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Optimized chaos control with simple limiters
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We present an elementary derivation of chaos control with simple limiters using the logistic map and the
Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic
orbits of a chaotic attractor.
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Recently, Corronet al. @1# proposed a new efficient ex
perimental chaos control method. The original Ott, Grebo
and Yorke~OGY! method@2# and their variants@3,4# require
the measurement of the system state, the generation o
control signal, and its application to a system parameter.
time it takes to accomplish these tasks is the latency of
controller that limits the frequency range of chaos contr
By simplifying the control scheme using limiters, the ne
method reduces the latency, which allows for speculation
chaos control in the GHz range. Here we discuss the m
ematical foundation of controlling chaos with simple lim
ers. Consideration of these principles implies that the al
rithm can be optimized.

Corron et al. @1# presented two experiments where t
system is controlled on unstable periodic orbits~UPO! using
a limiter based algorithm. In the case of the chaotic driv
pendulum, an additional repulsive momentum is applied
the system if the angle of the pendulum exceeds a gi
threshold. The second example deals with the double sc
oscillator, where a diode acts as a limiter as soon as
amplitude of the voltage exceeds the threshold. In both
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amples, the correction is proportional to the difference
tween the value of the state variable without limiter and
threshold. Using the logistic map as chaotic system
implementation of the control scheme yields

xn115H rxn~12xn!, rxn~12xn!<xth ,

~12a!rxn~12xn!1axth , rxn~12xn!.xth .
~1!

Here,xn andxn11 denote the state variable at timen andn
11, respectively,a is the proportionality factor of the per
turbation, andxth represents the limiter, which defines th
threshold of the state variable above which the correctio
applied. For maps, period-k UPOs are determined by th
fixed points of thek-fold iterated mapf k, with their stability
being given by the derivative of this map at the fixed poin
If the absolute value of the derivative of the control map
less than unity, the system can be stabilized on the UPO.
aim of the present work is to show that by use of this co
dition, the control mechanism can be optimized. Figure
shows the modified map@Eq. ~1!# for different values ofa,
,

FIG. 1. Modified maps used for limiter-control of the period-1 orbit~a! and the period-2 orbit~b! of the logistic map, see Eq.~1!. ~a! Full

line, amin50.75; dashed line,amax51.5. Superstable orbits are obtained fora51 ~dotted line!. ~b! Full line, amin50.937 50; dashed line
amax51.249 99, dotted line,a51.
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where, without loss of generality, we have set the sys
parameter tor 54 ~fully developed chaos!. There are two
limiting values for a within which the map can be con
trolled: a maximal valueamax.1 ~dashed line! and a mini-
mal valueamin,1 ~full line!. The special casea51 ~dotted
line! provides superstable UPOs; this case already has
analyzed by L. Glasset al. @5#. As the simplest example fo
our theoretical analysis, we focus on the unstable perio
orbit. The derivative of the unperturbed system isr (1
22x*) 522 ~wherex* 50.75 denotes the fixed point; th
absolute slope larger than 1 refers to an unstable orbit!. First
we consider the case wherea,1 ~Fig. 1, full line!. Driving
the system slightly out of the fixed pointx*, the trajectory
alternates between the two branches of the map which m
at the fixed point. In order to make the fixed point attracti
the absolute value of the product of the derivatives of the
branches at the fixed point must be smaller than 1. This le
to a condition for the minimal value ofa,

u~12a!„r ~122x* !…2u,1. ~2!

Thus, the lower threshold becomesamin50.75. In the case o
a.1 ~1, dashed line! the trajectory propagates only alon
the perturbed branch after pushing the system out of
fixed point. Therefore the corresponding condition is

u~12a!r ~122x* !u,1, ~3!

which yields the upper limitamax51.5. The results can
readily be generalized to stabilize orbits of higher period
ity.
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This immediately leads to a suggestion on how to i
prove the first experiment in Ref.@1#. For a51 the deriva-
tive becomes zero at the fixed point and the periodic or
are superstable~Fig. 1, dotted line!. Experimentally, this cor-
responds to limiting weights that cannot be lifted anymo
At this point, the periodic orbits become optimally stable a
therefore less sensitive to noise. As a matter of fact,
diode used as limiter in the second experiment of Ref.@1#,
approximates this case. Finally, the procedure of stabiliz
UPOs can be adapted for two-dimensional maps. As an
ample we determined the range ofa for the Henon map
given by

xn115H a1byn2xn
2 , a1byn2xn

2<xth ,

~12a!~a1byn2xn
2!1axth , a1byn2xn

2.xth ,

yn115xn ,

with parametersa51.4 andb50.3. For the period 1 and th
period 2 orbit we obtained 0.790 11,a,1.681 29 and
0.800 90,a,1.204 08, respectively.

Provided that the control scheme is optimized (a51) we
believe that the limiter-based approach indeed represen
progress in chaos control, since the cutoff algorithm requ
no computational effort in experiments. A minor drawba
of the presented control method is that the perturbations m
not be small, as during the initial transient, they may
comparable to the system size.
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