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Optimized chaos control with simple limiters
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We present an elementary derivation of chaos control with simple limiters using the logistic map and the
Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic
orbits of a chaotic attractor.
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Recently, Corroret al. [1] proposed a new efficient ex- amples, the correction is proportional to the difference be-
perimental chaos control method. The original Ott, Grebogitween the value of the state variable without limiter and the
and Yorke(OGY) method[2] and their variant$3,4] require  threshold. Using the logistic map as chaotic system the
the measurement of the system state, the generation of th@plementation of the control scheme vyields
control signal, and its application to a system parameter. The

time it takes to accomplish these tasks is the latency of the . MXn(1=Xn), MXn(1=Xp) <Xn,
controller that limits the frequency range of chaos control. "1™ | (1— a)rx (1=x,)+ aXp, Xp(1—Xp)>Xg.
By simplifying the control scheme using limiters, the new (1)

method reduces the latency, which allows for speculations of
chaos control in the GHz range. Here we discuss the mathdere,x, andx,, ; denote the state variable at timeandn
ematical foundation of controlling chaos with simple limit- +1, respectivelyq is the proportionality factor of the per-
ers. Consideration of these principles implies that the algoturbation, andxy, represents the limiter, which defines the
rithm can be optimized. threshold of the state variable above which the correction is
Corron et al. [1] presented two experiments where theapplied. For maps, peridd-UPOs are determined by the
system is controlled on unstable periodic orfitd®O) using  fixed points of thek-fold iterated mag¥, with their stability
a limiter based algorithm. In the case of the chaotic driverbeing given by the derivative of this map at the fixed points.
pendulum, an additional repulsive momentum is applied tdf the absolute value of the derivative of the control map is
the system if the angle of the pendulum exceeds a givefess than unity, the system can be stabilized on the UPO. The
threshold. The second example deals with the double scrodim of the present work is to show that by use of this con-
oscillator, where a diode acts as a limiter as soon as thdition, the control mechanism can be optimized. Figure 1
amplitude of the voltage exceeds the threshold. In both exshows the modified mafEq. (1)] for different values ofw,
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FIG. 1. Modified maps used for limiter-control of the period-1 ofbjtand the period-2 orbitb) of the logistic map, see E@1). (a) Full
line, @yi,=0.75; dashed lineg,,=1.5. Superstable orbits are obtained for 1 (dotted ling. (b) Full line, a,i,=0.937 50; dashed line,

ama= 1.249 99, dotted lineg=1.
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where, without loss of generality, we have set the system This immediately leads to a suggestion on how to im-
parameter tar =4 (fully developed chags There are two prove the first experiment in Refl]. For a=1 the deriva-
limiting values for « within which the map can be con- tive becomes zero at the fixed point and the periodic orbits
trolled: a maximal valuey,,,,>1 (dashed lingand a mini- are superstablé-ig. 1, dotted ling¢ Experimentally, this cor-
mal valuea,,y<<1 (full line). The special case=1 (dotted responds to limiting weights that cannot be lifted anymore.
line) provides superstable UPOs; this case already has beéii this point, the periodic orbits become optimally stable and
analyzed by L. Glasst al. [5]. As the simplest example for therefore less sensitive to noise. As a matter of fact, the
our theoretical analysis, we focus on the unstable period tliode used as limiter in the second experiment of REF.
orbit. The derivative of the unperturbed system rigl approximates this case. Finally, the procedure of stabilizing
—2x*) =—2 (wherex* =0.75 denotes the fixed point; the UPOs can be adapted for two-dimensional maps. As an ex-
absolute slope larger than 1 refers to an unstable)ofiist ~ample we determined the range affor the Henon map
we consider the case whese<1 (Fig. 1, full line). Driving  given by
the system slightly out of the fixed point, the trajectory

alternates between the two branches of the map which meet

at the fixed point. In order to make the fixed point attractive, Xns1= ) )
the absolute value of the product of the derivatives of the two (1-a)(at+by,—Xp) +axy, a+by,—Xi>Xp,
branches at the fixed point must be smaller than 1. This leads

to a condition for the minimal value af,

2 2
a+byn_xna a+byn_xn$xth:

Yn+1=Xn,
|(1—a)(r(1—2x*))2|<1. (2

_ with parametersi=1.4 andb=0.3. For the period 1 and the
Thus, the lower threshold becomeg;,=0.75. In the case of period 2 orbit we obtained 0.790%lwr<1.68129 and

a>1 (1, dashed lingthe trajectory propagates only along .
; 0.80096< @<<1.204 08, respectively.
the perturbed branch after pushing the system out of the Provided that the control scheme is optimized(1) we

fixed point. Therefore the corresponding condition is believe that the limiter-based approach indeed represents a
[(1—a)r(1-2x*)|<1, (3)  Pprogress in chaos control, since the cutoff algorithm requires
no computational effort in experiments. A minor drawback

which yields the upper limite,,=1.5. The results can of the presented control method is that the perturbations may
readily be generalized to stabilize orbits of higher periodic-not be small, as during the initial transient, they may be

ity. comparable to the system size.
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