a spike only in response to a moving
edge. Turning up the spontaneous firing rate introduces noise into the cap-
tured activity patterns, allowing us to determine how robust our results are
to such noise. We bin 64 rather than 32 spikes in order to allow a reason-
able number of both edge and spontaneous events to be caught during each
capture phase, and set β to its usual value, β = 0.5. In Figure 7, we show
typical examples of captured events, in response to a horizontally moving
vertical edge. The percentage figure associated with each set of data gives
an estimate of the amount of noise in the data, calculated simply as the ratio
of the number of spontaneous to total spike events per bin. Figure 8 shows
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Figure 6: The change in the overall topographic error in the development of
the topographic maps, calculated as discussed in the text, plotted against it-
eration number, for the same three data sets used to generate Figure 5. The
number attached to each curve indicates the value of β used to generate the
data.

? @ A B ? @ A D ? @ A F ? @

Figure 7: Representative examples of captured spikes (64 spikes binned per
iteration) in response to a moving edge in the presence of spontaneous firing
from the chip’s pixels. Each 16 × 16 array of squares represents the array of
pixels on the chip, a black square denoting a pixel that has spiked during the
binning period and a white one a pixel that has not spiked. The percentage
figure above each array gives an estimate of the level of spontaneous firing for
that data set.

the maps generated in the presence of spontaneous activity from the chip
after 10,000 iterations. For a spontaneous firing rate of ∼40% (so that ∼40%
of active pixels are not associated with an edge), the final map, although
exhibiting slight distortions, is quite good. The topographic error remaining
in this map is ∼0.5 (in units of cell spacings), which compares very favorably
to the results above despite the high level of noise. Even for a spontaneous
firing rate of ∼50%, the final map still possesses well-developed structure,
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Figure 8: Final states of the topographic mappings between the neuromorphic
chip’s retinal array and a target sheet for three different levels of spontaneous
activity on the chip. The spontaneous activity level present in generating a map
is indicated immediately above the map.

Figure 9: The change in the overall topographic error in the development of the
topographic maps, calculated as discussed in the text, plotted against iteration
number, for the same three data sets used to generate Figure 8. The number
attached to each curve indicates the spontaneous activity level used to generate
the data.

although the distortions are much larger, giving a remaining topographic
error of ∼1.0. For ∼60% spontaneous firing, however, the final map has
barely unfolded, the remaining topographic error being ∼4.5, close to its
initial value. Figure 9 shows the change in the overall topographic error in
these maps during development for the data sets shown in Figure 8.
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5 Discussion

We have shown that a silicon retina, responding to a moving bar gener-
ated on an LCD display, can be used, in conjunction with a biologically
inspired neurotrophic model of neuronal development, to drive the topo-
graphic refinement of afferent projections to a sheet of target neurons and
establish a nearly perfect one-to-one mapping between afferent and target
cells. The emergence of a refined topographic map occurs robustly, largely
independent of the size of spike bins provided that the binned data contain
sufficient structure in a direction perpendicular to the bar’s edge. However,
larger spike bins do lead to greater rates of topographic error reduction,
although the final errors associated with the mature maps do not exhibit
much variation as a function of spike bin size.

For our choice of parameters, bins of 64 spikes give roughly optimal
performance, resulting in the greatest rate of topographic error reduction.
Larger numbers of spikes per bin begin to correlate the activities of nearby
afferents too strongly, resulting in a breakdown or tempering of competitive
dynamics between spatially neighboring afferent cells above some threshold
in the strength of afferent correlations. The precise location of this threshold
depends in part on the function �xy, which characterizes the diffusion of
NTF between target cells. Narrowing �xy increases the threshold but weak-
ens the coupling between target cells so that there is less tendency for the
receptive fields of nearby target cells to be similar. Overall, therefore, while
narrowing �xy will increase this threshold, it will also tend to disrupt the
emergence of topography.

Our results, generated from a real-world device that captures some of
the key features of retinal processing, compare very favorably with results
obtained by simulating afferent input (Elliott & Shadbolt, 1999). This is de-
spite the intrinsic noise present in all real-world devices—for example, the
occasional failure of some pixels to respond to the stimulus and the tempo-
ral jitter of the responses. Indeed, in many respects, the system presented
here performs better than earlier simulations. In some earlier work (Elliott
& Shadbolt, 1999), we considered afferent input to consist of randomly acti-
vated pixels smeared by a gaussian smoothing function (cf. Goodhill, 1993).
For the same learning rate used here, that system required well in excess of
100,000 iterations in order to generate a refined topographic map (see fig-
ure 6 in Elliott & Shadbolt, 1999). In contrast, our study here requires only
on the order of 10,000 iterations to produce a mature map when coupled to
the silicon retina. It may be argued that our stimulus (a moving bar) is rather
unnatural. However, similar differences between the rates of development
in systems with and without preprocessing of the raw optical image are also
seen in robotic studies (unpublished observations). Retinal preprocessing
of the raw optical image therefore appears, from a developmental point of
view, to be of considerable advantage, allowing maps to achieve maturity
more quickly than otherwise possible.
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Spontaneous activity is a key feature of real nervous systems that al-
lows, for example, the encoding of negative quantities by mechanisms that
reduce spontaneous activity. Although we have not considered such en-
coding here, any model of neuronal development must be robust to the
presence of spontaneous activity. By turning up the level of spontaneous
activity on the silicon retina, we have shown that reasonable maps are gen-
erated even in the presence of high levels of spontaneous firing, with up to
approximately half of all spike events not being stimulus related.

The used retina chip proves to be a suitable input sensor for the plasticity
model. It provides the possibility of varying such parameters as refractory
period and spontaneous firing rate of the afferent neurons and therefore
allows us to evaluate the performance of the model under different input
conditions. In the nonbursting mode, the retina chip implements very sparse
coding, which makes the topographic refinement process more efficient. If,
in addition, spontaneous firing is suppressed, the output signal is robust
and reproducible with an error rate (number of missed and spurious events
divided by total number of events) of approximately 5%.

6 Conclusion

The bar-stimulated silicon retina coupled to a neurotrophic model is a com-
paratively simple system that has been used here to demonstrate, for the
first time, that a biologically inspired model of neuronal plasticity and a
neuromorphic chip can operate successfully in unison. Future work might
see the mounting of the chip on a mobile robotic platform for more realistic
patterns of stimulation, the activation of both the ON and the OFF path-
ways in the chip and an examination of their segregation on some target
structure, and using two such chips in a binocular configuration to examine
the development of structures such as ocular dominance columns.
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