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Summary
Peripheral and central nervous system lesions can
induce reorganization within central somatosensory and
motor body representations. We report changes in
brain activation patterns during movements of non-
affected body parts in paraplegic patients with spinal
cord injury (SCI). Nine SCI patients and 12 healthy
controls underwent blood oxygen level dependent signal
functional MRI during sequential ®nger-to-thumb
opposition, ¯exion and extension of wrist and of elbow,
and horizontal movements of the tongue. Single subject
and group analyses were performed, and the activation
volumes, maximum t values and centres of gravity were
calculated. The somatotopical upper limb and tongue
representations in the contralateral primary motor cor-
tex (M1) in the SCI patients were preserved without

any shift of activation towards the deefferented and
deafferented M1 foot area. During ®nger movements,
however, the SCI patients showed an increased volume
in M1 activation. Increased activation was also found in
non-primary motor and parietal areas, as well as in the
cerebellum during movements of the ®ngers, wrist and
elbow, whereas no changes were present during tongue
movements. These results document that, in paraplegic
patients, the representation of the non-impaired upper
limb muscles is modi®ed, though without any topo-
graphical reorganization in M1. The extensive changes
in primary and non-primary motor areas, and in sub-
cortical regions demonstrate that even distant neuronal
damage has impact upon the activation of the whole
sensorimotor system.
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Abbreviations: COG = centre of gravity; fMRI = functional MRI; M1 = primary motor cortex; PMd = dorsal premotor

areas; ROI = region of interest; S1 = primary somatosensory cortex; S2 = secondary somatosensory cortex; SCI = spinal

cord injury; SMA = supplementary motor areas.

Introduction
Electrophysiological and functional neuroimaging studies in

humans suffering from lesions of the peripheral (i.e. after

upper limb amputation) and CNS (stroke) have shown that the

adult brain is capable of extensive reorganization (Weiller

et al., 1993; Kew et al., 1994).

Paraplegic patients with a traumatic spinal cord injury

(SCI) present an acutely acquired neurological disorder with

severe sensory and motor de®cits caudal to the spinal lesion.

They suffer from circumscribed spinal cord damage and show

neurological de®cits due to the disconnection of efferent

motor and afferent sensory pathways between the lower body

parts and the cortical and subcortical structures. This

generates a special condition for the brain as the disconnected

sensorimotor areas are preserved, but their efferent motor

commands do not reach the effectors and no longer receive

the appropriate afferent feedback.

How cortical and subcortical structures react to such a

condition has been the subject of several investigations with

various, partly divergent ®ndings. On one hand, EEG in SCI

patients has shown reorganization related to the recovery of

limb functions with a posterior shift of cortical activation

towards the primary somatosensory area (Green et al., 1998).

On the other hand, transcranial magnetic stimulation (TMS)

in paraplegics disclosed an enlargement of the cortical
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representations of non-affected muscles in the primary motor

cortex (M1), together with an increased excitability (Cohen

et al., 1991b). In addition, PET in paraplegic and quadriplegic

patients revealed extensive changes in cortical and sub-

cortical activation during speci®c motor performances of the

upper limbs (Bruehlmeier et al., 1998; Curt et al., 2002).

Most investigations focused on changes in M1 without

systematically addressing the somatotopical organization and

the potential involvement of non-primary motor areas and

subcortical regions.

The aim of the present study was to assess, using functional

MRI (fMRI), how far the paraplegic condition in SCI patients

can induce reorganization of brain activation during simple

and well-controlled movements of the non-affected upper

limb. Based on earlier ®ndings (Bruehlmeier et al., 1998;

Curt et al., 2002), we made the hypothesis that SCI with

neurological deprivation of almost half the body should

induce modi®cations in the representation of the non-affected

upper limbs.

To test this hypothesis, we posed the following questions

concerning paraplegic patients who had never experienced

any functional impairment of their upper limbs:

(i) Are there any changes of the activation patterns in primary

and non-primary sensorimotor areas during normal upper

limb movements?

(ii) Is the distal to proximal somatotopical cortical represen-

tation of the upper limb modi®ed?

(iii) Is there a shift of the upper limb representations into the

adjacent regions devoted to the lower limb?

Material and methods
Paraplegic patients
Nine paraplegic patients (three female, six male, mean age

30.3 years 6 6.9, age range 22±43 years) were studied.

Chapman and Chapman's handedness inventory revealed

clear right-hand dominance in all patients (mean inventory

scale 14.1) (Chapman and Chapman, 1987). The mean period

following SCI was 40.2 months (range 4±106 months). The

level of SCI was thoracic (n = 4) or lumbar (n = 5). Table 1

gives the age, sex, aetiology of the SCI, the level of complete

motor de®cit, the time since SCI and the neurological

assessment using the impairment scale of the American

Spinal Injury Association (ASIA) (Maynard et al., 1997) for

the nine patients. None of the SCI patients had suffered a head

or brain lesion associated with the trauma leading to the

injury. Patients with uncontrollable spasticity-induced body

movements were excluded from the study. Further exclusion

criteria included seizures, any medical or mental illness,

substance abuse, recurrent autonomic dysre¯exia, dysaes-

thetic pain syndrome and use of medication known to alter

neurological activity. The Glasgow Coma Scale (Teasdale

and Jennett, 1974) after trauma was normal and the motor

control of the ®ngers, wrist, elbow and of the tongue was

unaffected in all SCI patients.

The study was approved by the local ethics committee,

University Hospital, ZuÈrich, and performed with the written

informed consent of the patients.

Control subjects
Twelve healthy subjects (six female, six male, mean age

29.9 years 6 4.1, age range 25±39 years) without any history

of neurological or psychiatric illness were recruited as control

population. All had a right-hand dominance according to the

Chapman and Chapman handedness inventory (mean inven-

tory scale 13.2). Subjects gave written informed consent prior

to the MRI examination.

Imaging procedures
Imaging was carried out on a 1.5 T whole body scanner

(Signa Horizon, Echo-speed LX General Electric Medical

Systems, Milwaukee, WI, USA) equipped with a standard

product transmit±receive head coil. Foam padding and straps

Table 1 Clinical data and neurological scores using the American Spinal Injury Association Impairment scale (ASIA) in
all patients

No. Age/sex Aetiology of the injury Level of complete
motor impairment

Time since injury
(months)

ASIA Motor
(0±100)

Touch
(0±112)

Pin prick
(0±112)

1 23/M transverse myelitis L2 106 A 50 62 60
2 22/M fracture Th9-11 L2 4 A 50 70 70
3 31/M fracture L1 L2 5 A 50 82 82
4 31/M fracture Th3/4 L1 4 A 50 44 42
5 25/F fracture Th4/5 L2 76 A 50 56 56
6 43/M fracture Th12 L4 10 B 56 98 84
7 34/M fracture L1-3 L4 36 A 66 90 90
8 37/F fracture Th7/8 L2 55 A 50 70 70
9 27/F fracture L1/2 L2 66 A 53 80 74

The motor scores are assessed on a ®ve-point scale across speci®c myotomes to calculate a single summary motor score. The touch and
pin prick scores are assessed on a three-point scale at speci®c key points and summed to a single score (Maynard et al., 1997). M = male;
F = female; A = no sensory or motor function is preserved; B = sensory but not motor function is preserved below the level.
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were used to restrict head motion within the coil. T1-weighted

whole-brain anatomical reference volume data with an

isotropic spatial resolution of 1.2 mm were acquired with a

3D spoiled gradient echo sequence [TE (echo time) = 9 ms,

TR (repetition time = 50 ms]. Functional imaging was

conducted using a gradient-echo echo-planar pulse sequence

(TE = 40 ms, TR = 3750 ms, ¯ip angle = 90°) sensitive to the

blood oxygen level dependent (BOLD) signal. Thirty con-

tiguous, axial slices with a slice thickness of 4 mm and

covering the entire brain were acquired. The imaging matrix

consisted of 128 3 96 data points resulting in a rectangular

®eld-of-view of 256 3 192 mm and a nominal in-plane

resolution of 2 3 2 mm. Series of 48 sequential volumes were

acquired for each functional experiment.

Activation paradigms and manipulandum
Each activation experiment consisted of 30 s periods of rest

alternating with 30 s periods of movement, repeated three

times. The total data collection lasted 180 s. The beginning

and end of each motor activation period were signalled with

`start' and `stop' instructions verbally transmitted over the

scanner intercom system. Prior to data acquisition, both

patients and volunteers received written instruction about the

experimental set-up. To ensure proper and reproducible task

execution, each movement was practised ®rst outside and

then inside the magnet bore prior to the scanning procedure.

During data acquisition, the movement performance was

controlled visually by the examiner to monitor any movement

or apparent change in the resting state of the non-moving

limbs. Surface electromyography (EMG) during the fMRI

experiments was not recorded as, due to gradient-induced

artefacts, it lacks the sensitivity to detect small, undesired

movements (Dai et al., 2001).

To assess within-limb somatotopy, three series of self-

paced movements were performed at a rate of ~0.5 Hz in the

following order: (i) repetitive ¯exion (40°) and extension

(20°) of the right wrist; (ii) ¯exion (100°) and extension

(±30°) of the right elbow; and (iii) repetitive, sequential

®nger-to-thumb opposition of the digits 2, 3, 4 and 5.

Alternating right-left horizontal movements of the tongue

were performed to locate the face representation, as other

facial movements frequently produce movement artefacts.

An adaptable glass ®bre forearm splint was designed to

standardize the movements and thus allow for inter-subject

comparisons. This splint was mounted at the height of the

elbow on a rotation axis ®xed onto the scanner table. It kept

the forearm in a comfortable, slightly ¯exed position above

the subject's abdomen and at an angle of ~35° relative to the

scanner table. Strips and cast elements were applied between

experiments (without repositioning the subject) to restrain

movements of the wrist, hand and ®ngers. During the

movements of a speci®c joint, potential movements of other

joints were prevented by the use of additional devices and

strips, e.g. blocking wrist and ®ngers during elbow move-

ments. The movements of the tongue were unconstrained.

The left arm was positioned along the body, and unintentional

movements were restricted by the lateral wall of the magnet

bore and by additional strips. During the experiments, the

subjects closed their eyes and the light was dimmed in the

scanner room.

fMRI data analysis
All data analysis and post-processing were performed of¯ine

as follows. To minimize artefacts due to residual head

motion, functional volumes were realigned for each experi-

ment using an automated image registration algorithm

(Woods et al., 1998). Subsequently, data were spatially

®ltered using a 3D Gaussian convolution kernel of 4 mm

full-width and half-maximum (FWHM). A fully automated

procedure was used to register anatomical reference volumes

to the Montreal average volumetric data set aligned with the

Talairach stereotaxic coordinate system (Collins et al., 1994).

The resulting transformation was used to resample the

functional data into stereotaxic space.

The statistical analysis of the functional data was based on

a linear model with correlated errors and was carried out for

each dataset (Worsley et al., 1996). The design matrix of the

linear model was ®rst convolved with a gamma haemo-

dynamic response function modelled as a difference of two

gamma functions (Glover, 1999). Drift was removed by

adding polynomial covariates in the frame times, up to degree

3, to the design matrix. Resulting effects and their standard

errors were retained on a voxel-by-voxel basis. In a second

step, sessions were combined using a mixed effects linear

model for the effects (as data), with the standard deviations

for ®xed effects being taken from the previous analysis. A

random effects analysis was performed by ®rst estimating the

ratio of the random effects variance to the ®xed effects

variance, then regularizing this ratio by spatial smoothing

with a 15 mm FWHM ®lter. The variance of the effect was

then estimated by multiplying the smoothed ratio by the ®xed

effects variance to achieve higher degrees of freedom. The

threshold of the resulting t statistic images was obtained using

the minimum given by a Bonferroni correction and based on a

random ®eld theory (Worsley et al., 1996). Spatially

contiguous activated voxels were uni®ed into individual

clusters. Voxels that did not belong to a cluster of at least

three voxels above the signi®cance threshold were eliminated

on the assumption that isolated activation was likely to be

artefactual. The volume of activation, the maximum signal

intensity (maximum t value) and the geometrical centre of

gravity (COG) were determined for each cluster and their

location in Talairach coordinates retained. Homogenous mass

distribution in each cluster was assumed for the COG

calculation; therefore, all voxels above the signi®cance

threshold were weighted uniformly. The COG calculation

was preferred to activation maximum analysis, as COGs are

less sensitive to random ¯uctuations and local signal-to-noise

variations, and better represent shifts of extended activations.

Furthermore, activation maxima have been shown to be
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highly variable and relatively dependent evaluator-speci®c

interpretations (Lotze et al., 1999).

Group analysis
The following four group comparisons were made on the

basis of the linear model:

(i) In the control group, the activation patterns for each

movement tested compared with rest (P < 0.05).

(ii) In the SCI patients, the activation patterns for the same

movements compared with rest (P < 0.05).

(iii) Between the SCI and the control group, areas with

signi®cantly (P < 0.05) increased activation in SCI patients as

compared with controls.

(iv) Between the groups, disclosing areas with signi®cantly

(P < 0.05) increased activation in controls as compared with

SCI patients.

All the signi®cant clusters of the resulting t maps were

analysed with respect to the volume of activation, maximum t

value and COG coordinates. These comparisons yielded the

activation patterns for M1, non-primary motor areas, and

other cortical and subcortical regions.

Quantitative analysis of primary motor cortex
activation
To obtain detailed information on individual activations in

M1, we performed a quantitative analysis at the single subject

level as well as the group comparisons. As it is not possible to

de®ne anatomically the primary motor region precisely in the

averaged group data due to cortical variability, this additional

analysis was based on the activation maps in each individual

subject. For this purpose, a trained neuroradiologist seg-

mented manually a priori the contra- and ipsilateral M1 in

each anatomical reference volume before analysis of the

functional data and purely based on structural anatomy

(shaded area in Fig. 1). M1 was anatomically de®ned as the

cortex lying within the posterior wall of the precentral gyrus

including the central sulcus and extending to the paracentral

lobule. Although it is acknowledged that the exact anterior

border of M1 cannot be de®ned solely on macroscopical

landmarks, we determined the M1 as spanning the posterior

two-thirds of the precentral gyrus (Geyer et al., 1996). These

segmented regions were used as regions of interest (ROIs) for

the quantitative analysis of the activated volumes for each

movement and for each subject. Activated regions outside the

respective ROIs were discarded for this analysis. The normal

distribution of volumes of activation and COG locations

within all single subject data and within the whole group of

controls and SCI patients was assessed statistically by

Kolmogorov±Smirnov tests. Potential differences in the

localization of COGs (in the anterior±posterior, lateral±

medial and cranial±caudal direction) and activated volumes

for movements of various body parts within sessions were

tested statistically using paired t-tests. In addition, potential

differences between the standard deviations of the two groups

were tested statistically by F-tests. Correlation coef®cients

between the three parameters and clinical scores (motor,

touch and prick score), as well as the spinal level and the

duration of impairment were calculated by using the Pearson±

Bravais correlation. All statistics on single subject data were

performed using the Statistical Package for the Social

Sciences.

Results
Activation patterns detected by fMRI
For the control population, the group analysis contrasting the

on-condition (movement) with the off-condition (rest)

revealed signi®cant activation in many cortical and sub-

cortical areas. During ®nger movements, contralateral acti-

vation was present in M1, the primary somatosensory area

(S1), secondary somatosensory area (S2), the dorsal premotor

(PMd) cortex and in the thalamus. The supplementary motor

Fig. 1 Representative examples of four individual SCI patients
during right ®nger movements demonstrated on axial slices
through the omega-shaped portion of the central sulcus. The ®gure
illustrates the medial and lateral expansion of the primary motor
®nger representation within the contralateral M1. The images
furthermore display the manually segmented (shaded) M1 of the
individual subjects. The manual segmentation procedure was
performed a priori before the analysis of the functional data and
was based purely on structural anatomy. Right on the sections
corresponds to the left hemisphere.
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(SMA) and ventral premotor (PMv) areas were activated

bilaterally. Activation was also detected in both anterior lobes

of the cerebellum and was more pronounced on the right side,

i.e. ipsilateral to the movement. During wrist, elbow and

tongue movements, activation was seen in the same areas

with additional bilateral activation in the superior parietal

lobule, caudal cingulate motor areas (CMAs), the contra-

lateral insular cortex and the putamen. Activation was present

bilaterally in PMd and S2.

For the SCI patient population, the group analysis

contrasting movement with rest showed statistically signi®-

cant activation in the same regions.

Between-group comparisons
Both the quantitative analysis of individual somatotopical

organization and the group analysis using the linear model

converged in showing signi®cant differences between the two

populations. These included increased activity in several

cortical and subcortical regions in the SCI patients compared

with the controls.

Primary motor cortex
For the contralateral M1, the results of the quantitative

analysis in the a priori de®ned ROIs are provided in Table 2.

This lists the means and standard deviations of the activation

volumes, maximum t values and Talairach coordinates of the

COGs obtained for the various movements in the SCI patients

and the controls. Statistical comparison between the data

obtained from the two groups is also given. The SCI patients

showed a signi®cant enlargement of the activation volumes

compared with the controls (4366 mm3 versus 2972 mm3;

P < 0.04, paired t-test; Table 2). This difference was not

related to the standard deviations as the F-test did not reveal

any signi®cant differences between the patients and the

controls (SD = 1320 versus 1211; paired t-test: not signi®-

cant). The enlargement of activation in the SCI patients did

not correlate with the time since SCI, the level of injury or the

motor, touch or prick score. These ®ndings were con®rmed

by the group analysis contrasting the activation in the SCI

patients with that in the controls. This is illustrated in Fig. 2,

which displays the group analysis activation pattern in the

SCI patients, the controls and the signi®cant increase of

activation in the SCI patients compared with the controls in

representative axial, coronal and parasagittal sections. The

enlargement of the contralateral M1 ®nger representation in

the SCI patients is expanded both medially and laterally to the

corresponding activation volumes in the controls.

During wrist, elbow and tongue movements, statistical

comparisons of the volumes of activation in M1 did not reveal

any signi®cant differences between the SCI patients and the

Table 2 Quantitative analysis of the volumes, maximum t-values and centres of gravity of the movement representations in
the contralateral primary motor cortex in the SCI patients and in the controls

Paradigm Volume
(mm3)

Maximum
t-value

Talairach coordinates of the centres of gravity

x y z

Fingers SCI patients Mean 4366 10.3 ±37 ±21 54
SD 1320 1.4 3 4 5

Controls Mean 2972 11.1 ±37 ±20 58
SD 1211 1.2 2 5 2

t test P < 0.04 n.s. n.s. n.s. n.s.

Wrist SCI patients Mean 3978 11.1 ±34 ±23 57
SD 934 0.7 3 4 5

Controls Mean 4409 10.6 ±34 ±23 59
SD 2091 1.5 3 4 3

t test n.s. n.s. n.s. n.s. n.s.

Elbow SCI patients Mean 2987 10.6 ±29 ±26 60
SD 1121 0.8 3 3 3

Controls Mean 2267 10.3 ±29 ±25 61
SD 1158 1.3 4 4 5

t test n.s. n.s. n.s. n.s. n.s.

Tongue L/R SCI patients Mean 2470/1722 7.9/8.7 ±52/56 ±6/±7 33/32
SD 1368/998 2.1/1.5 3/2 5/2 6/4

Controls Mean 3079/3042 9.2/8.7 ±52/56 ±5/±6 29/28
SD 2034/1640 1.6/1.9 3/2 3/3 6/5

t test n.s. n.s. n.s. n.s. n.s.

The results of the statistical comparison between the two groups is indicated for each movement (t-test). L = left; R = right;
n.s. = non-signi®cant.
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controls (see Table 2). Speci®cally, no changes similar to

those observed during ®nger movements could be detected.

With respect to maximum t values, the quantitative compari-

sons obtained for all movements (including ®ngers) did not

disclose any signi®cant differences between the patients and

the controls (10.3 6 1.4 versus 11.1 6 1.2; paired t-test: not

signi®cant).

To disclose potential differences between the somato-

topical maps of the SCI patients and those of the controls, the

mean COGs and SDs of the individual M1 body part

representations were calculated over all subjects. The statis-

tical comparison (paired t-test) between the COG coordinates

obtained for all the movements tested in the two populations

did not reveal any signi®cant differences (Table 2). These

®ndings are illustrated in Fig. 3, which displays in 2D scatter

plot, the projections of all individual and mean COGs

obtained for the four movements in the SCI patients in the

axial and coronal plane. Figure 3 illustrates the somatotopical

organization of the ®ngers, wrist, elbow and the left

hemispheric tongue representation in contralateral M1 in

the SCI patients. This is the same as that of the controls. No

shift of activation towards the expected M1 foot representa-

tion was identi®ed.

In the ipsilateral M1, the statistical analysis did not show

any signi®cant differences between the control subjects and

the SCI patients, either for the maximum t values or for the

volumes of activation and the COG coordinates.

Non-primary motor and parietal cortex,
subcortical regions and cerebellum
To analyse whether activation changes occurred in regions

other than M1, between group comparisons were performed

contrasting the activation in the SCI patients with that of the

Fig. 2 Results of the group analysis for the ®nger movements demonstrating the activation in contralateral M1 on axial, coronal and
parasagittal sections. Note the activation patterns in the SCI patients (upper row) and the controls (middle row), and the signi®cant
increase in activation in the SCI patients compared with the controls (lower row). The M1 ®nger representation is signi®cantly enlarged in
the SCI patients with a medial and lateral expansion of the volume. The additional increase in activation in the contralateral premotor and
parietal areas is also statistically signi®cant. Right on the sections corresponds to the left hemisphere. The same conventions apply as in
Fig. 1.
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controls. For the SCI patients, a statistically signi®cant

increase of activation was found in several non-primary

motor areas, the parietal cortex and the cerebellum. Table 3

lists all clusters with statistically signi®cant (P < 0.05)

additional activation, considering both the increase in the t

values and the volumes of activation. Table 3 also gives the

COG coordinates of all these clusters, the corresponding

cytoarchitectonic (Brodmann) and functional areas, the

maximum t values and the activated volumes.

During ®nger movements, a signi®cant increase of acti-

vation was detected in the ipsi- and contralateral SMA and

PMd of the SCI patients. An increase was also found in

contralateral S1, the superior parietal lobule bilaterally and

the left inferior parietal lobule. Figure 4 demonstrates, on two

continuous axial sections, the cerebellar activation in the

controls, the SCI patients and the signi®cant increase of

activation in the SCI patients. Like the contralateral M1, the

ipsilateral ®nger representation in the anterior lobe of the

cerebellum was expanded in both anterior and posterior

directions compared with the corresponding activated volume

in the controls. An expansion was also detected in the smaller

ipsilateral cerebellar ®nger representation and in the vermis

on the right side (see Table 3).

Statistical differences between groups occurred more rarely

for the other movements (Table 3). During wrist movements,

an increased activation was found in the contralateral SMA,

PMd, S1 and ipsilateral inferior parietal lobule in SCI

patients. During elbow movements, a signi®cant increase in

the SCI patients was detected in the contralateral PMd, S1,

superior parietal lobule and the precuneus. In contrast, no

difference between the SCI patients and the controls was

observed during bilateral tongue movements.

The inverse contrasts, i.e. between control subjects and SCI

patients, did not disclose any areas of increased activation in

the controls.

Discussion
The present investigation addressed the question of whether

the cortical and subcortical representations of non-affected

body parts are modi®ed in complete paraplegic patients.

Unlike several other studies, analysis of the fMRI data and the

comparison with healthy subjects showed an unchanged M1

somatotopical organization for the upper limb and tongue,

without any medial, lateral or posterior shift. However,

differences in activation patterns between SCI patients and

control subjects strongly suggest some reorganization. These

included an increase in activation volume of the M1 hand

representation and an additional activation in various non-

primary cortical and subcortical regions for all forearm

movements. These changes were most pronounced for the

®nger movements and were not related to any obvious

modi®cation in the motor performance of the upper normal

limb.

Primary motor cortex
The most important result of the present comparison between

paraplegics and healthy subjects was the increased activation

volume in M1 during ®nger movements despite the preserved

Fig. 3 Two-dimensional scatter plots of the individual COGs for the nine SCI patients in the contralateral M1 (small dots). The mean
COGs of the patients are indicated by larger, encircled dots and the mean COGs of the controls by triangles. Note the intact somatotopical
gradient of the within-arm and the left hemispheric tongue representations on both axial and coronal planes (with almost identical mean
coordinates for all movements in the SCI patients and in the controls). Note also the absence of shift towards the deafferented and
deefferented M1 foot area. Left: axial plane with approximate contour of the precentral gyrus. Right: coronal plane with cortical surface
and limit to the white matter. x, y, z: coordinates corresponding to Talairach space (Collins et al., 1994).
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within-upper limb representation. The enlargement of the M1

®nger region con®rms a preliminary report by Turner and

colleagues, who described a slightly larger hand representa-

tion in SCI patients (Turner et al., 2000). It is also in line with

TMS investigations in paraplegics showing an enlarged

representation of the preserved muscles proximal to the lesion

level (Cohen et al., 1991a; Streletz et al., 1995).

The maps of the COGs in the within-upper limb repre-

sentation and the relation to the tongue region were not

different in paraplegic patients and control subjects

(Kleinschmidt et al., 1997; Alkadhi et al., 2000). This ®nding

differs strongly from that of a fMRI study in four paraplegic

patients showing a displacement of the activation maxima for

elbow movements in the direction of the disconnected lower

limb region (Lotze et al., 1999). This discrepancy with our

present ®ndings can be attributed to differences between the

two paraplegic populations and/or to the fMRI methodology

used. In our investigation, all paraplegic patients suffered

from traumatic and complete SCI lesions whereas the

subjects of the other study mostly had lesions of various

aetiologies. With respect to methodology, we used the COG

method to locate topographically the activations instead of

merely measuring activation maxima. We consider the COGs

as the most reliable method for describing cortical body

representation; this conclusion is in line with a later

publication by the same group (Lotze et al., 2000). Further-

more, a preserved normal somatotopy in quadriplegic SCI

patients moving or attempting to move several body parts was

reported recently (Shoham et al., 2001). The latter ®ndings

are not quite in line with TMS studies in quadriplegic patients

reporting an enlargement together with some lateral shift of

the excitable area for the abdominal muscles and for the

biceps brachii (Levy et al., 1990; Topka et al., 1991).

Non-primary motor areas
Another important and new ®nding from our study is the

signi®cant increase of activation in several premotor (SMA,

Table 3 Areas of statistically signi®cant activation for ®nger, wrist, elbow and tongue movements in the non-primary
motor and parietal areas and in the cerebellum of the SCI patients compared with the controls

Paradigm Side Anatomical areas BA Functional
areas

Talairach coordinates of the centres of gravity Maximum
t±value

Volume
(mm3)

x y z

Fingers R Superior frontal gyrus 6 SMA 1 1 65 6.0 176
R Superior frontal gyrus 6 SMA 4 ±15 51 5.9 128
R Superior frontal gyrus 6 SMA 9 5 50 6.3 112
L Superior frontal gyrus 6 SMA ±3 ±3 72 5.6 64
L Precentral gyrus 6 PMd ±34 ±10 65 8.6 390
L Precentral gyrus 6 PMd ±46 ±7 56 6.5 384
L Middle frontal gyrus 6 PMd ±37 1 64 6.6 240
L Superior frontal gyrus 6 PMd ±16 ±8 72 6.1 160
R Precentral gyrus 6 PMd 42 ±14 65 6.0 128
R Precentral gyrus 6 PMd 47 ±2 44 5.5 112
L Post-central gyrus 3 S1 ±34 ±28 57 7.7 320
L Post-central gyrus 3 S1 ±17 ±34 76 5.9 144
L Superior parietal lobule 5 ±37 ±41 60 5.2 64
R Superior parietal lobule 7 29 ±49 46 6.4 272
R Superior parietal lobule 7 22 ±68 50 6.2 224
L Superior parietal lobule 7 ±10 ±57 72 5.3 64
L Inferior parietal lobule 40 ±37 ±49 53 6.4 272
L Inferior parietal lobule 40 ±43 ±40 56 5.8 64
R Cerebellum 21 ±70 ±19 6.6 416
R Cerebellum 18 ±49 ±24 6.5 144
L Cerebellum ±28 ±70 ±23 5.2 64
R Vermis 4 ±75 ±18 5.7 224

Wrist L Superior frontal gyrus 6 SMA ±3 5 52 5.4 64
L Precentral gyrus 6 PMd ±29 ±11 72 8.7 240
L Paracentral lobule 5 S1 ±3 ±39 75 6.9 256
R Inferior parietal lobule 40 62 ±40 40 5.7 64

Elbow L Precentral gyrus 6 PMd ±28 ±12 72 8.8 192
L Post-central gyrus 3 S1 ±11 ±34 76 7.2 560
L Superior parietal lobule 5 ±24 ±44 69 5.8 112
L Precuneus 7 ±6 ±46 70 6.6 208

Tongue ± ± ± ± ± ± ± ± ±

BA = Brodmann area; L = left; R = right.
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PMd), post-central and parietal cortical areas, as well as in the

anterior cerebellum for movements of the intact upper limb.

This change in the degree of activation was most frequent and

prominent for ®nger and hand movements. Similar changes

have been shown with PET in paraplegic and tetraplegic SCI

patients in a task requiring the manipulation of a joystick and

during wrist extension (Bruehlmeier et al., 1998; Curt et al.,

2002). Our ®ndings demonstrate that an interruption of the

spinal pathways induces representational modi®cations of the

non-impaired body parts in non-primary motor areas.

Traditionally, these areas have been associated with the

initiation (Vidal et al., 1995) and planning (Deiber et al.,

1996) of motor performance, but they have recently been

shown to also participate in simple movements (Fink et al.,

1997; Kollias et al., 2001).

There are several potential explanations for our ®ndings.

One possibility is that the spinal lesion induces changes in the

afferent pathways to the non-primary cortical areas through

the cerebellum, basal ganglia and thalamus (Orioli and Strick,

1989; Rouiller et al., 1999). Another possibility is that the

enlargement of the hand representation in M1 provokes, via

the existing corticocortical connections, an increased acti-

vation in PM, SMA, post-central and parietal cortex

(Stepniewska et al., 1993; Wise et al., 1997; Rizzolatti

Fig. 4 Results of the group analysis for ®nger movements demonstrating the cerebellar activation in two
continuous axial sections in the SCI patients (upper row), the controls (middle row) and the statistically
signi®cant increase of activation in the SCI patients (lower row). The ipsilateral cerebellar ®nger
representation in the SCI patients is enlarged compared with the controls. A less prominent expansion is
also seen in the contralateral cerebellar anterior lobe and in the right paramedian vermis. The same
conventions apply as in Fig. 1.
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et al., 1998). Although the present fMRI methodology cannot

opt for one of the two possibilities, a striking observation is

the fact that most changes observed in the non-primary motor

cortical regions occurred for the ®nger and hand movements,

and thus could well be secondary to the expansion of the M1

hand representation. The signi®cant modi®cations disclosed

in non-primary motor cortical areas and in the cerebellum

demonstrate that the whole sensorimotor network involved in

the control of limb movements can be subject to reorganiza-

tion after interruption of the afferent and efferent spinal

pathways.

Origin of the brain activation changes
The question of whether the modi®cations in brain activation

could be an artefact caused by the motor performance can be

ruled out. Movement amplitude, repetition rate and strength

of muscle contraction (which have been shown to in¯uence

brain activation) were well controlled in the present inves-

tigation and were similar for control subjects and SCI patients

(Dettmers et al., 1995; Blinkenberg et al., 1996; Schlaug

et al., 1996; Williamson et al., 1996; Waldvogel et al., 1999).

Use-dependent changes in the M1 forearm representation

have been demonstrated in monkeys (Nudo et al., 1996) and

motor cortex plasticity during motor learning has been shown

repeatedly in human subjects (Karni et al., 1995; Pascual-

Leone et al., 1995; Pearce et al., 2000). It is unlikely that the

changes in brain activation in our SCI patients were induced

by increased use of the upper limbs, as only the volume of the

M1 hand representation was increased and not that of other

normal upper arm muscles, as would be expected due to their

overuse. Furthermore, we can exclude a learning or training

effect since only simple repetitive movements were required.

The observed changes in brain activation may be induced

by changes either at the spinal or cortical level, or both

(Raineteau and Schwab, 2001). At the spinal level, sprouting

or rewiring may occur close to the SCI segments and

consequently induce an enlargement of the cortical represen-

tation of the muscles innervated by the motor neuronal pool

just rostral and adjacent to the lesion. In accordance to this,

only the representation of the hand and ®nger muscles was

enlarged in the present study; their motor neuronal pools are

located in the lower cervical and upper thoracic spinal grey,

thus closer to the SCI levels than the motor neurones of more

proximal muscles. The higher excitability observed in TMS

studies could also be one of its consequences (Topka et al.,

1991; Streletz et al., 1995). At the cortical level, an expanded

hand representation may be caused by changes in intracortical

connectivity or by sprouting of cortical connections in the

absence of peripheral afferent inputs to M1 (Jacobs and

Donoghue, 1991; Florence et al., 1998; Sanes and Donoghue,

2000). The in¯uence of afferent input in long-term reorgan-

ization of the human motor cortex is supported by several

investigations (Hamdy et al., 1998; Ridding and Rothwell,

1999). In our study, the most extensive changes in brain

activation occurred during ®nger and hand movements. The

hand has, together with the mouth, the largest cortical

representation compared with that of proximal, axial and

lower limb muscles, and the highest density in sensory

receptors. The present data may indicate that the extent of

cortical reorganization is in¯uenced by the functional

signi®cance of the motor output projections and of the

afferent feedback. Brain imaging alone cannot distinguish

whether the observed changes are induced at the cortical or

spinal level, nor provide de®nitive information on the

underlying pathophysiological mechanisms responsible for

these changes.

Conclusion
The extensive activation changes in the cortical and

subcortical representation of non-affected muscles after

remote spinal lesions demonstrate that even distant neuronal

damage affects the function of the whole CNS. This

hypothesis was proposed at the beginning of 20th century

and termed `diaschisis' by Constantin von Monakow

(Kesselring, 2000). Our ®ndings in paraplegic patients

disclose the complex changes in the CNS organization after

a neuronal lesion and strongly suggest that distinction should

be made between the reorganization induced by a new general

body condition and that related to functional impairment.
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