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Abstract

Although key components of the cerebellar circuitry relevant to classical conditioning have
been identi"ed, the question how they act together is still unresolved. In this simulation study,
we investigate a real-time model which captures basic anatomical and physiological properties
of this system. We show that this model displays realistic learning performance over a range of
inter-stimulus intervals, and demonstrate its stability using a mobile robot solving an obstacle
avoidance task. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the paradigm of classical conditioning, a distinction is made between compo-
nents for non-speci"c and speci"c learning [5]. The former learning system is charac-
terized by rapid acquisition and physiological and anatomical investigations suggest
that it is critically dependent on the amygdala. The speci"c learning system is
characterized by the shaping of discrete skeletal movements to particular task require-
ments and displays slow acquisition. It is primarily identi"ed with the cerebellum.
We have developed a series of neural models of classical and operant conditioning,
called distributed adaptive control (DAC), that we have tested using behaving
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real-world devices [12]. In this approach we hypothesized that the role of the
non-speci"c learning system is to construct a representation of the conditioned
stimulus (CS), or stimulus identi"cation, which we have elaborated in neuronal
control structures for robots [11,13] and biophysically detailed models [8]. The
present project addresses the properties of the complementary speci"c learning
system; the cerebellum.
In this model, we follow the classical view of Marr that learning in the cerebellum is
critically dependent on changing the e$cacies of the parallel "ber synapses in the
cerebellar cortex [6] and that of Albus that learning at this level is expressed by
depressing these synapses [1]. In addition, we include the hypothesis of spectral
timing which proposes that the ability of cerebellar circuits to represent the time
intervals between conditioned and unconditioned stimulus events are due to proper-
ties local to parallel "ber synapses [2]. At the level of the overall cerebellar system our
model explicitly evaluates the hypothesis that the interaction between Purkinje cells in
the cerebellar cortex, the nucleus interpositus anterior, and the inferior olive consti-
tutes the critical circuit which controls and stabilizes cerebellar learning [4]. In this
modeling study, we investigate the implications of these assumptions on the functional
properties of the cerebellum in classical conditioning.

2. Methods

Fig. 1A depicts the central anatomical elements of the cerebellum incorporated in
our model. The CS and US inputs to the cerebellum are provided, respectively, by the
Mossy Fibers (MF), originating in the pontine nucleus (Po), and the climbing "bers
(CF), which originate in the inferior olive (IO). Mossy "bers make excitatory synapses
onto granule cells (Gr), which give rise to the parallel "bers (PF). Parallel "bers, in
turn, form excitatory synapses onto the Purkinje cells (Pu) and the basket and stellate
interneurons (I) in the cerebellar cortex. The IO gives rise to the US conveying CF
which also converge onto the Purkinje cells. Due to this convergence of PF and CF
onto the Purkinje cells, these neurons are seen as the site where the memory
underlying speci"c learning is formed [9]. The neuronal precursors of CRs are
generated by the nucleus interpositus anterior (NIA) which receives inhibitory projec-
tions from the Purkinje cells.
Central to our model is the assumption that Purkinje cells operate in two modes. In
the default mode they are spontaneously active and induce a constant level of
hyperpolarization in the NIA. In the CS mode the I neurons, which are coactivated by
the PFs, suppress the spontaneous activity of the Purkinje cells and the response of
the Purkinje cells depends fully on the PF inputs. It is only in this mode that CRs can
be generated.
Plasticity of the PF-Purkinje cell synapse can regulate the duration of the Purkinje
cell response in the CS mode. We assume that the long term depression (LTD) of this
synapse shortens the duration of the Purkinje cell response to the CS, which can lead
to a disinhibition of the NIA neurons. In which case the NIA neurons can repolarize
and generate rebound spikes, triggering a CR [3]. In our model the PF-Purkinje cell
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Fig. 1. (A) Basic elements of the modeled cerebellar circuit. See text for explanation. (B) Learning curves of
a circuit with varying values of persistence of the PF synapse, �, over several CS-US intervals. � is
a multiplicative decay of the membrane potential and indirectly de"nes the time constant. (C) The
microrobot Khepera (left panel) was equipped with a color CCD camera, which was tilted at an angle of 603
towards the horizontal plane. The CS is de"ned by a population of neurons responding to the presence of
red in speci"c regions of the video image. USs were derived from the infra-red sensors which, in this
experiment, signal the presence of IR re#ecting surfaces at 1 cm from the sensor. The basic robot control
structure and visual processing network are described in Ref. [12]. The US is a rotational movement over
about 453. The avoidance task was performed in a circular arena with a diameter of 40 cm which was
constructed with a solid wall of red Duplo blocks. In this arena, three regions can be distinguished. The
neutral zone (I) where both CSs and USs cannot be sensed, the CS domain (II) where the camera can sense
the red surfaces of the blocks, and the US surface (III) where the IR sensors can be activated due to
collisions. (D) Performance of the robot over 90 min expressed by the ratio of CRs over all avoidance
actions (dashed). Solid line represents the average responses of the neurons responsive to the CS. Data is
averaged over time bins of 100 s.

synapse will only change e$cacy when both its pre- and post-synaptic components
are active. The polarity of the change, depression or potentiation, depends on the state
of the post-synaptic neuron, de"ned by the integrated excitatory input E��. If
E�� exceeds a LTD threshold the synapse can depress, while LTP can occur when
E�� falls in a lower range. When E�� is in between these two ranges no change will
occur. The LTD threshold de"nes that only values of E�� induced by coincident
activation of the parallel and climbing "bers can depress the synapse [7].
Given this mechanism of plasticity, e!ective timing of the CR depends on the
gradual weakening of the PF-Purkinje cell synapse and subsequent shortening of the
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Purkinje cell response and reduction of NIA repolarization latency. Once accurate
timing of the CR occurs, the acquired synaptic e$cacy is stabilized by inhibition of the
IO by the NIA that prevents transmission of US signals to the Purkinje cells [4]. The
central parameter which de"nes the range of CS-US inter stimulus intervals (ISI) over
which CRs can be acquired is the duration of the response of the PF-Purkinje cell
synapse [2].
Simulations and robot experiments were performed with IQR421 [10]. All neurons
are modeled as integrate and "re units with a "xed subtractive afterhyperpolarization.
The PF-Pu synapse is modeled as a linear threshold unit.

3. Results

We "rst investigated the relationship between the duration of the PF-Pu synapse
response and the e!ective ISIs. Three di!erent durations were tested using a condi-
tioning protocol consisting of 10 blocks of nine paired CS-US trials and one CS alone
trial each. The learning curves (Fig. 1B) demonstrate that realistic acquisition is
displayed over an ISI range of about 100 to 500 time steps where for each condition,
a typical Gaussian like learning curve is generated.
In order to investigate whether our model is able to learn to generate CRs under
more realistic conditions we incorporated it in a neural control structure for a mobile
robot which had to learn to avoid colored obstacles (Fig. 1C). Learning consists of
triggering rotational motion (CR) in response to the detection of red patches in the
image (CS). Hence, due to learning the robot is able to explore its environment
without colliding with the obstacles. The learning curve (Fig. 1D) shows that after
about 18 min 80% of the rotational movements were CRs. Learning stabilized at
around 95% CRs after about 25 min. This level of performance remained constant
over the remaining 65 min of the experiment. The second, solid, curve shows the
average amount of activity of the CS cells. It demonstrates that over the whole
experiment the robot explored it full environment spending approximately 40% of its
time in regions II and III of its arena.

4. Discussion

We have demonstrated that a model, which re#ects basic properties of the cerebel-
lum, can acquire and retain CRs where only one parameter, the duration of the PF-Pu
synapse response, can control the ISI range where e!ective acquisition can take place.
We have shown that this model can be generalized to an adaptive control structure for
a mobile robot. Our results demonstrate that the basic principles captured
in our model are robust in a real-world task environment over extended periods of
time.
Our model does not provide a complete description of the interactions between the
di!erent components of the cerebellar circuitry that are thought to be related to
classical conditioning. For instance, it has been shown that both the MF and the CF
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form excitatory, and possibly plastic, synapses within the NIA. These connections
were not incorporated in the model. We have rather focussed on the cerebellar cortex
and its a!erent and e!erent circuitry in order to explicitly investigate the contribution
of the cerebellar cortex, as opposed to the deep nuclei, to normal levels of condition-
ing. Our model demonstrated that plasticity in the cerebellar cortex can fully support
speci"c learning of the timing of conditioned responses.
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